micropython/ports/stm32/machine_adc.c
Yuuki NAGAO cb38f77918 stm32/adc: Add workaround for ADC errata with G4 MCUs.
For STM32G4, there is a errata on ADC that may get wrong ADC result.
According to the errata sheet, this can be avoid by performing two
consecutive ADC conversions and keep second result.

Signed-off-by: Yuuki NAGAO <wf.yn386@gmail.com>
2023-07-13 12:40:52 +10:00

542 lines
18 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2019 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/runtime.h"
#include "py/mphal.h"
#include "adc.h"
#if defined(STM32F0) || defined(STM32G0) || defined(STM32G4) || defined(STM32H5) || defined(STM32H7) || defined(STM32L0) || defined(STM32L4) || defined(STM32WB) || defined(STM32WL)
#define ADC_V2 (1)
#else
#define ADC_V2 (0)
#endif
#if defined(STM32F4)
#define ADCx_COMMON ADC_COMMON_REGISTER(0)
#elif defined(STM32F7)
#define ADCx_COMMON ADC123_COMMON
#elif defined(STM32L4)
#define ADCx_COMMON __LL_ADC_COMMON_INSTANCE(0)
#endif
#if defined(STM32F0) || defined(STM32G0) || defined(STM32L0) || defined(STM32L1) || defined(STM32WL)
#define ADC_STAB_DELAY_US (1)
#define ADC_TEMPSENSOR_DELAY_US (10)
#elif defined(STM32G4)
#define ADC_STAB_DELAY_US (20)
#elif defined(STM32H5)
#define ADC_STAB_DELAY_US (1) // TODO: Check if this is enough
#elif defined(STM32L4)
#define ADC_STAB_DELAY_US (10)
#elif defined(STM32WB)
#define ADC_STAB_DELAY_US (1)
#endif
#if defined(STM32F0)
#define ADC_SAMPLETIME_DEFAULT ADC_SAMPLETIME_13CYCLES_5
#define ADC_SAMPLETIME_DEFAULT_INT ADC_SAMPLETIME_239CYCLES_5
#elif defined(STM32F4) || defined(STM32F7)
#define ADC_SAMPLETIME_DEFAULT ADC_SAMPLETIME_15CYCLES
#define ADC_SAMPLETIME_DEFAULT_INT ADC_SAMPLETIME_480CYCLES
#elif defined(STM32G4) || defined(STM32H5)
#define ADC_SAMPLETIME_DEFAULT ADC_SAMPLETIME_12CYCLES_5
#define ADC_SAMPLETIME_DEFAULT_INT ADC_SAMPLETIME_247CYCLES_5
#elif defined(STM32H7)
#define ADC_SAMPLETIME_DEFAULT ADC_SAMPLETIME_8CYCLES_5
#define ADC_SAMPLETIME_DEFAULT_INT ADC_SAMPLETIME_387CYCLES_5
#elif defined(STM32G0) || defined(STM32L0) || defined(STM32WL)
#define ADC_SAMPLETIME_DEFAULT ADC_SAMPLETIME_12CYCLES_5
#define ADC_SAMPLETIME_DEFAULT_INT ADC_SAMPLETIME_160CYCLES_5
#elif defined(STM32L1)
#define ADC_SAMPLETIME_DEFAULT ADC_SAMPLETIME_384CYCLES
#define ADC_SAMPLETIME_DEFAULT_INT ADC_SAMPLETIME_384CYCLES
#elif defined(STM32L4) || defined(STM32WB)
#define ADC_SAMPLETIME_DEFAULT ADC_SAMPLETIME_12CYCLES_5
#define ADC_SAMPLETIME_DEFAULT_INT ADC_SAMPLETIME_247CYCLES_5
#endif
// Timeout for waiting for end-of-conversion
#define ADC_EOC_TIMEOUT_MS (10)
// This is a synthesised channel representing the maximum ADC reading (useful to scale other channels)
#define ADC_CHANNEL_VREF (0xffff)
static inline void adc_stabilisation_delay_us(uint32_t us) {
mp_hal_delay_us(us + 1);
}
STATIC void adc_wait_eoc(ADC_TypeDef *adc, int32_t timeout_ms) {
uint32_t t0 = mp_hal_ticks_ms();
#if ADC_V2
while (!(adc->ISR & ADC_ISR_EOC))
#else
while (!(adc->SR & ADC_SR_EOC))
#endif
{
if (mp_hal_ticks_ms() - t0 > timeout_ms) {
break; // timeout
}
}
}
#if defined(STM32H7)
STATIC const uint8_t adc_cr_to_bits_table[] = {16, 14, 12, 10, 8, 8, 8, 8};
#else
STATIC const uint8_t adc_cr_to_bits_table[] = {12, 10, 8, 6};
#endif
void adc_config(ADC_TypeDef *adc, uint32_t bits) {
// Configure ADC clock source and enable ADC clock
#if defined(STM32G0) || defined(STM32L4) || defined(STM32WB) || defined(STM32WL)
__HAL_RCC_ADC_CONFIG(RCC_ADCCLKSOURCE_SYSCLK);
__HAL_RCC_ADC_CLK_ENABLE();
#else
if (adc == ADC1) {
#if defined(STM32H5)
__HAL_RCC_ADC_CLK_ENABLE();
#elif defined(STM32G4) || defined(STM32H7)
__HAL_RCC_ADC12_CLK_ENABLE();
#else
__HAL_RCC_ADC1_CLK_ENABLE();
#endif
}
#if defined(ADC2)
if (adc == ADC2) {
#if defined(STM32H5)
__HAL_RCC_ADC_CLK_ENABLE();
#elif defined(STM32G4) || defined(STM32H7)
__HAL_RCC_ADC12_CLK_ENABLE();
#else
__HAL_RCC_ADC2_CLK_ENABLE();
#endif
}
#endif
#if defined(ADC3)
if (adc == ADC3) {
#if defined(ADC345_COMMON)
__HAL_RCC_ADC345_CLK_ENABLE();
#else
__HAL_RCC_ADC3_CLK_ENABLE();
#endif
}
#endif
#endif
// Configure clock mode
#if defined(STM32F0)
adc->CFGR2 = 2 << ADC_CFGR2_CKMODE_Pos; // PCLK/4 (synchronous clock mode)
#elif defined(STM32F4) || defined(STM32F7) || defined(STM32L4)
ADCx_COMMON->CCR = 0; // ADCPR=PCLK/2
#elif defined(STM32G4)
ADC12_COMMON->CCR = 7 << ADC_CCR_PRESC_Pos; // PCLK/16 (asynchronous clock mode)
#elif defined(STM32H5) || defined(STM32H7A3xx) || defined(STM32H7A3xxQ) || defined(STM32H7B3xx) || defined(STM32H7B3xxQ)
ADC12_COMMON->CCR = 3 << ADC_CCR_CKMODE_Pos;
#elif defined(STM32H7)
ADC12_COMMON->CCR = 3 << ADC_CCR_CKMODE_Pos;
ADC3_COMMON->CCR = 3 << ADC_CCR_CKMODE_Pos;
#elif defined(STM32L0)
ADC1_COMMON->CCR = 0; // ADCPR=PCLK/2
#elif defined(STM32WB)
ADC1_COMMON->CCR = 0 << ADC_CCR_PRESC_Pos | 0 << ADC_CCR_CKMODE_Pos; // PRESC=1, MODE=ASYNC
#elif defined(STM32WL)
ADC_COMMON->CCR = 0 << ADC_CCR_PRESC_Pos; // PRESC=1
#endif
#if defined(STM32G4) || defined(STM32H5) || defined(STM32H7) || defined(STM32L4) || defined(STM32WB)
if (adc->CR & ADC_CR_DEEPPWD) {
adc->CR = 0; // disable deep powerdown
}
#endif
#if defined(STM32G4) || defined(STM32H5) || defined(STM32H7) || defined(STM32L0) || defined(STM32L4) || defined(STM32WB) || defined(STM32WL)
if (!(adc->CR & ADC_CR_ADVREGEN)) {
adc->CR = ADC_CR_ADVREGEN; // enable VREG
#if defined(STM32H7)
mp_hal_delay_us(10); // T_ADCVREG_STUP
#elif defined(STM32G4) || defined(STM32L4) || defined(STM32WB)
mp_hal_delay_us(20); // T_ADCVREG_STUP
#endif
}
#endif
#if ADC_V2
if (!(adc->CR & ADC_CR_ADEN)) {
// ADC isn't enabled so calibrate it now
#if defined(STM32F0) || defined(STM32G0) || defined(STM32L0) || defined(STM32WL)
LL_ADC_StartCalibration(adc);
#elif defined(STM32G4) || defined(STM32H5) || defined(STM32L4) || defined(STM32WB)
LL_ADC_StartCalibration(adc, LL_ADC_SINGLE_ENDED);
#else
LL_ADC_StartCalibration(adc, LL_ADC_CALIB_OFFSET_LINEARITY, LL_ADC_SINGLE_ENDED);
#endif
while (LL_ADC_IsCalibrationOnGoing(adc)) {
}
}
if (adc->CR & ADC_CR_ADEN) {
// ADC enabled, need to disable it to change configuration
if (adc->CR & ADC_CR_ADSTART) {
adc->CR |= ADC_CR_ADSTP;
while (adc->CR & ADC_CR_ADSTP) {
}
}
adc->CR |= ADC_CR_ADDIS;
while (adc->CR & ADC_CR_ADDIS) {
}
}
#endif
// Find resolution, defaulting to last element in table
uint32_t res;
for (res = 0; res <= MP_ARRAY_SIZE(adc_cr_to_bits_table); ++res) {
if (adc_cr_to_bits_table[res] == bits) {
break;
}
}
#if defined(STM32F0) || defined(STM32L0)
uint32_t cfgr1_clr = ADC_CFGR1_CONT | ADC_CFGR1_EXTEN | ADC_CFGR1_ALIGN | ADC_CFGR1_RES | ADC_CFGR1_DMAEN;
uint32_t cfgr1 = res << ADC_CFGR1_RES_Pos;
adc->CFGR1 = (adc->CFGR1 & ~cfgr1_clr) | cfgr1;
#elif defined(STM32F4) || defined(STM32F7)
uint32_t cr1_clr = ADC_CR1_RES;
uint32_t cr1 = res << ADC_CR1_RES_Pos;
adc->CR1 = (adc->CR1 & ~cr1_clr) | cr1;
uint32_t cr2_clr = ADC_CR2_EXTEN | ADC_CR2_ALIGN | ADC_CR2_DMA | ADC_CR2_CONT;
uint32_t cr2 = 0;
adc->CR2 = (adc->CR2 & ~cr2_clr) | cr2;
adc->SQR1 = 1 << ADC_SQR1_L_Pos; // 1 conversion in regular sequence
#elif defined(STM32H5) || defined(STM32H7) || defined(STM32L4) || defined(STM32WB)
uint32_t cfgr_clr = ADC_CFGR_CONT | ADC_CFGR_EXTEN | ADC_CFGR_RES;
#if defined(STM32H7)
cfgr_clr |= ADC_CFGR_DMNGT;
#else
cfgr_clr |= ADC_CFGR_ALIGN | ADC_CFGR_DMAEN;
#endif
uint32_t cfgr = res << ADC_CFGR_RES_Pos;
adc->CFGR = (adc->CFGR & ~cfgr_clr) | cfgr;
#endif
}
STATIC int adc_get_bits(ADC_TypeDef *adc) {
#if defined(STM32F0) || defined(STM32G0) || defined(STM32L0) || defined(STM32WL)
uint32_t res = (adc->CFGR1 & ADC_CFGR1_RES) >> ADC_CFGR1_RES_Pos;
#elif defined(STM32F4) || defined(STM32F7) || defined(STM32L1)
uint32_t res = (adc->CR1 & ADC_CR1_RES) >> ADC_CR1_RES_Pos;
#elif defined(STM32G4) || defined(STM32H5) || defined(STM32H7) || defined(STM32L4) || defined(STM32WB)
uint32_t res = (adc->CFGR & ADC_CFGR_RES) >> ADC_CFGR_RES_Pos;
#endif
return adc_cr_to_bits_table[res];
}
STATIC void adc_config_channel(ADC_TypeDef *adc, uint32_t channel, uint32_t sample_time) {
#if ADC_V2
if (!(adc->CR & ADC_CR_ADEN)) {
if (adc->CR & 0x3f) {
// Cannot enable ADC with CR!=0
return;
}
adc->ISR = ADC_ISR_ADRDY; // clear ADRDY
adc->CR |= ADC_CR_ADEN;
adc_stabilisation_delay_us(ADC_STAB_DELAY_US);
while (!(adc->ISR & ADC_ISR_ADRDY)) {
}
}
#else
if (!(adc->CR2 & ADC_CR2_ADON)) {
adc->CR2 |= ADC_CR2_ADON;
adc_stabilisation_delay_us(ADC_STAB_DELAY_US);
}
#endif
#if defined(STM32F0) || defined(STM32G0) || defined(STM32L0)
if (channel == ADC_CHANNEL_VREFINT) {
ADC1_COMMON->CCR |= ADC_CCR_VREFEN;
} else if (channel == ADC_CHANNEL_TEMPSENSOR) {
ADC1_COMMON->CCR |= ADC_CCR_TSEN;
adc_stabilisation_delay_us(ADC_TEMPSENSOR_DELAY_US);
#if defined(ADC_CHANNEL_VBAT)
} else if (channel == ADC_CHANNEL_VBAT) {
ADC1_COMMON->CCR |= ADC_CCR_VBATEN;
#endif
}
#if defined(STM32G0)
adc->SMPR = sample_time << ADC_SMPR_SMP1_Pos; // select sample time from SMP1 (default)
#else
adc->SMPR = sample_time << ADC_SMPR_SMP_Pos; // select sample time
#endif
adc->CHSELR = 1 << channel; // select channel for conversion
#elif defined(STM32F4) || defined(STM32F7)
if (channel == ADC_CHANNEL_VREFINT || channel == ADC_CHANNEL_TEMPSENSOR) {
ADCx_COMMON->CCR = (ADCx_COMMON->CCR & ~ADC_CCR_VBATE) | ADC_CCR_TSVREFE;
if (channel == ADC_CHANNEL_TEMPSENSOR) {
adc_stabilisation_delay_us(ADC_TEMPSENSOR_DELAY_US);
}
} else if (channel == ADC_CHANNEL_VBAT) {
ADCx_COMMON->CCR |= ADC_CCR_VBATE;
}
adc->SQR3 = (channel & 0x1f) << ADC_SQR3_SQ1_Pos; // select channel for first conversion
__IO uint32_t *smpr;
if (channel <= 9) {
smpr = &adc->SMPR2;
} else {
smpr = &adc->SMPR1;
channel -= 10;
}
*smpr = (*smpr & ~(7 << (channel * 3))) | sample_time << (channel * 3); // select sample time
#elif defined(STM32G4) || defined(STM32H5) || defined(STM32H7) || defined(STM32L4) || defined(STM32WB)
#if defined(STM32G4) || defined(STM32H5) || defined(STM32H7A3xx) || defined(STM32H7A3xxQ) || defined(STM32H7B3xx) || defined(STM32H7B3xxQ)
ADC_Common_TypeDef *adc_common = ADC12_COMMON;
#elif defined(STM32H7)
#if defined(ADC_VER_V5_V90)
if (adc != ADC3) {
adc->PCSEL_RES0 |= 1 << channel;
}
#else
adc->PCSEL |= 1 << channel;
#endif
ADC_Common_TypeDef *adc_common = adc == ADC3 ? ADC3_COMMON : ADC12_COMMON;
#elif defined(STM32L4)
ADC_Common_TypeDef *adc_common = ADCx_COMMON;
#elif defined(STM32WB)
ADC_Common_TypeDef *adc_common = ADC1_COMMON;
#endif
if (channel == ADC_CHANNEL_VREFINT) {
adc_common->CCR |= ADC_CCR_VREFEN;
#if defined(STM32G4)
} else if (channel == ADC_CHANNEL_TEMPSENSOR_ADC1) {
adc_common->CCR |= ADC_CCR_VSENSESEL;
#else
} else if (channel == ADC_CHANNEL_TEMPSENSOR) {
adc_common->CCR |= ADC_CCR_TSEN;
#endif
adc_stabilisation_delay_us(ADC_TEMPSENSOR_DELAY_US);
} else if (channel == ADC_CHANNEL_VBAT) {
#if defined(STM32G4)
adc_common->CCR |= ADC_CCR_VBATSEL;
#else
adc_common->CCR |= ADC_CCR_VBATEN;
#endif
}
#if defined(STM32G4)
channel = __LL_ADC_CHANNEL_TO_DECIMAL_NB(channel);
adc->DIFSEL &= ~(1 << channel); // Set channel to Single-ended.
#endif
adc->SQR1 = (channel & 0x1f) << ADC_SQR1_SQ1_Pos | (1 - 1) << ADC_SQR1_L_Pos;
__IO uint32_t *smpr;
if (channel <= 9) {
smpr = &adc->SMPR1;
} else {
smpr = &adc->SMPR2;
channel -= 10;
}
*smpr = (*smpr & ~(7 << (channel * 3))) | sample_time << (channel * 3); // select sample time
#endif
}
STATIC uint32_t adc_read_channel(ADC_TypeDef *adc) {
uint32_t value;
#if defined(STM32G4)
// For STM32G4 there is errata 2.7.7, "Wrong ADC result if conversion done late after
// calibration or previous conversion". According to the errata, this can be avoided
// by performing two consecutive ADC conversions and keeping the second result.
for (uint8_t i = 0; i < 2; i++)
#endif
{
#if ADC_V2
adc->CR |= ADC_CR_ADSTART;
#else
adc->CR2 |= ADC_CR2_SWSTART;
#endif
adc_wait_eoc(adc, ADC_EOC_TIMEOUT_MS);
value = adc->DR;
}
return value;
}
uint32_t adc_config_and_read_u16(ADC_TypeDef *adc, uint32_t channel, uint32_t sample_time) {
if (channel == ADC_CHANNEL_VREF) {
return 0xffff;
}
// Select, configure and read the channel.
adc_config_channel(adc, channel, sample_time);
uint32_t raw = adc_read_channel(adc);
// If VBAT was sampled then deselect it to prevent battery drain.
adc_deselect_vbat(adc, channel);
// Scale raw reading to 16 bit value using a Taylor expansion (for bits <= 16).
uint32_t bits = adc_get_bits(adc);
if (bits < 8) {
// For 6 and 7 bits
return raw << (16 - bits) | raw << (16 - 2 * bits) | raw >> (3 * bits - 16);
}
return raw << (16 - bits) | raw >> (2 * bits - 16);
}
/******************************************************************************/
// MicroPython bindings for machine.ADC
#if !BUILDING_MBOOT
const mp_obj_type_t machine_adc_type;
typedef struct _machine_adc_obj_t {
mp_obj_base_t base;
ADC_TypeDef *adc;
uint32_t channel;
uint32_t sample_time;
} machine_adc_obj_t;
STATIC void machine_adc_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
machine_adc_obj_t *self = MP_OBJ_TO_PTR(self_in);
unsigned adc_id = 1;
#if defined(ADC2)
if (self->adc == ADC2) {
adc_id = 2;
}
#endif
#if defined(ADC3)
if (self->adc == ADC3) {
adc_id = 3;
}
#endif
mp_printf(print, "<ADC%u channel=%u>", adc_id, self->channel);
}
// ADC(id)
STATIC mp_obj_t machine_adc_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
// Check number of arguments
mp_arg_check_num(n_args, n_kw, 1, 1, false);
mp_obj_t source = all_args[0];
uint32_t channel;
uint32_t sample_time = ADC_SAMPLETIME_DEFAULT;
ADC_TypeDef *adc;
if (mp_obj_is_int(source)) {
#if defined(STM32WL)
adc = ADC;
#else
adc = ADC1;
#endif
channel = mp_obj_get_int(source);
if (channel == ADC_CHANNEL_VREFINT
#if defined(STM32G4)
|| channel == ADC_CHANNEL_TEMPSENSOR_ADC1
#else
|| channel == ADC_CHANNEL_TEMPSENSOR
#endif
#if defined(ADC_CHANNEL_VBAT)
|| channel == ADC_CHANNEL_VBAT
#endif
) {
sample_time = ADC_SAMPLETIME_DEFAULT_INT;
}
} else {
const pin_obj_t *pin = pin_find(source);
if (pin->adc_num & PIN_ADC1) {
#if defined(STM32WL)
adc = ADC;
#else
adc = ADC1;
#endif
#if defined(ADC2)
} else if (pin->adc_num & PIN_ADC2) {
adc = ADC2;
#endif
#if defined(ADC3)
} else if (pin->adc_num & PIN_ADC3) {
adc = ADC3;
#endif
} else {
// No ADC function on given pin
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("Pin(%q) does not have ADC capabilities"), pin->name);
}
channel = pin->adc_channel;
// Configure the GPIO pin in ADC mode
mp_hal_pin_config(pin, MP_HAL_PIN_MODE_ADC, MP_HAL_PIN_PULL_NONE, 0);
}
adc_config(adc, 12);
machine_adc_obj_t *o = mp_obj_malloc(machine_adc_obj_t, &machine_adc_type);
o->adc = adc;
o->channel = channel;
o->sample_time = sample_time;
return MP_OBJ_FROM_PTR(o);
}
// read_u16()
STATIC mp_obj_t machine_adc_read_u16(mp_obj_t self_in) {
machine_adc_obj_t *self = MP_OBJ_TO_PTR(self_in);
return MP_OBJ_NEW_SMALL_INT(adc_config_and_read_u16(self->adc, self->channel, self->sample_time));
}
MP_DEFINE_CONST_FUN_OBJ_1(machine_adc_read_u16_obj, machine_adc_read_u16);
STATIC const mp_rom_map_elem_t machine_adc_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_read_u16), MP_ROM_PTR(&machine_adc_read_u16_obj) },
{ MP_ROM_QSTR(MP_QSTR_VREF), MP_ROM_INT(ADC_CHANNEL_VREF) },
{ MP_ROM_QSTR(MP_QSTR_CORE_VREF), MP_ROM_INT(ADC_CHANNEL_VREFINT) },
#if defined(STM32G4)
{ MP_ROM_QSTR(MP_QSTR_CORE_TEMP), MP_ROM_INT(ADC_CHANNEL_TEMPSENSOR_ADC1) },
#else
{ MP_ROM_QSTR(MP_QSTR_CORE_TEMP), MP_ROM_INT(ADC_CHANNEL_TEMPSENSOR) },
#endif
#if defined(ADC_CHANNEL_VBAT)
{ MP_ROM_QSTR(MP_QSTR_CORE_VBAT), MP_ROM_INT(ADC_CHANNEL_VBAT) },
#endif
};
STATIC MP_DEFINE_CONST_DICT(machine_adc_locals_dict, machine_adc_locals_dict_table);
MP_DEFINE_CONST_OBJ_TYPE(
machine_adc_type,
MP_QSTR_ADC,
MP_TYPE_FLAG_NONE,
make_new, machine_adc_make_new,
print, machine_adc_print,
locals_dict, &machine_adc_locals_dict
);
#endif