micropython/ports/stm32/spi.c
2021-03-11 01:06:52 +11:00

707 lines
23 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013-2018 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <string.h>
#include "py/runtime.h"
#include "py/mphal.h"
#include "spi.h"
// Possible DMA configurations for SPI busses:
// SPI1_TX: DMA2_Stream3.CHANNEL_3 or DMA2_Stream5.CHANNEL_3
// SPI1_RX: DMA2_Stream0.CHANNEL_3 or DMA2_Stream2.CHANNEL_3
// SPI2_TX: DMA1_Stream4.CHANNEL_0
// SPI2_RX: DMA1_Stream3.CHANNEL_0
// SPI3_TX: DMA1_Stream5.CHANNEL_0 or DMA1_Stream7.CHANNEL_0
// SPI3_RX: DMA1_Stream0.CHANNEL_0 or DMA1_Stream2.CHANNEL_0
// SPI4_TX: DMA2_Stream4.CHANNEL_5 or DMA2_Stream1.CHANNEL_4
// SPI4_RX: DMA2_Stream3.CHANNEL_5 or DMA2_Stream0.CHANNEL_4
// SPI5_TX: DMA2_Stream4.CHANNEL_2 or DMA2_Stream6.CHANNEL_7
// SPI5_RX: DMA2_Stream3.CHANNEL_2 or DMA2_Stream5.CHANNEL_7
// SPI6_TX: DMA2_Stream5.CHANNEL_1
// SPI6_RX: DMA2_Stream6.CHANNEL_1
#if defined(MICROPY_HW_SPI1_SCK)
SPI_HandleTypeDef SPIHandle1 = {.Instance = NULL};
#endif
#if defined(MICROPY_HW_SPI2_SCK)
SPI_HandleTypeDef SPIHandle2 = {.Instance = NULL};
#endif
#if defined(MICROPY_HW_SPI3_SCK)
SPI_HandleTypeDef SPIHandle3 = {.Instance = NULL};
#endif
#if defined(MICROPY_HW_SPI4_SCK)
SPI_HandleTypeDef SPIHandle4 = {.Instance = NULL};
#endif
#if defined(MICROPY_HW_SPI5_SCK)
SPI_HandleTypeDef SPIHandle5 = {.Instance = NULL};
#endif
#if defined(MICROPY_HW_SPI6_SCK)
SPI_HandleTypeDef SPIHandle6 = {.Instance = NULL};
#endif
const spi_t spi_obj[6] = {
#if defined(MICROPY_HW_SPI1_SCK)
{&SPIHandle1, &dma_SPI_1_TX, &dma_SPI_1_RX},
#else
{NULL, NULL, NULL},
#endif
#if defined(MICROPY_HW_SPI2_SCK)
{&SPIHandle2, &dma_SPI_2_TX, &dma_SPI_2_RX},
#else
{NULL, NULL, NULL},
#endif
#if defined(MICROPY_HW_SPI3_SCK)
{&SPIHandle3, &dma_SPI_3_TX, &dma_SPI_3_RX},
#else
{NULL, NULL, NULL},
#endif
#if defined(MICROPY_HW_SPI4_SCK)
{&SPIHandle4, &dma_SPI_4_TX, &dma_SPI_4_RX},
#else
{NULL, NULL, NULL},
#endif
#if defined(MICROPY_HW_SPI5_SCK)
{&SPIHandle5, &dma_SPI_5_TX, &dma_SPI_5_RX},
#else
{NULL, NULL, NULL},
#endif
#if defined(MICROPY_HW_SPI6_SCK)
{&SPIHandle6, &dma_SPI_6_TX, &dma_SPI_6_RX},
#else
{NULL, NULL, NULL},
#endif
};
#if defined(STM32H7)
// STM32H7 HAL requires SPI IRQs to be enabled and handled.
#if defined(MICROPY_HW_SPI1_SCK)
void SPI1_IRQHandler(void) {
IRQ_ENTER(SPI1_IRQn);
HAL_SPI_IRQHandler(&SPIHandle1);
IRQ_EXIT(SPI1_IRQn);
}
#endif
#if defined(MICROPY_HW_SPI2_SCK)
void SPI2_IRQHandler(void) {
IRQ_ENTER(SPI2_IRQn);
HAL_SPI_IRQHandler(&SPIHandle2);
IRQ_EXIT(SPI2_IRQn);
}
#endif
#if defined(MICROPY_HW_SPI3_SCK)
void SPI3_IRQHandler(void) {
IRQ_ENTER(SPI3_IRQn);
HAL_SPI_IRQHandler(&SPIHandle3);
IRQ_EXIT(SPI3_IRQn);
}
#endif
#if defined(MICROPY_HW_SPI4_SCK)
void SPI4_IRQHandler(void) {
IRQ_ENTER(SPI4_IRQn);
HAL_SPI_IRQHandler(&SPIHandle4);
IRQ_EXIT(SPI4_IRQn);
}
#endif
#if defined(MICROPY_HW_SPI5_SCK)
void SPI5_IRQHandler(void) {
IRQ_ENTER(SPI5_IRQn);
HAL_SPI_IRQHandler(&SPIHandle5);
IRQ_EXIT(SPI5_IRQn);
}
#endif
#if defined(MICROPY_HW_SPI6_SCK)
void SPI6_IRQHandler(void) {
IRQ_ENTER(SPI6_IRQn);
HAL_SPI_IRQHandler(&SPIHandle6);
IRQ_EXIT(SPI6_IRQn);
}
#endif
#endif
void spi_init0(void) {
// Initialise the SPI handles.
// The structs live on the BSS so all other fields will be zero after a reset.
#if defined(MICROPY_HW_SPI1_SCK)
SPIHandle1.Instance = SPI1;
#endif
#if defined(MICROPY_HW_SPI2_SCK)
SPIHandle2.Instance = SPI2;
#endif
#if defined(MICROPY_HW_SPI3_SCK)
SPIHandle3.Instance = SPI3;
#endif
#if defined(MICROPY_HW_SPI4_SCK)
SPIHandle4.Instance = SPI4;
#endif
#if defined(MICROPY_HW_SPI5_SCK)
SPIHandle5.Instance = SPI5;
#endif
#if defined(MICROPY_HW_SPI6_SCK)
SPIHandle6.Instance = SPI6;
#endif
}
int spi_find_index(mp_obj_t id) {
int spi_id;
if (mp_obj_is_str(id)) {
// given a string id
const char *port = mp_obj_str_get_str(id);
if (0) {
#ifdef MICROPY_HW_SPI1_NAME
} else if (strcmp(port, MICROPY_HW_SPI1_NAME) == 0) {
spi_id = 1;
#endif
#ifdef MICROPY_HW_SPI2_NAME
} else if (strcmp(port, MICROPY_HW_SPI2_NAME) == 0) {
spi_id = 2;
#endif
#ifdef MICROPY_HW_SPI3_NAME
} else if (strcmp(port, MICROPY_HW_SPI3_NAME) == 0) {
spi_id = 3;
#endif
#ifdef MICROPY_HW_SPI4_NAME
} else if (strcmp(port, MICROPY_HW_SPI4_NAME) == 0) {
spi_id = 4;
#endif
#ifdef MICROPY_HW_SPI5_NAME
} else if (strcmp(port, MICROPY_HW_SPI5_NAME) == 0) {
spi_id = 5;
#endif
#ifdef MICROPY_HW_SPI6_NAME
} else if (strcmp(port, MICROPY_HW_SPI6_NAME) == 0) {
spi_id = 6;
#endif
} else {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("SPI(%s) doesn't exist"), port);
}
} else {
// given an integer id
spi_id = mp_obj_get_int(id);
if (spi_id < 1 || spi_id > MP_ARRAY_SIZE(spi_obj) || spi_obj[spi_id - 1].spi == NULL) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("SPI(%d) doesn't exist"), spi_id);
}
}
// check if the SPI is reserved for system use or not
if (MICROPY_HW_SPI_IS_RESERVED(spi_id)) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("SPI(%d) is reserved"), spi_id);
}
return spi_id;
}
STATIC uint32_t spi_get_source_freq(SPI_HandleTypeDef *spi) {
#if defined(STM32F0)
return HAL_RCC_GetPCLK1Freq();
#elif defined(STM32H7)
if (spi->Instance == SPI1 || spi->Instance == SPI2 || spi->Instance == SPI3) {
return HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_SPI123);
} else if (spi->Instance == SPI4 || spi->Instance == SPI5) {
return HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_SPI45);
} else {
return HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_SPI6);
}
#else
#if defined(SPI2)
if (spi->Instance == SPI2) {
// SPI2 is on APB1
return HAL_RCC_GetPCLK1Freq();
} else
#endif
#if defined(SPI3)
if (spi->Instance == SPI3) {
// SPI3 is on APB1
return HAL_RCC_GetPCLK1Freq();
} else
#endif
{
// SPI1, SPI4, SPI5 and SPI6 are on APB2
return HAL_RCC_GetPCLK2Freq();
}
#endif
}
// sets the parameters in the SPI_InitTypeDef struct
// if an argument is -1 then the corresponding parameter is not changed
void spi_set_params(const spi_t *spi_obj, uint32_t prescale, int32_t baudrate,
int32_t polarity, int32_t phase, int32_t bits, int32_t firstbit) {
SPI_HandleTypeDef *spi = spi_obj->spi;
SPI_InitTypeDef *init = &spi->Init;
if (prescale != 0xffffffff || baudrate != -1) {
if (prescale == 0xffffffff) {
// prescaler not given, so select one that yields at most the requested baudrate
prescale = (spi_get_source_freq(spi) + baudrate - 1) / baudrate;
}
if (prescale <= 2) {
init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2;
} else if (prescale <= 4) {
init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_4;
} else if (prescale <= 8) {
init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8;
} else if (prescale <= 16) {
init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_16;
} else if (prescale <= 32) {
init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_32;
} else if (prescale <= 64) {
init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_64;
} else if (prescale <= 128) {
init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_128;
} else {
init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256;
}
}
if (polarity != -1) {
init->CLKPolarity = polarity == 0 ? SPI_POLARITY_LOW : SPI_POLARITY_HIGH;
}
if (phase != -1) {
init->CLKPhase = phase == 0 ? SPI_PHASE_1EDGE : SPI_PHASE_2EDGE;
}
if (bits != -1) {
init->DataSize = (bits == 16) ? SPI_DATASIZE_16BIT : SPI_DATASIZE_8BIT;
}
if (firstbit != -1) {
init->FirstBit = firstbit;
}
}
// TODO allow to take a list of pins to use
void spi_init(const spi_t *self, bool enable_nss_pin) {
SPI_HandleTypeDef *spi = self->spi;
uint32_t irqn = 0;
const pin_obj_t *pins[4] = { NULL, NULL, NULL, NULL };
if (0) {
#if defined(MICROPY_HW_SPI1_SCK)
} else if (spi->Instance == SPI1) {
irqn = SPI1_IRQn;
#if defined(MICROPY_HW_SPI1_NSS)
pins[0] = MICROPY_HW_SPI1_NSS;
#endif
pins[1] = MICROPY_HW_SPI1_SCK;
#if defined(MICROPY_HW_SPI1_MISO)
pins[2] = MICROPY_HW_SPI1_MISO;
#endif
pins[3] = MICROPY_HW_SPI1_MOSI;
// enable the SPI clock
__HAL_RCC_SPI1_CLK_ENABLE();
#endif
#if defined(MICROPY_HW_SPI2_SCK)
} else if (spi->Instance == SPI2) {
irqn = SPI2_IRQn;
#if defined(MICROPY_HW_SPI2_NSS)
pins[0] = MICROPY_HW_SPI2_NSS;
#endif
pins[1] = MICROPY_HW_SPI2_SCK;
#if defined(MICROPY_HW_SPI2_MISO)
pins[2] = MICROPY_HW_SPI2_MISO;
#endif
pins[3] = MICROPY_HW_SPI2_MOSI;
// enable the SPI clock
__HAL_RCC_SPI2_CLK_ENABLE();
#endif
#if defined(MICROPY_HW_SPI3_SCK)
} else if (spi->Instance == SPI3) {
irqn = SPI3_IRQn;
#if defined(MICROPY_HW_SPI3_NSS)
pins[0] = MICROPY_HW_SPI3_NSS;
#endif
pins[1] = MICROPY_HW_SPI3_SCK;
#if defined(MICROPY_HW_SPI3_MISO)
pins[2] = MICROPY_HW_SPI3_MISO;
#endif
pins[3] = MICROPY_HW_SPI3_MOSI;
// enable the SPI clock
__HAL_RCC_SPI3_CLK_ENABLE();
#endif
#if defined(MICROPY_HW_SPI4_SCK)
} else if (spi->Instance == SPI4) {
irqn = SPI4_IRQn;
#if defined(MICROPY_HW_SPI4_NSS)
pins[0] = MICROPY_HW_SPI4_NSS;
#endif
pins[1] = MICROPY_HW_SPI4_SCK;
#if defined(MICROPY_HW_SPI4_MISO)
pins[2] = MICROPY_HW_SPI4_MISO;
#endif
pins[3] = MICROPY_HW_SPI4_MOSI;
// enable the SPI clock
__HAL_RCC_SPI4_CLK_ENABLE();
#endif
#if defined(MICROPY_HW_SPI5_SCK)
} else if (spi->Instance == SPI5) {
irqn = SPI5_IRQn;
#if defined(MICROPY_HW_SPI5_NSS)
pins[0] = MICROPY_HW_SPI5_NSS;
#endif
pins[1] = MICROPY_HW_SPI5_SCK;
#if defined(MICROPY_HW_SPI5_MISO)
pins[2] = MICROPY_HW_SPI5_MISO;
#endif
pins[3] = MICROPY_HW_SPI5_MOSI;
// enable the SPI clock
__HAL_RCC_SPI5_CLK_ENABLE();
#endif
#if defined(MICROPY_HW_SPI6_SCK)
} else if (spi->Instance == SPI6) {
irqn = SPI6_IRQn;
#if defined(MICROPY_HW_SPI6_NSS)
pins[0] = MICROPY_HW_SPI6_NSS;
#endif
pins[1] = MICROPY_HW_SPI6_SCK;
#if defined(MICROPY_HW_SPI6_MISO)
pins[2] = MICROPY_HW_SPI6_MISO;
#endif
pins[3] = MICROPY_HW_SPI6_MOSI;
// enable the SPI clock
__HAL_RCC_SPI6_CLK_ENABLE();
#endif
} else {
// SPI does not exist for this board (shouldn't get here, should be checked by caller)
return;
}
// init the GPIO lines
uint32_t mode = MP_HAL_PIN_MODE_ALT;
uint32_t pull = spi->Init.CLKPolarity == SPI_POLARITY_LOW ? MP_HAL_PIN_PULL_DOWN : MP_HAL_PIN_PULL_UP;
for (uint i = (enable_nss_pin ? 0 : 1); i < 4; i++) {
if (pins[i] == NULL) {
continue;
}
mp_hal_pin_config_alt(pins[i], mode, pull, AF_FN_SPI, (self - &spi_obj[0]) + 1);
}
// init the SPI device
if (HAL_SPI_Init(spi) != HAL_OK) {
// init error
// TODO should raise an exception, but this function is not necessarily going to be
// called via Python, so may not be properly wrapped in an NLR handler
printf("OSError: HAL_SPI_Init failed\n");
return;
}
// After calling HAL_SPI_Init() it seems that the DMA gets disconnected if
// it was previously configured. So we invalidate the DMA channel to force
// an initialisation the next time we use it.
dma_invalidate_channel(self->tx_dma_descr);
dma_invalidate_channel(self->rx_dma_descr);
#if defined(STM32H7)
NVIC_SetPriority(irqn, IRQ_PRI_SPI);
HAL_NVIC_EnableIRQ(irqn);
#else
(void)irqn;
#endif
}
void spi_deinit(const spi_t *spi_obj) {
SPI_HandleTypeDef *spi = spi_obj->spi;
HAL_SPI_DeInit(spi);
if (0) {
#if defined(MICROPY_HW_SPI1_SCK)
} else if (spi->Instance == SPI1) {
__HAL_RCC_SPI1_FORCE_RESET();
__HAL_RCC_SPI1_RELEASE_RESET();
__HAL_RCC_SPI1_CLK_DISABLE();
HAL_NVIC_DisableIRQ(SPI1_IRQn);
#endif
#if defined(MICROPY_HW_SPI2_SCK)
} else if (spi->Instance == SPI2) {
__HAL_RCC_SPI2_FORCE_RESET();
__HAL_RCC_SPI2_RELEASE_RESET();
__HAL_RCC_SPI2_CLK_DISABLE();
HAL_NVIC_DisableIRQ(SPI2_IRQn);
#endif
#if defined(MICROPY_HW_SPI3_SCK)
} else if (spi->Instance == SPI3) {
__HAL_RCC_SPI3_FORCE_RESET();
__HAL_RCC_SPI3_RELEASE_RESET();
__HAL_RCC_SPI3_CLK_DISABLE();
HAL_NVIC_DisableIRQ(SPI3_IRQn);
#endif
#if defined(MICROPY_HW_SPI4_SCK)
} else if (spi->Instance == SPI4) {
__HAL_RCC_SPI4_FORCE_RESET();
__HAL_RCC_SPI4_RELEASE_RESET();
__HAL_RCC_SPI4_CLK_DISABLE();
HAL_NVIC_DisableIRQ(SPI4_IRQn);
#endif
#if defined(MICROPY_HW_SPI5_SCK)
} else if (spi->Instance == SPI5) {
__HAL_RCC_SPI5_FORCE_RESET();
__HAL_RCC_SPI5_RELEASE_RESET();
__HAL_RCC_SPI5_CLK_DISABLE();
HAL_NVIC_DisableIRQ(SPI5_IRQn);
#endif
#if defined(MICROPY_HW_SPI6_SCK)
} else if (spi->Instance == SPI6) {
__HAL_RCC_SPI6_FORCE_RESET();
__HAL_RCC_SPI6_RELEASE_RESET();
__HAL_RCC_SPI6_CLK_DISABLE();
HAL_NVIC_DisableIRQ(SPI6_IRQn);
#endif
}
}
STATIC HAL_StatusTypeDef spi_wait_dma_finished(const spi_t *spi, uint32_t t_start, uint32_t timeout) {
volatile HAL_SPI_StateTypeDef *state = &spi->spi->State;
for (;;) {
// Do an atomic check of the state; WFI will exit even if IRQs are disabled
uint32_t irq_state = disable_irq();
if (*state == HAL_SPI_STATE_READY) {
enable_irq(irq_state);
return HAL_OK;
}
__WFI();
enable_irq(irq_state);
if (HAL_GetTick() - t_start >= timeout) {
return HAL_TIMEOUT;
}
}
return HAL_OK;
}
void spi_transfer(const spi_t *self, size_t len, const uint8_t *src, uint8_t *dest, uint32_t timeout) {
// Note: there seems to be a problem sending 1 byte using DMA the first
// time directly after the SPI/DMA is initialised. The cause of this is
// unknown but we sidestep the issue by using polling for 1 byte transfer.
// Note: DMA transfers are limited to 65535 bytes at a time.
HAL_StatusTypeDef status;
if (dest == NULL) {
// send only
if (len == 1 || query_irq() == IRQ_STATE_DISABLED) {
status = HAL_SPI_Transmit(self->spi, (uint8_t *)src, len, timeout);
} else {
DMA_HandleTypeDef tx_dma;
dma_init(&tx_dma, self->tx_dma_descr, DMA_MEMORY_TO_PERIPH, self->spi);
self->spi->hdmatx = &tx_dma;
self->spi->hdmarx = NULL;
MP_HAL_CLEAN_DCACHE(src, len);
uint32_t t_start = HAL_GetTick();
do {
uint32_t l = MIN(len, 65535);
status = HAL_SPI_Transmit_DMA(self->spi, (uint8_t *)src, l);
if (status != HAL_OK) {
break;
}
status = spi_wait_dma_finished(self, t_start, timeout);
if (status != HAL_OK) {
break;
}
len -= l;
src += l;
} while (len);
dma_deinit(self->tx_dma_descr);
}
} else if (src == NULL) {
// receive only
if (len == 1 || query_irq() == IRQ_STATE_DISABLED) {
status = HAL_SPI_Receive(self->spi, dest, len, timeout);
} else {
DMA_HandleTypeDef tx_dma, rx_dma;
if (self->spi->Init.Mode == SPI_MODE_MASTER) {
// in master mode the HAL actually does a TransmitReceive call
dma_init(&tx_dma, self->tx_dma_descr, DMA_MEMORY_TO_PERIPH, self->spi);
self->spi->hdmatx = &tx_dma;
} else {
self->spi->hdmatx = NULL;
}
dma_init(&rx_dma, self->rx_dma_descr, DMA_PERIPH_TO_MEMORY, self->spi);
self->spi->hdmarx = &rx_dma;
MP_HAL_CLEANINVALIDATE_DCACHE(dest, len);
uint32_t t_start = HAL_GetTick();
do {
uint32_t l = MIN(len, 65535);
status = HAL_SPI_Receive_DMA(self->spi, dest, l);
if (status != HAL_OK) {
break;
}
status = spi_wait_dma_finished(self, t_start, timeout);
if (status != HAL_OK) {
break;
}
len -= l;
dest += l;
} while (len);
if (self->spi->hdmatx != NULL) {
dma_deinit(self->tx_dma_descr);
}
dma_deinit(self->rx_dma_descr);
}
} else {
// send and receive
if (len == 1 || query_irq() == IRQ_STATE_DISABLED) {
status = HAL_SPI_TransmitReceive(self->spi, (uint8_t *)src, dest, len, timeout);
} else {
DMA_HandleTypeDef tx_dma, rx_dma;
dma_init(&tx_dma, self->tx_dma_descr, DMA_MEMORY_TO_PERIPH, self->spi);
self->spi->hdmatx = &tx_dma;
dma_init(&rx_dma, self->rx_dma_descr, DMA_PERIPH_TO_MEMORY, self->spi);
self->spi->hdmarx = &rx_dma;
MP_HAL_CLEAN_DCACHE(src, len);
MP_HAL_CLEANINVALIDATE_DCACHE(dest, len);
uint32_t t_start = HAL_GetTick();
do {
uint32_t l = MIN(len, 65535);
status = HAL_SPI_TransmitReceive_DMA(self->spi, (uint8_t *)src, dest, l);
if (status != HAL_OK) {
break;
}
status = spi_wait_dma_finished(self, t_start, timeout);
if (status != HAL_OK) {
break;
}
len -= l;
src += l;
dest += l;
} while (len);
dma_deinit(self->tx_dma_descr);
dma_deinit(self->rx_dma_descr);
}
}
if (status != HAL_OK) {
mp_hal_raise(status);
}
}
void spi_print(const mp_print_t *print, const spi_t *spi_obj, bool legacy) {
SPI_HandleTypeDef *spi = spi_obj->spi;
uint spi_num = 1; // default to SPI1
if (0) {
}
#if defined(SPI2)
else if (spi->Instance == SPI2) {
spi_num = 2;
}
#endif
#if defined(SPI3)
else if (spi->Instance == SPI3) {
spi_num = 3;
}
#endif
#if defined(SPI4)
else if (spi->Instance == SPI4) {
spi_num = 4;
}
#endif
#if defined(SPI5)
else if (spi->Instance == SPI5) {
spi_num = 5;
}
#endif
#if defined(SPI6)
else if (spi->Instance == SPI6) {
spi_num = 6;
}
#endif
mp_printf(print, "SPI(%u", spi_num);
if (spi->State != HAL_SPI_STATE_RESET) {
if (spi->Init.Mode == SPI_MODE_MASTER) {
// compute baudrate
#if defined(STM32H7)
uint log_prescaler = (spi->Init.BaudRatePrescaler >> 28) + 1;
#else
uint log_prescaler = (spi->Init.BaudRatePrescaler >> 3) + 1;
#endif
uint baudrate = spi_get_source_freq(spi) >> log_prescaler;
if (legacy) {
mp_printf(print, ", SPI.MASTER");
}
mp_printf(print, ", baudrate=%u", baudrate);
if (legacy) {
mp_printf(print, ", prescaler=%u", 1 << log_prescaler);
}
} else {
mp_printf(print, ", SPI.SLAVE");
}
mp_printf(print, ", polarity=%u, phase=%u, bits=%u", spi->Init.CLKPolarity == SPI_POLARITY_LOW ? 0 : 1, spi->Init.CLKPhase == SPI_PHASE_1EDGE ? 0 : 1, spi->Init.DataSize == SPI_DATASIZE_8BIT ? 8 : 16);
if (spi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) {
mp_printf(print, ", crc=0x%x", spi->Init.CRCPolynomial);
}
}
mp_print_str(print, ")");
}
const spi_t *spi_from_mp_obj(mp_obj_t o) {
if (mp_obj_is_type(o, &pyb_spi_type)) {
pyb_spi_obj_t *self = MP_OBJ_TO_PTR(o);
return self->spi;
} else if (mp_obj_is_type(o, &machine_hard_spi_type)) {
machine_hard_spi_obj_t *self = MP_OBJ_TO_PTR(o);
return self->spi;
} else {
mp_raise_TypeError(MP_ERROR_TEXT("expecting an SPI object"));
}
}
/******************************************************************************/
// Implementation of low-level SPI C protocol
STATIC int spi_proto_ioctl(void *self_in, uint32_t cmd) {
spi_proto_cfg_t *self = (spi_proto_cfg_t *)self_in;
switch (cmd) {
case MP_SPI_IOCTL_INIT:
self->spi->spi->Init.Mode = SPI_MODE_MASTER;
self->spi->spi->Init.Direction = SPI_DIRECTION_2LINES;
self->spi->spi->Init.NSS = SPI_NSS_SOFT;
self->spi->spi->Init.TIMode = SPI_TIMODE_DISABLE;
self->spi->spi->Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
spi_set_params(self->spi, 0xffffffff, self->baudrate,
self->polarity, self->phase, self->bits, self->firstbit);
spi_init(self->spi, false);
break;
case MP_SPI_IOCTL_DEINIT:
spi_deinit(self->spi);
break;
}
return 0;
}
STATIC void spi_proto_transfer(void *self_in, size_t len, const uint8_t *src, uint8_t *dest) {
spi_proto_cfg_t *self = (spi_proto_cfg_t *)self_in;
spi_transfer(self->spi, len, src, dest, SPI_TRANSFER_TIMEOUT(len));
}
const mp_spi_proto_t spi_proto = {
.ioctl = spi_proto_ioctl,
.transfer = spi_proto_transfer,
};