micropython/stmhal/led.c
Damien George 9b196cddab Remove mp_obj_type_t.methods entry and use .locals_dict instead.
Originally, .methods was used for methods in a ROM class, and
locals_dict for methods in a user-created class.  That distinction is
unnecessary, and we can use locals_dict for ROM classes now that we have
ROMable maps.

This removes an entry in the bloated mp_obj_type_t struct, saving a word
for each ROM object and each RAM object.  ROM objects that have a
methods table (now a locals_dict) need an extra word in total (removed
the methods pointer (1 word), no longer need the sentinel (2 words), but
now need an mp_obj_dict_t wrapper (4 words)).  But RAM objects save a
word because they never used the methods entry.

Overall the ROM usage is down by a few hundred bytes, and RAM usage is
down 1 word per user-defined type/class.

There is less code (no need to check 2 tables), and now consistent with
the way ROM modules have their tables initialised.

Efficiency is very close to equivaluent.
2014-03-26 21:47:19 +00:00

276 lines
7.3 KiB
C

#include <stdio.h>
#include <stm32f4xx_hal.h>
#include "usbd_cdc_msc.h"
#include "usbd_cdc_interface.h"
#include "nlr.h"
#include "misc.h"
#include "mpconfig.h"
#include "qstr.h"
#include "obj.h"
#include "map.h"
#include "runtime.h"
#include "led.h"
#include "pin.h"
#include "build/pins.h"
static const pin_obj_t *gLed[] = {
&PYB_LED1,
#if defined(PYB_LED2)
&PYB_LED2,
#if defined(PYB_LED3)
&PYB_LED3,
#if defined(PYB_LED4)
&PYB_LED4,
#endif
#endif
#endif
};
#define NUM_LEDS (sizeof(gLed) / sizeof(gLed[0]))
void led_init(void) {
/* GPIO structure */
GPIO_InitTypeDef GPIO_InitStructure;
/* Configure I/O speed, mode, output type and pull */
GPIO_InitStructure.Speed = GPIO_SPEED_LOW;
GPIO_InitStructure.Mode = PYB_OTYPE;
GPIO_InitStructure.Pull = GPIO_NOPULL;
/* Turn off LEDs and initialize */
for (int led = 0; led < NUM_LEDS; led++) {
PYB_LED_OFF(gLed[led]);
GPIO_InitStructure.Pin = gLed[led]->pin_mask;
HAL_GPIO_Init(gLed[led]->gpio, &GPIO_InitStructure);
}
#if defined(PYBOARD4) || defined(PYBv10)
// LED4 (blue) is on PB4 which is TIM3_CH1
// we use PWM on this channel to fade the LED
// GPIO configuration
GPIO_InitStructure.Pin = PYB_LED4.pin_mask;
GPIO_InitStructure.Mode = GPIO_MODE_AF_PP;
GPIO_InitStructure.Speed = GPIO_SPEED_FAST;
GPIO_InitStructure.Pull = GPIO_NOPULL;
GPIO_InitStructure.Alternate = GPIO_AF2_TIM3;
HAL_GPIO_Init(PYB_LED4.gpio, &GPIO_InitStructure);
// PWM mode configuration
TIM_OC_InitTypeDef oc_init;
oc_init.OCMode = TIM_OCMODE_PWM1;
oc_init.Pulse = 0; // off
oc_init.OCPolarity = TIM_OCPOLARITY_HIGH;
oc_init.OCFastMode = TIM_OCFAST_DISABLE;
HAL_TIM_PWM_ConfigChannel(&TIM3_Handle, &oc_init, TIM_CHANNEL_1);
// start PWM
TIM_CCxChannelCmd(TIM3, TIM_CHANNEL_1, TIM_CCx_ENABLE);
#endif
}
void led_state(pyb_led_t led, int state) {
if (led < 1 || led > NUM_LEDS) {
return;
}
#if defined(PYBOARD4) || defined(PYBv10)
if (led == 4) {
if (state) {
TIM3->CCR1 = 0xffff;
} else {
TIM3->CCR1 = 0;
}
return;
}
#endif
const pin_obj_t *led_pin = gLed[led - 1];
//printf("led_state(%d,%d)\n", led, state);
if (state == 0) {
// turn LED off
PYB_LED_OFF(led_pin);
} else {
// turn LED on
PYB_LED_ON(led_pin);
}
}
void led_toggle(pyb_led_t led) {
if (led < 1 || led > NUM_LEDS) {
return;
}
#if defined(PYBOARD4) || defined(PYBv10)
if (led == 4) {
if (TIM3->CCR1 == 0) {
TIM3->CCR1 = 0xffff;
} else {
TIM3->CCR1 = 0;
}
return;
}
#endif
const pin_obj_t *led_pin = gLed[led - 1];
GPIO_TypeDef *gpio = led_pin->gpio;
// We don't know if we're turning the LED on or off, but we don't really
// care. Just invert the state.
if (gpio->ODR & led_pin->pin_mask) {
// pin is high, make it low
gpio->BSRRH = led_pin->pin_mask;
} else {
// pin is low, make it high
gpio->BSRRL = led_pin->pin_mask;
}
}
int led_get_intensity(pyb_led_t led) {
if (led < 1 || led > NUM_LEDS) {
return 0;
}
#if defined(PYBOARD4) || defined(PYBv10)
if (led == 4) {
machine_uint_t i = TIM3->CCR1 * 255 / ((USBD_CDC_POLLING_INTERVAL*1000) - 1);
if (i > 255) {
i = 255;
}
return i;
}
#endif
const pin_obj_t *led_pin = gLed[led - 1];
GPIO_TypeDef *gpio = led_pin->gpio;
// TODO convert high/low to on/off depending on board
if (gpio->ODR & led_pin->pin_mask) {
// pin is high
return 255;
} else {
// pin is low
return 0;
}
}
void led_set_intensity(pyb_led_t led, machine_int_t intensity) {
#if defined(PYBOARD4) || defined(PYBv10)
if (led == 4) {
// set intensity using PWM pulse width
if (intensity < 0) {
intensity = 0;
} else if (intensity >= 255) {
intensity = 0xffff;
} else {
intensity = intensity * ((USBD_CDC_POLLING_INTERVAL*1000) - 1) / 255;
}
TIM3->CCR1 = intensity;
return;
}
#endif
// intensity not supported for this LED; just turn it on/off
led_state(led, intensity > 0);
}
void led_debug(int n, int delay) {
led_state(1, n & 1);
led_state(2, n & 2);
led_state(3, n & 4);
led_state(4, n & 8);
HAL_Delay(delay);
}
/******************************************************************************/
/* Micro Python bindings */
typedef struct _pyb_led_obj_t {
mp_obj_base_t base;
machine_uint_t led_id;
} pyb_led_obj_t;
STATIC const pyb_led_obj_t pyb_led_obj[NUM_LEDS] = {
{{&pyb_led_type}, 1},
#if defined(PYB_LED2)
{{&pyb_led_type}, 2},
#if defined(PYB_LED3)
{{&pyb_led_type}, 3},
#if defined(PYB_LED4)
{{&pyb_led_type}, 4},
#endif
#endif
#endif
};
void led_obj_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) {
pyb_led_obj_t *self = self_in;
print(env, "<LED %lu>", self->led_id);
}
STATIC mp_obj_t led_obj_make_new(mp_obj_t type_in, uint n_args, uint n_kw, const mp_obj_t *args) {
// check arguments
if (!(n_args == 1 && n_kw == 0)) {
nlr_jump(mp_obj_new_exception_msg(&mp_type_ValueError, "Led accepts 1 argument"));
}
// get led number
machine_int_t led_id = mp_obj_get_int(args[0]) - 1;
// check led number
if (!(0 <= led_id && led_id < NUM_LEDS)) {
nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Led %d does not exist", led_id));
}
// return static led object
return (mp_obj_t)&pyb_led_obj[led_id];
}
mp_obj_t led_obj_on(mp_obj_t self_in) {
pyb_led_obj_t *self = self_in;
led_state(self->led_id, 1);
return mp_const_none;
}
mp_obj_t led_obj_off(mp_obj_t self_in) {
pyb_led_obj_t *self = self_in;
led_state(self->led_id, 0);
return mp_const_none;
}
mp_obj_t led_obj_toggle(mp_obj_t self_in) {
pyb_led_obj_t *self = self_in;
led_toggle(self->led_id);
return mp_const_none;
}
mp_obj_t led_obj_intensity(uint n_args, const mp_obj_t *args) {
pyb_led_obj_t *self = args[0];
if (n_args == 1) {
return mp_obj_new_int(led_get_intensity(self->led_id));
} else {
led_set_intensity(self->led_id, mp_obj_get_int(args[1]));
return mp_const_none;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(led_obj_on_obj, led_obj_on);
STATIC MP_DEFINE_CONST_FUN_OBJ_1(led_obj_off_obj, led_obj_off);
STATIC MP_DEFINE_CONST_FUN_OBJ_1(led_obj_toggle_obj, led_obj_toggle);
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(led_obj_intensity_obj, 1, 2, led_obj_intensity);
STATIC const mp_map_elem_t led_locals_dict_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR_on), (mp_obj_t)&led_obj_on_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_off), (mp_obj_t)&led_obj_off_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_toggle), (mp_obj_t)&led_obj_toggle_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_intensity), (mp_obj_t)&led_obj_intensity_obj },
};
STATIC MP_DEFINE_CONST_DICT(led_locals_dict, led_locals_dict_table);
const mp_obj_type_t pyb_led_type = {
{ &mp_type_type },
.name = MP_QSTR_Led,
.print = led_obj_print,
.make_new = led_obj_make_new,
.locals_dict = (mp_obj_t)&led_locals_dict,
};