Go to file
robert-hh de1f1dd164 shared/runtime/softtimer: Use consistently the same clock source.
Before, both uwTick and mp_hal_ticks_ms() were used as clock source.  That
assumes, that these two are synchronous and start with the same value,
which may be not the case for all ports.  If the lag between uwTick and
mp_hal_ticks_ms() is larger than the timer interval, the timer would either
rush up until the times are synchronous, or not start until uwTick wraps
over.

As suggested by @dpgeorge, MICROPY_SOFT_TIMER_TICKS_MS is now used in
softtimer.c, which has to be defined in a port's mpconfigport.h with
the variable that holds the SysTick counter.

Note that it's not possible to switch everything in softtimer.c to use
mp_hal_ticks_ms() because the logic in SysTick_Handler that schedules
soft_timer_handler() uses (eg on mimxrt) the uwTick variable directly
(named systick_ms there), and mp_hal_ticks_ms() uses a different source
timer.  Thus it is made fully configurable.
2023-02-16 12:59:48 +11:00
.github examples/embedding: Rework example to use ports/embed. 2023-01-20 22:28:50 +11:00
docs docs/zephyr/quickref: Fix zsensor module usage examples. 2023-01-19 16:04:24 +11:00
drivers drivers/ninaw10: Implement machine.Pin external pin controls. 2023-01-16 11:44:28 +11:00
examples examples/bluetooth: Fix check for _conn_handle being None. 2023-02-15 14:14:49 +11:00
extmod extmod/utime_mphal: Fix comment re delta range check in time_ticks_add. 2023-02-15 14:16:31 +11:00
lib lib/micropython-lib: Update submodule to latest. 2023-02-01 12:42:06 +11:00
logo
mpy-cross mpy-cross: Force forward slashes in paths. 2023-02-01 13:10:00 +11:00
ports shared/runtime/softtimer: Use consistently the same clock source. 2023-02-16 12:59:48 +11:00
py py/mkrules.cmake: Force build mpversion.h and frozen_content.c. 2023-02-08 12:24:15 +11:00
shared shared/runtime/softtimer: Use consistently the same clock source. 2023-02-16 12:59:48 +11:00
tests tests/float: Make output of math function tests more readable. 2023-02-16 10:38:38 +11:00
tools tools/mpy-tool.py: Initialize line_info_top. 2023-02-01 13:17:22 +11:00
.git-blame-ignore-revs top: Update .git-blame-ignore-revs for latest formatting commit. 2023-02-03 17:09:19 +11:00
.gitattributes
.gitignore gitignore: Add comment about keeping this file minimal. 2022-11-28 11:19:06 +11:00
.gitmodules lib/stm32lib: Update library to get L1 v1.10.3, and some other fixes. 2022-09-25 23:56:20 +10:00
.pre-commit-config.yaml tools: Add pre-commit support. 2022-10-04 14:52:48 +11:00
ACKNOWLEDGEMENTS
CODECONVENTIONS.md CODECONVENTIONS: Explain uncrustify dependency for pre-commit setup. 2023-01-19 16:10:21 +11:00
CODEOFCONDUCT.md top: Add CODEOFCONDUCT.md document based on the PSF code of conduct. 2019-10-15 16:18:46 +11:00
CONTRIBUTING.md top: Update contribution and commit guide to include optional sign-off. 2020-06-12 13:32:22 +10:00
LICENSE drivers/cc3000: Remove CC3000 WiFi driver files. 2022-08-26 12:51:37 +10:00
README.md README: Simplify and update, and move unix section to separate file. 2022-08-30 13:11:33 +10:00

CI badge codecov

The MicroPython project

MicroPython Logo

This is the MicroPython project, which aims to put an implementation of Python 3.x on microcontrollers and small embedded systems. You can find the official website at micropython.org.

WARNING: this project is in beta stage and is subject to changes of the code-base, including project-wide name changes and API changes.

MicroPython implements the entire Python 3.4 syntax (including exceptions, with, yield from, etc., and additionally async/await keywords from Python 3.5 and some select features from later versions). The following core datatypes are provided: str(including basic Unicode support), bytes, bytearray, tuple, list, dict, set, frozenset, array.array, collections.namedtuple, classes and instances. Builtin modules include os, sys, time, re, and struct, etc. Select ports have support for _thread module (multithreading), socket and ssl for networking, and asyncio. Note that only a subset of Python 3 functionality is implemented for the data types and modules.

MicroPython can execute scripts in textual source form (.py files) or from precompiled bytecode (.mpy files), in both cases either from an on-device filesystem or "frozen" into the MicroPython executable.

MicroPython also provides a set of MicroPython-specific modules to access hardware-specific functionality and peripherals such as GPIO, Timers, ADC, DAC, PWM, SPI, I2C, CAN, Bluetooth, and USB.

Getting started

See the online documentation for API references and information about using MicroPython and information about how it is implemented.

We use GitHub Discussions as our forum, and Discord for chat. These are great places to ask questions and advice from the community or to discuss your MicroPython-based projects.

For bugs and feature requests, please raise an issue and follow the templates there.

For information about the MicroPython pyboard, the officially supported board from the original Kickstarter campaign, see the schematics and pinouts and documentation.

Contributing

MicroPython is an open-source project and welcomes contributions. To be productive, please be sure to follow the Contributors' Guidelines and the Code Conventions. Note that MicroPython is licenced under the MIT license, and all contributions should follow this license.

About this repository

This repository contains the following components:

  • py/ -- the core Python implementation, including compiler, runtime, and core library.
  • mpy-cross/ -- the MicroPython cross-compiler which is used to turn scripts into precompiled bytecode.
  • ports/ -- platform-specific code for the various ports and architectures that MicroPython runs on.
  • lib/ -- submodules for external dependencies.
  • tests/ -- test framework and test scripts.
  • docs/ -- user documentation in Sphinx reStructuredText format. This is used to generate the online documentation.
  • extmod/ -- additional (non-core) modules implemented in C.
  • tools/ -- various tools, including the pyboard.py module.
  • examples/ -- a few example Python scripts.

"make" is used to build the components, or "gmake" on BSD-based systems. You will also need bash, gcc, and Python 3.3+ available as the command python3 (if your system only has Python 2.7 then invoke make with the additional option PYTHON=python2). Some ports (rp2 and esp32) additionally use CMake.

Supported platforms & architectures

MicroPython runs on a wide range of microcontrollers, as well as on Unix-like (including Linux, BSD, macOS, WSL) and Windows systems.

Microcontroller targets can be as small as 256kiB flash + 16kiB RAM, although devices with at least 512kiB flash + 128kiB RAM allow a much more full-featured experience.

The Unix and Windows ports allow both development and testing of MicroPython itself, as well as providing lightweight alternative to CPython on these platforms (in particular on embedded Linux systems).

The "minimal" port provides an example of a very basic MicroPython port and can be compiled as both a standalone Linux binary as well as for ARM Cortex M4. Start with this if you want to port MicroPython to another microcontroller. Additionally the "bare-arm" port is an example of the absolute minimum configuration, and is used to keep track of the code size of the core runtime and VM.

In addition, the following ports are provided in this repository:

  • cc3200 -- Texas Instruments CC3200 (including PyCom WiPy).
  • esp32 -- Espressif ESP32 SoC (including ESP32S2, ESP32S3, ESP32C3).
  • esp8266 -- Espressif ESP8266 SoC.
  • mimxrt -- NXP m.iMX RT (including Teensy 4.x).
  • nrf -- Nordic Semiconductor nRF51 and nRF52.
  • pic16bit -- Microchip PIC 16-bit.
  • powerpc -- IBM PowerPC (including Microwatt)
  • qemu-arm -- QEMU-based emulated target, for testing)
  • renesas-ra -- Renesas RA family.
  • rp2 -- Raspberry Pi RP2040 (including Pico and Pico W).
  • samd -- Microchip (formerly Atmel) SAMD21 and SAMD51.
  • stm32 -- STMicroelectronics STM32 family (including F0, F4, F7, G0, G4, H7, L0, L4, WB)
  • teensy -- Teensy 3.x.
  • webassembly -- Emscripten port targeting browsers and NodeJS.
  • zephyr -- Zephyr RTOS.

The MicroPython cross-compiler, mpy-cross

Most ports require the MicroPython cross-compiler to be built first. This program, called mpy-cross, is used to pre-compile Python scripts to .mpy files which can then be included (frozen) into the firmware/executable for a port. To build mpy-cross use:

$ cd mpy-cross
$ make

External dependencies

The core MicroPython VM and runtime has no external dependencies, but a given port might depend on third-party drivers or vendor HALs. This repository includes several submodules linking to these external dependencies. Before compiling a given port, use

$ cd ports/name
$ make submodules

to ensure that all required submodules are initialised.