mimalloc/include/mimalloc-internal.h

494 lines
18 KiB
C
Raw Normal View History

2019-06-20 02:26:12 +03:00
/* ----------------------------------------------------------------------------
Copyright (c) 2018, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
2019-06-20 02:26:12 +03:00
-----------------------------------------------------------------------------*/
#pragma once
#ifndef MIMALLOC_INTERNAL_H
#define MIMALLOC_INTERNAL_H
2019-06-20 02:26:12 +03:00
#include "mimalloc-types.h"
2019-09-01 11:06:01 +03:00
#if defined(MI_MALLOC_OVERRIDE) && (defined(__APPLE__) || defined(__OpenBSD__))
2019-06-20 02:26:12 +03:00
#define MI_TLS_RECURSE_GUARD
#endif
#if (MI_DEBUG>0)
#define mi_trace_message(...) _mi_trace_message(__VA_ARGS__)
#else
2019-08-17 03:49:49 +03:00
#define mi_trace_message(...)
#endif
#if defined(_MSC_VER)
#define mi_decl_noinline __declspec(noinline)
#define mi_attr_noreturn
#elif defined(__GNUC__) || defined(__clang__)
#define mi_decl_noinline __attribute__((noinline))
#define mi_attr_noreturn __attribute__((noreturn))
#else
#define mi_decl_noinline
#define mi_attr_noreturn
#endif
2019-06-20 02:26:12 +03:00
// "options.c"
2019-08-29 19:52:22 +03:00
void _mi_fputs(mi_output_fun* out, const char* prefix, const char* message);
void _mi_fprintf(mi_output_fun* out, const char* fmt, ...);
2019-06-20 02:26:12 +03:00
void _mi_error_message(const char* fmt, ...);
void _mi_warning_message(const char* fmt, ...);
void _mi_verbose_message(const char* fmt, ...);
void _mi_trace_message(const char* fmt, ...);
void _mi_options_init(void);
void _mi_fatal_error(const char* fmt, ...) mi_attr_noreturn;
2019-06-20 02:26:12 +03:00
// "init.c"
extern mi_stats_t _mi_stats_main;
extern const mi_page_t _mi_page_empty;
2019-06-25 13:16:36 +03:00
bool _mi_is_main_thread(void);
2019-06-20 02:26:12 +03:00
uintptr_t _mi_random_shuffle(uintptr_t x);
uintptr_t _mi_random_init(uintptr_t seed /* can be zero */);
bool _mi_preloading(); // true while the C runtime is not ready
2019-06-20 02:26:12 +03:00
// os.c
2019-06-25 13:16:36 +03:00
size_t _mi_os_page_size(void);
size_t _mi_os_large_page_size();
void _mi_os_init(void); // called from process init
void* _mi_os_alloc(size_t size, mi_stats_t* stats); // to allocate thread local data
void _mi_os_free(void* p, size_t size, mi_stats_t* stats); // to free thread local data
size_t _mi_os_good_alloc_size(size_t size);
int _mi_os_numa_node(mi_os_tld_t* tld);
bool _mi_os_protect(void* addr, size_t size);
bool _mi_os_unprotect(void* addr, size_t size);
2019-10-18 04:24:35 +03:00
bool _mi_os_commit(void* addr, size_t size, bool* is_zero, mi_stats_t* stats);
bool _mi_os_decommit(void* p, size_t size, mi_stats_t* stats);
bool _mi_os_reset(void* p, size_t size, mi_stats_t* stats);
2019-10-18 04:24:35 +03:00
bool _mi_os_unreset(void* p, size_t size, bool* is_zero, mi_stats_t* stats);
void* _mi_os_alloc_aligned(size_t size, size_t alignment, bool commit, bool* large, mi_os_tld_t* tld);
int _mi_os_reserve_huge_os_pages(size_t pages, double max_secs, size_t* pages_reserved) mi_attr_noexcept;
// arena.c
void* _mi_arena_alloc_aligned(size_t size, size_t alignment, bool* commit, bool* large, bool* is_zero, size_t* memid, mi_os_tld_t* tld);
void* _mi_arena_alloc(size_t size, bool* commit, bool* large, bool* is_zero, size_t* memid, mi_os_tld_t* tld);
void _mi_arena_free(void* p, size_t size, size_t memid, mi_stats_t* stats);
2019-06-20 02:26:12 +03:00
// "segment.c"
mi_page_t* _mi_segment_page_alloc(size_t block_wsize, mi_segments_tld_t* tld, mi_os_tld_t* os_tld);
void _mi_segment_page_free(mi_page_t* page, bool force, mi_segments_tld_t* tld);
void _mi_segment_page_abandon(mi_page_t* page, mi_segments_tld_t* tld);
bool _mi_segment_try_reclaim_abandoned( mi_heap_t* heap, bool try_all, mi_segments_tld_t* tld);
void _mi_segment_thread_collect(mi_segments_tld_t* tld);
uint8_t* _mi_segment_page_start(const mi_segment_t* segment, const mi_page_t* page, size_t* page_size); // page start for any page
2019-06-20 02:26:12 +03:00
// "page.c"
void* _mi_malloc_generic(mi_heap_t* heap, size_t size) mi_attr_noexcept mi_attr_malloc;
void _mi_page_retire(mi_page_t* page); // free the page if there are no other pages with many free blocks
void _mi_page_unfull(mi_page_t* page);
void _mi_page_free(mi_page_t* page, mi_page_queue_t* pq, bool force); // free the page
void _mi_page_abandon(mi_page_t* page, mi_page_queue_t* pq); // abandon the page, to be picked up by another thread...
void _mi_heap_delayed_free(mi_heap_t* heap);
2019-07-12 01:21:57 +03:00
void _mi_page_use_delayed_free(mi_page_t* page, mi_delayed_t delay);
2019-06-27 23:29:55 +03:00
size_t _mi_page_queue_append(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_queue_t* append);
2019-06-20 02:26:12 +03:00
void _mi_deferred_free(mi_heap_t* heap, bool force);
void _mi_page_free_collect(mi_page_t* page,bool force);
2019-06-20 02:26:12 +03:00
void _mi_page_reclaim(mi_heap_t* heap, mi_page_t* page); // callback from segments
size_t _mi_bin_size(uint8_t bin); // for stats
uint8_t _mi_bin(size_t size); // for stats
uint8_t _mi_bsr(uintptr_t x); // bit-scan-right, used on BSD in "os.c"
// "heap.c"
void _mi_heap_destroy_pages(mi_heap_t* heap);
void _mi_heap_collect_abandon(mi_heap_t* heap);
uintptr_t _mi_heap_random(mi_heap_t* heap);
// "stats.c"
void _mi_stats_done(mi_stats_t* stats);
double _mi_clock_end(double start);
double _mi_clock_start(void);
2019-06-20 02:26:12 +03:00
// "alloc.c"
void* _mi_page_malloc(mi_heap_t* heap, mi_page_t* page, size_t size) mi_attr_noexcept; // called from `_mi_malloc_generic`
void* _mi_heap_malloc_zero(mi_heap_t* heap, size_t size, bool zero);
void* _mi_heap_realloc_zero(mi_heap_t* heap, void* p, size_t newsize, bool zero);
2019-07-08 22:00:59 +03:00
mi_block_t* _mi_page_ptr_unalign(const mi_segment_t* segment, const mi_page_t* page, const void* p);
2019-07-15 02:48:53 +03:00
bool _mi_free_delayed_block(mi_block_t* block);
void _mi_block_zero_init(const mi_page_t* page, void* p, size_t size);
2019-06-20 02:26:12 +03:00
#if MI_DEBUG>1
bool _mi_page_is_valid(mi_page_t* page);
#endif
// ------------------------------------------------------
// Branches
// ------------------------------------------------------
#if defined(__GNUC__) || defined(__clang__)
#define mi_unlikely(x) __builtin_expect((x),0)
#define mi_likely(x) __builtin_expect((x),1)
#else
#define mi_unlikely(x) (x)
#define mi_likely(x) (x)
#endif
#ifndef __has_builtin
#define __has_builtin(x) 0
#endif
2019-06-20 02:26:12 +03:00
/* -----------------------------------------------------------
Inlined definitions
----------------------------------------------------------- */
#define UNUSED(x) (void)(x)
2019-08-17 03:49:49 +03:00
#if (MI_DEBUG>0)
#define UNUSED_RELEASE(x)
#else
#define UNUSED_RELEASE(x) UNUSED(x)
#endif
2019-06-20 02:26:12 +03:00
#define MI_INIT4(x) x(),x(),x(),x()
#define MI_INIT8(x) MI_INIT4(x),MI_INIT4(x)
#define MI_INIT16(x) MI_INIT8(x),MI_INIT8(x)
#define MI_INIT32(x) MI_INIT16(x),MI_INIT16(x)
#define MI_INIT64(x) MI_INIT32(x),MI_INIT32(x)
#define MI_INIT128(x) MI_INIT64(x),MI_INIT64(x)
#define MI_INIT256(x) MI_INIT128(x),MI_INIT128(x)
// Overflow detecting multiply
#define MI_MUL_NO_OVERFLOW ((size_t)1 << (4*sizeof(size_t))) // sqrt(SIZE_MAX)
static inline bool mi_mul_overflow(size_t count, size_t size, size_t* total) {
#if __has_builtin(__builtin_umul_overflow) || __GNUC__ >= 5
#include <limits.h> // UINT_MAX, ULONG_MAX
#if (SIZE_MAX == UINT_MAX)
return __builtin_umul_overflow(count, size, total);
#elif (SIZE_MAX == ULONG_MAX)
return __builtin_umull_overflow(count, size, total);
#else
return __builtin_umulll_overflow(count, size, total);
#endif
#else /* __builtin_umul_overflow is unavailable */
*total = count * size;
2019-06-20 02:26:12 +03:00
return ((size >= MI_MUL_NO_OVERFLOW || count >= MI_MUL_NO_OVERFLOW)
&& size > 0 && (SIZE_MAX / size) < count);
#endif
2019-06-20 02:26:12 +03:00
}
// Is `x` a power of two? (0 is considered a power of two)
static inline bool _mi_is_power_of_two(uintptr_t x) {
return ((x & (x - 1)) == 0);
}
// Align upwards
static inline uintptr_t _mi_align_up(uintptr_t sz, size_t alignment) {
uintptr_t mask = alignment - 1;
if ((alignment & mask) == 0) { // power of two?
return ((sz + mask) & ~mask);
}
else {
return (((sz + mask)/alignment)*alignment);
}
}
static inline uintptr_t _mi_align_down(uintptr_t sz, size_t alignment) {
return (sz / alignment) * alignment;
}
// Is memory zero initialized?
static inline bool mi_mem_is_zero(void* p, size_t size) {
for (size_t i = 0; i < size; i++) {
if (((uint8_t*)p)[i] != 0) return false;
}
return true;
}
2019-06-20 02:26:12 +03:00
// Align a byte size to a size in _machine words_,
// i.e. byte size == `wsize*sizeof(void*)`.
static inline size_t _mi_wsize_from_size(size_t size) {
2019-06-27 23:29:55 +03:00
mi_assert_internal(size <= SIZE_MAX - sizeof(uintptr_t));
2019-06-20 02:26:12 +03:00
return (size + sizeof(uintptr_t) - 1) / sizeof(uintptr_t);
}
/* -----------------------------------------------------------
The thread local default heap
----------------------------------------------------------- */
2019-06-20 02:26:12 +03:00
extern const mi_heap_t _mi_heap_empty; // read-only empty heap, initial value of the thread local default heap
extern mi_heap_t _mi_heap_main; // statically allocated main backing heap
extern bool _mi_process_is_initialized;
extern mi_decl_thread mi_heap_t* _mi_heap_default; // default heap to allocate from
2019-06-25 13:16:36 +03:00
static inline mi_heap_t* mi_get_default_heap(void) {
2019-06-20 02:26:12 +03:00
#ifdef MI_TLS_RECURSE_GUARD
// on some platforms, like macOS, the dynamic loader calls `malloc`
2019-06-20 02:26:12 +03:00
// to initialize thread local data. To avoid recursion, we need to avoid
// accessing the thread local `_mi_default_heap` until our module is loaded
// and use the statically allocated main heap until that time.
// TODO: patch ourselves dynamically to avoid this check every time?
if (!_mi_process_is_initialized) return &_mi_heap_main;
#endif
2019-06-22 21:50:03 +03:00
return _mi_heap_default;
2019-06-20 02:26:12 +03:00
}
static inline bool mi_heap_is_default(const mi_heap_t* heap) {
return (heap == mi_get_default_heap());
}
static inline bool mi_heap_is_backing(const mi_heap_t* heap) {
return (heap->tld->heap_backing == heap);
}
static inline bool mi_heap_is_initialized(mi_heap_t* heap) {
mi_assert_internal(heap != NULL);
return (heap != &_mi_heap_empty);
}
static inline uintptr_t _mi_ptr_cookie(const void* p) {
return ((uintptr_t)p ^ _mi_heap_main.cookie);
}
/* -----------------------------------------------------------
Pages
----------------------------------------------------------- */
2019-06-20 02:26:12 +03:00
static inline mi_page_t* _mi_heap_get_free_small_page(mi_heap_t* heap, size_t size) {
mi_assert_internal(size <= MI_SMALL_SIZE_MAX);
return heap->pages_free_direct[_mi_wsize_from_size(size)];
}
// Get the page belonging to a certain size class
static inline mi_page_t* _mi_get_free_small_page(size_t size) {
return _mi_heap_get_free_small_page(mi_get_default_heap(), size);
}
// Segment that contains the pointer
static inline mi_segment_t* _mi_ptr_segment(const void* p) {
// mi_assert_internal(p != NULL);
return (mi_segment_t*)((uintptr_t)p & ~MI_SEGMENT_MASK);
}
static inline mi_page_t* mi_slice_to_page(mi_slice_t* s) {
mi_assert_internal(s->slice_offset== 0 && s->slice_count > 0);
return (mi_page_t*)(s);
}
static inline mi_slice_t* mi_page_to_slice(mi_page_t* p) {
mi_assert_internal(p->slice_offset== 0 && p->slice_count > 0);
return (mi_slice_t*)(p);
}
2019-06-20 02:26:12 +03:00
// Segment belonging to a page
static inline mi_segment_t* _mi_page_segment(const mi_page_t* page) {
mi_segment_t* segment = _mi_ptr_segment(page);
2019-08-24 22:20:32 +03:00
mi_assert_internal(segment == NULL || ((mi_slice_t*)page >= segment->slices && (mi_slice_t*)page < segment->slices + segment->slice_entries));
2019-06-20 02:26:12 +03:00
return segment;
}
static inline mi_slice_t* mi_slice_first(const mi_slice_t* slice) {
2019-08-17 03:49:49 +03:00
mi_slice_t* start = (mi_slice_t*)((uint8_t*)slice - slice->slice_offset);
mi_assert_internal(start >= _mi_ptr_segment(slice)->slices);
mi_assert_internal(start->slice_offset == 0);
mi_assert_internal(start + start->slice_count > slice);
return start;
}
2019-06-20 02:26:12 +03:00
// Get the page containing the pointer
static inline mi_page_t* _mi_segment_page_of(const mi_segment_t* segment, const void* p) {
ptrdiff_t diff = (uint8_t*)p - (uint8_t*)segment;
2019-08-15 21:49:56 +03:00
mi_assert_internal(diff >= 0 && diff < (ptrdiff_t)MI_SEGMENT_SIZE);
uintptr_t idx = (uintptr_t)diff >> MI_SEGMENT_SLICE_SHIFT;
2019-08-24 22:20:32 +03:00
mi_assert_internal(idx < segment->slice_entries);
2019-08-17 03:49:49 +03:00
mi_slice_t* slice0 = (mi_slice_t*)&segment->slices[idx];
mi_slice_t* slice = mi_slice_first(slice0); // adjust to the block that holds the page data
mi_assert_internal(slice->slice_offset == 0);
2019-08-24 22:20:32 +03:00
mi_assert_internal(slice >= segment->slices && slice < segment->slices + segment->slice_entries);
return mi_slice_to_page(slice);
2019-06-20 02:26:12 +03:00
}
// Quick page start for initialized pages
static inline uint8_t* _mi_page_start(const mi_segment_t* segment, const mi_page_t* page, size_t* page_size) {
return _mi_segment_page_start(segment, page, page_size);
2019-06-20 02:26:12 +03:00
}
// Get the page containing the pointer
static inline mi_page_t* _mi_ptr_page(void* p) {
return _mi_segment_page_of(_mi_ptr_segment(p), p);
}
// Thread free access
static inline mi_block_t* mi_tf_block(mi_thread_free_t tf) {
return (mi_block_t*)(tf & ~0x03);
}
static inline mi_delayed_t mi_tf_delayed(mi_thread_free_t tf) {
return (mi_delayed_t)(tf & 0x03);
}
static inline mi_thread_free_t mi_tf_make(mi_block_t* block, mi_delayed_t delayed) {
return (mi_thread_free_t)((uintptr_t)block | (uintptr_t)delayed);
}
static inline mi_thread_free_t mi_tf_set_delayed(mi_thread_free_t tf, mi_delayed_t delayed) {
return mi_tf_make(mi_tf_block(tf),delayed);
}
static inline mi_thread_free_t mi_tf_set_block(mi_thread_free_t tf, mi_block_t* block) {
return mi_tf_make(block, mi_tf_delayed(tf));
}
2019-06-20 02:26:12 +03:00
// are all blocks in a page freed?
static inline bool mi_page_all_free(const mi_page_t* page) {
mi_assert_internal(page != NULL);
return (page->used - page->thread_freed == 0);
}
// are there immediately available blocks
static inline bool mi_page_immediate_available(const mi_page_t* page) {
mi_assert_internal(page != NULL);
return (page->free != NULL);
}
// are there free blocks in this page?
static inline bool mi_page_has_free(mi_page_t* page) {
mi_assert_internal(page != NULL);
bool hasfree = (mi_page_immediate_available(page) || page->local_free != NULL || (mi_tf_block(page->thread_free) != NULL));
2019-06-20 02:26:12 +03:00
mi_assert_internal(hasfree || page->used - page->thread_freed == page->capacity);
return hasfree;
}
// are all blocks in use?
static inline bool mi_page_all_used(mi_page_t* page) {
mi_assert_internal(page != NULL);
return !mi_page_has_free(page);
}
// is more than 7/8th of a page in use?
static inline bool mi_page_mostly_used(const mi_page_t* page) {
if (page==NULL) return true;
uint16_t frac = page->reserved / 8U;
2019-08-08 21:36:13 +03:00
return (page->reserved - page->used + page->thread_freed <= frac);
2019-06-20 02:26:12 +03:00
}
static inline mi_page_queue_t* mi_page_queue(const mi_heap_t* heap, size_t size) {
return &((mi_heap_t*)heap)->pages[_mi_bin(size)];
}
//-----------------------------------------------------------
// Page flags
//-----------------------------------------------------------
static inline bool mi_page_is_in_full(const mi_page_t* page) {
return page->flags.x.in_full;
}
static inline void mi_page_set_in_full(mi_page_t* page, bool in_full) {
page->flags.x.in_full = in_full;
}
static inline bool mi_page_has_aligned(const mi_page_t* page) {
return page->flags.x.has_aligned;
}
static inline void mi_page_set_has_aligned(mi_page_t* page, bool has_aligned) {
page->flags.x.has_aligned = has_aligned;
}
2019-06-20 02:26:12 +03:00
// -------------------------------------------------------------------
// Encoding/Decoding the free list next pointers
// -------------------------------------------------------------------
static inline bool mi_is_in_same_segment(const void* p, const void* q) {
return (_mi_ptr_segment(p) == _mi_ptr_segment(q));
}
static inline mi_block_t* mi_block_nextx( uintptr_t cookie, const mi_block_t* block ) {
#ifdef MI_ENCODE_FREELIST
2019-06-20 02:26:12 +03:00
return (mi_block_t*)(block->next ^ cookie);
#else
UNUSED(cookie);
return (mi_block_t*)block->next;
#endif
}
static inline void mi_block_set_nextx(uintptr_t cookie, mi_block_t* block, const mi_block_t* next) {
#ifdef MI_ENCODE_FREELIST
2019-06-20 02:26:12 +03:00
block->next = (mi_encoded_t)next ^ cookie;
#else
UNUSED(cookie);
block->next = (mi_encoded_t)next;
#endif
}
static inline mi_block_t* mi_block_next(const mi_page_t* page, const mi_block_t* block) {
#ifdef MI_ENCODE_FREELIST
mi_block_t* next = mi_block_nextx(page->cookie,block);
// check for free list corruption: is `next` at least in our segment range?
// TODO: it is better to check if it is actually inside our page but that is more expensive
// to calculate. Perhaps with a relative free list this becomes feasible?
if (next!=NULL && !mi_is_in_same_segment(block, next)) {
_mi_fatal_error("corrupted free list entry of size %zub at %p: value 0x%zx\n", page->block_size, block, (uintptr_t)next);
next = NULL;
}
return next;
#else
UNUSED(page);
return mi_block_nextx(0, block);
#endif
2019-06-20 02:26:12 +03:00
}
static inline void mi_block_set_next(const mi_page_t* page, mi_block_t* block, const mi_block_t* next) {
#ifdef MI_ENCODE_FREELIST
2019-06-20 02:26:12 +03:00
mi_block_set_nextx(page->cookie,block,next);
#else
UNUSED(page);
mi_block_set_nextx(0, block, next);
#endif
2019-06-20 02:26:12 +03:00
}
2019-06-20 02:26:12 +03:00
// -------------------------------------------------------------------
// Getting the thread id should be performant
// as it is called in the fast path of `_mi_free`,
// so we specialize for various platforms.
// -------------------------------------------------------------------
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
2019-06-25 13:16:36 +03:00
static inline uintptr_t _mi_thread_id(void) mi_attr_noexcept {
2019-06-20 02:26:12 +03:00
// Windows: works on Intel and ARM in both 32- and 64-bit
2019-06-26 06:06:34 +03:00
return (uintptr_t)NtCurrentTeb();
2019-06-20 02:26:12 +03:00
}
#elif (defined(__GNUC__) || defined(__clang__)) && \
(defined(__x86_64__) || defined(__i386__) || defined(__arm__) || defined(__aarch64__))
2019-06-20 02:26:12 +03:00
// TLS register on x86 is in the FS or GS register
// see: https://akkadia.org/drepper/tls.pdf
2019-06-25 13:16:36 +03:00
static inline uintptr_t _mi_thread_id(void) mi_attr_noexcept {
2019-06-20 02:26:12 +03:00
uintptr_t tid;
#if defined(__i386__)
__asm__("movl %%gs:0, %0" : "=r" (tid) : : ); // 32-bit always uses GS
#elif defined(__MACH__)
__asm__("movq %%gs:0, %0" : "=r" (tid) : : ); // x86_64 macOS uses GS
#elif defined(__x86_64__)
2019-06-20 02:26:12 +03:00
__asm__("movq %%fs:0, %0" : "=r" (tid) : : ); // x86_64 Linux, BSD uses FS
#elif defined(__arm__)
asm volatile ("mrc p15, 0, %0, c13, c0, 3" : "=r" (tid));
#elif defined(__aarch64__)
asm volatile ("mrs %0, tpidr_el0" : "=r" (tid));
2019-06-20 02:26:12 +03:00
#endif
return tid;
}
#else
// otherwise use standard C
2019-06-25 13:16:36 +03:00
static inline uintptr_t _mi_thread_id(void) mi_attr_noexcept {
2019-06-22 21:33:18 +03:00
return (uintptr_t)&_mi_heap_default;
2019-06-20 02:26:12 +03:00
}
#endif
#endif