micropython/ports/esp32/main.c
Daniël van de Giessen f8bd6778c8 esp32: Support JTAG console, free up UART.
CONFIG_USB_OTG_SUPPORTED is automatically set by the ESP-IDF when the chip
supports USB-OTG, which is the case for the ESP32-S2 and ESP32-S3.

When trying to use the JTAG console with these chips, it would not work
because our USB implementation will take over control over the USB port,
breaking the JTAG console in the process.

Thus, when the board is configured to use the JTAG console, we should not
enable our USB console support.

Additionally, this change also frees up UART0 when an USB-based console is
configured, since there's no reason to prevent (re)configuration of UART0
for other uses in that case.

Signed-off-by: Daniël van de Giessen <daniel@dvdgiessen.nl>
2023-09-01 21:01:26 +10:00

235 lines
6.8 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* Development of the code in this file was sponsored by Microbric Pty Ltd
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <string.h>
#include <stdarg.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_system.h"
#include "nvs_flash.h"
#include "esp_task.h"
#include "esp_event.h"
#include "esp_log.h"
#include "esp_psram.h"
#include "py/stackctrl.h"
#include "py/nlr.h"
#include "py/compile.h"
#include "py/runtime.h"
#include "py/persistentcode.h"
#include "py/repl.h"
#include "py/gc.h"
#include "py/mphal.h"
#include "shared/readline/readline.h"
#include "shared/runtime/pyexec.h"
#include "uart.h"
#include "usb.h"
#include "usb_serial_jtag.h"
#include "modmachine.h"
#include "modnetwork.h"
#include "mpthreadport.h"
#if MICROPY_BLUETOOTH_NIMBLE
#include "extmod/modbluetooth.h"
#endif
#if MICROPY_ESPNOW
#include "modespnow.h"
#endif
// MicroPython runs as a task under FreeRTOS
#define MP_TASK_PRIORITY (ESP_TASK_PRIO_MIN + 1)
#define MP_TASK_STACK_SIZE (16 * 1024)
// Set the margin for detecting stack overflow, depending on the CPU architecture.
#if CONFIG_IDF_TARGET_ESP32C3
#define MP_TASK_STACK_LIMIT_MARGIN (2048)
#else
#define MP_TASK_STACK_LIMIT_MARGIN (1024)
#endif
// Initial Python heap size. This starts small but adds new heap areas on
// demand due to settings MICROPY_GC_SPLIT_HEAP & MICROPY_GC_SPLIT_HEAP_AUTO
#define MP_TASK_HEAP_SIZE (64 * 1024)
int vprintf_null(const char *format, va_list ap) {
// do nothing: this is used as a log target during raw repl mode
return 0;
}
void mp_task(void *pvParameter) {
volatile uint32_t sp = (uint32_t)esp_cpu_get_sp();
#if MICROPY_PY_THREAD
mp_thread_init(pxTaskGetStackStart(NULL), MP_TASK_STACK_SIZE / sizeof(uintptr_t));
#endif
#if CONFIG_ESP_CONSOLE_USB_SERIAL_JTAG
usb_serial_jtag_init();
#elif CONFIG_USB_OTG_SUPPORTED
usb_init();
#endif
#if MICROPY_HW_ENABLE_UART_REPL
uart_stdout_init();
#endif
machine_init();
esp_err_t err = esp_event_loop_create_default();
if (err != ESP_OK) {
ESP_LOGE("esp_init", "can't create event loop: 0x%x\n", err);
}
void *mp_task_heap = MP_PLAT_ALLOC_HEAP(MP_TASK_HEAP_SIZE);
soft_reset:
// initialise the stack pointer for the main thread
mp_stack_set_top((void *)sp);
mp_stack_set_limit(MP_TASK_STACK_SIZE - MP_TASK_STACK_LIMIT_MARGIN);
gc_init(mp_task_heap, mp_task_heap + MP_TASK_HEAP_SIZE);
mp_init();
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_lib));
readline_init0();
MP_STATE_PORT(native_code_pointers) = MP_OBJ_NULL;
// initialise peripherals
machine_pins_init();
#if MICROPY_PY_MACHINE_I2S
machine_i2s_init0();
#endif
// run boot-up scripts
pyexec_frozen_module("_boot.py", false);
pyexec_file_if_exists("boot.py");
if (pyexec_mode_kind == PYEXEC_MODE_FRIENDLY_REPL) {
int ret = pyexec_file_if_exists("main.py");
if (ret & PYEXEC_FORCED_EXIT) {
goto soft_reset_exit;
}
}
for (;;) {
if (pyexec_mode_kind == PYEXEC_MODE_RAW_REPL) {
vprintf_like_t vprintf_log = esp_log_set_vprintf(vprintf_null);
if (pyexec_raw_repl() != 0) {
break;
}
esp_log_set_vprintf(vprintf_log);
} else {
if (pyexec_friendly_repl() != 0) {
break;
}
}
}
soft_reset_exit:
#if MICROPY_BLUETOOTH_NIMBLE
mp_bluetooth_deinit();
#endif
#if MICROPY_ESPNOW
espnow_deinit(mp_const_none);
MP_STATE_PORT(espnow_singleton) = NULL;
#endif
machine_timer_deinit_all();
#if MICROPY_PY_THREAD
mp_thread_deinit();
#endif
// Free any native code pointers that point to iRAM.
if (MP_STATE_PORT(native_code_pointers) != MP_OBJ_NULL) {
size_t len;
mp_obj_t *items;
mp_obj_list_get(MP_STATE_PORT(native_code_pointers), &len, &items);
for (size_t i = 0; i < len; ++i) {
heap_caps_free(MP_OBJ_TO_PTR(items[i]));
}
}
gc_sweep_all();
mp_hal_stdout_tx_str("MPY: soft reboot\r\n");
// deinitialise peripherals
machine_pwm_deinit_all();
// TODO: machine_rmt_deinit_all();
machine_pins_deinit();
machine_deinit();
#if MICROPY_PY_SOCKET_EVENTS
socket_events_deinit();
#endif
mp_deinit();
fflush(stdout);
goto soft_reset;
}
void boardctrl_startup(void) {
esp_err_t ret = nvs_flash_init();
if (ret == ESP_ERR_NVS_NO_FREE_PAGES || ret == ESP_ERR_NVS_NEW_VERSION_FOUND) {
nvs_flash_erase();
nvs_flash_init();
}
}
void app_main(void) {
// Hook for a board to run code at start up.
// This defaults to initialising NVS.
MICROPY_BOARD_STARTUP();
// Create and transfer control to the MicroPython task.
xTaskCreatePinnedToCore(mp_task, "mp_task", MP_TASK_STACK_SIZE / sizeof(StackType_t), NULL, MP_TASK_PRIORITY, &mp_main_task_handle, MP_TASK_COREID);
}
void nlr_jump_fail(void *val) {
printf("NLR jump failed, val=%p\n", val);
esp_restart();
}
void *esp_native_code_commit(void *buf, size_t len, void *reloc) {
len = (len + 3) & ~3;
uint32_t *p = heap_caps_malloc(len, MALLOC_CAP_EXEC);
if (p == NULL) {
m_malloc_fail(len);
}
if (MP_STATE_PORT(native_code_pointers) == MP_OBJ_NULL) {
MP_STATE_PORT(native_code_pointers) = mp_obj_new_list(0, NULL);
}
mp_obj_list_append(MP_STATE_PORT(native_code_pointers), MP_OBJ_TO_PTR(p));
if (reloc) {
mp_native_relocate(reloc, buf, (uintptr_t)p);
}
memcpy(p, buf, len);
return p;
}
MP_REGISTER_ROOT_POINTER(mp_obj_t native_code_pointers);