micropython/stmhal/spi.c
2014-04-26 11:19:17 +01:00

462 lines
17 KiB
C

#include <stdio.h>
#include <string.h>
#include "stm32f4xx_hal.h"
#include "nlr.h"
#include "misc.h"
#include "mpconfig.h"
#include "qstr.h"
#include "obj.h"
#include "runtime.h"
#include "pin.h"
#include "genhdr/pins.h"
#include "bufhelper.h"
#include "spi.h"
// Usage model:
//
// See usage model of I2C in i2c.c. SPI is very similar. Main difference is
// parameters to init the SPI bus:
//
// from pyb import SPI
// spi = SPI(1, SPI.MASTER, baudrate=600000, polarity=1, phase=1, crc=0x7)
//
// Only required parameter is mode, SPI.MASTER or SPI.SLAVE. Polarity can be
// 0 or 1, and is the level the idle clock line sits at. Phase can be 1 or 2
// for number of edges. Crc can be None for no CRC, or a polynomial specifier.
//
// Additional method for SPI:
//
// data = spi.send_recv(b'1234') # send 4 bytes and receive 4 bytes
// buf = bytearray(4)
// spi.send_recv(b'1234', buf) # send 4 bytes and receive 4 into buf
// spi.send_recv(buf, buf) # send/recv 4 bytes from/to buf
#if MICROPY_HW_ENABLE_SPI1
SPI_HandleTypeDef SPIHandle1 = {.Instance = NULL};
#endif
SPI_HandleTypeDef SPIHandle2 = {.Instance = NULL};
#if MICROPY_HW_ENABLE_SPI3
SPI_HandleTypeDef SPIHandle3 = {.Instance = NULL};
#endif
void spi_init0(void) {
// reset the SPI handles
#if MICROPY_HW_ENABLE_SPI1
memset(&SPIHandle1, 0, sizeof(SPI_HandleTypeDef));
SPIHandle1.Instance = SPI1;
#endif
memset(&SPIHandle2, 0, sizeof(SPI_HandleTypeDef));
SPIHandle2.Instance = SPI2;
#if MICROPY_HW_ENABLE_SPI3
memset(&SPIHandle3, 0, sizeof(SPI_HandleTypeDef));
SPIHandle3.Instance = SPI3;
#endif
}
// TODO allow to take a list of pins to use
void spi_init(SPI_HandleTypeDef *spi) {
// init the GPIO lines
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.Mode = GPIO_MODE_AF_PP;
GPIO_InitStructure.Speed = GPIO_SPEED_FAST;
GPIO_InitStructure.Pull = spi->Init.CLKPolarity == SPI_POLARITY_LOW ? GPIO_PULLDOWN : GPIO_PULLUP;
const pin_obj_t *pins[4];
if (0) {
#if MICROPY_HW_ENABLE_SPI1
} else if (spi->Instance == SPI1) {
// X-skin: X5=PA4=SPI1_NSS, X6=PA5=SPI1_SCK, X7=PA6=SPI1_MISO, X8=PA7=SPI1_MOSI
pins[0] = &pin_A4;
pins[1] = &pin_A5;
pins[2] = &pin_A6;
pins[3] = &pin_A7;
GPIO_InitStructure.Alternate = GPIO_AF5_SPI1;
// enable the SPI clock
__SPI1_CLK_ENABLE();
#endif
} else if (spi->Instance == SPI2) {
// Y-skin: Y5=PB12=SPI2_NSS, Y6=PB13=SPI2_SCK, Y7=PB14=SPI2_MISO, Y8=PB15=SPI2_MOSI
pins[0] = &pin_B12;
pins[1] = &pin_B13;
pins[2] = &pin_B14;
pins[3] = &pin_B15;
GPIO_InitStructure.Alternate = GPIO_AF5_SPI2;
// enable the SPI clock
__SPI2_CLK_ENABLE();
#if MICROPY_HW_ENABLE_SPI3
} else if (spi->Instance == SPI3) {
pins[0] = &pin_A4;
pins[1] = &pin_B3;
pins[2] = &pin_B4;
pins[3] = &pin_B5;
GPIO_InitStructure.Alternate = GPIO_AF6_SPI3;
// enable the SPI clock
__SPI3_CLK_ENABLE();
#endif
} else {
// SPI does not exist for this board (shouldn't get here, should be checked by caller)
return;
}
for (uint i = 0; i < 4; i++) {
GPIO_InitStructure.Pin = pins[i]->pin_mask;
HAL_GPIO_Init(pins[i]->gpio, &GPIO_InitStructure);
}
// init the SPI device
if (HAL_SPI_Init(spi) != HAL_OK) {
// init error
// TODO should raise an exception, but this function is not necessarily going to be
// called via Python, so may not be properly wrapped in an NLR handler
printf("HardwareError: HAL_SPI_Init failed\n");
return;
}
}
void spi_deinit(SPI_HandleTypeDef *spi) {
HAL_SPI_DeInit(spi);
if (0) {
#if MICROPY_HW_ENABLE_SPI1
} else if (spi->Instance == SPI1) {
__SPI1_FORCE_RESET();
__SPI1_RELEASE_RESET();
__SPI1_CLK_DISABLE();
#endif
} else if (spi->Instance == SPI2) {
__SPI2_FORCE_RESET();
__SPI2_RELEASE_RESET();
__SPI2_CLK_DISABLE();
#if MICROPY_HW_ENABLE_SPI3
} else if (spi->Instance == SPI3) {
__SPI3_FORCE_RESET();
__SPI3_RELEASE_RESET();
__SPI3_CLK_DISABLE();
#endif
}
}
/******************************************************************************/
/* Micro Python bindings */
typedef struct _pyb_spi_obj_t {
mp_obj_base_t base;
SPI_HandleTypeDef *spi;
} pyb_spi_obj_t;
STATIC const pyb_spi_obj_t pyb_spi_obj[] = {
#if MICROPY_HW_ENABLE_SPI1
{{&pyb_spi_type}, &SPIHandle1},
#else
{{&pyb_spi_type}, NULL},
#endif
{{&pyb_spi_type}, &SPIHandle2},
#if MICROPY_HW_ENABLE_SPI3
{{&pyb_spi_type}, &SPIHandle3},
#else
{{&pyb_spi_type}, NULL},
#endif
};
#define PYB_NUM_SPI ARRAY_SIZE(pyb_spi_obj)
STATIC void pyb_spi_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) {
pyb_spi_obj_t *self = self_in;
uint spi_num;
if (self->spi->Instance == SPI1) { spi_num = 1; }
else if (self->spi->Instance == SPI2) { spi_num = 2; }
else { spi_num = 3; }
if (self->spi->State == HAL_SPI_STATE_RESET) {
print(env, "SPI(%u)", spi_num);
} else {
if (self->spi->Init.Mode == SPI_MODE_MASTER) {
// compute baudrate
uint spi_clock;
if (self->spi->Instance == SPI1) {
// SPI1 is on APB2
spi_clock = HAL_RCC_GetPCLK2Freq();
} else {
// SPI2 and SPI3 are on APB1
spi_clock = HAL_RCC_GetPCLK1Freq();
}
uint baudrate = spi_clock >> ((self->spi->Init.BaudRatePrescaler >> 3) + 1);
print(env, "SPI(%u, SPI.MASTER, baudrate=%u", spi_num, baudrate);
} else {
print(env, "SPI(%u, SPI.SLAVE", spi_num);
}
print(env, ", polarity=%u, phase=%u, bits=%u", self->spi->Init.CLKPolarity == SPI_POLARITY_LOW ? 0 : 1, self->spi->Init.CLKPhase == SPI_PHASE_1EDGE ? 1 : 2, self->spi->Init.DataSize == SPI_DATASIZE_8BIT ? 8 : 16);
if (self->spi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED) {
print(env, ", crc=0x%x", self->spi->Init.CRCPolynomial);
}
print(env, ")");
}
}
STATIC const mp_arg_t pyb_spi_init_args[] = {
{ MP_QSTR_mode, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_baudrate, MP_ARG_INT, {.u_int = 328125} },
{ MP_QSTR_polarity, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} },
{ MP_QSTR_phase, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} },
{ MP_QSTR_dir, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = SPI_DIRECTION_2LINES} },
{ MP_QSTR_bits, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} },
{ MP_QSTR_nss, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = SPI_NSS_SOFT} },
{ MP_QSTR_firstbit, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = SPI_FIRSTBIT_MSB} },
{ MP_QSTR_ti, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
{ MP_QSTR_crc, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
};
#define PYB_SPI_INIT_NUM_ARGS ARRAY_SIZE(pyb_spi_init_args)
STATIC mp_obj_t pyb_spi_init_helper(const pyb_spi_obj_t *self, uint n_args, const mp_obj_t *args, mp_map_t *kw_args) {
// parse args
mp_arg_val_t vals[PYB_SPI_INIT_NUM_ARGS];
mp_arg_parse_all(n_args, args, kw_args, PYB_SPI_INIT_NUM_ARGS, pyb_spi_init_args, vals);
// set the SPI configuration values
SPI_InitTypeDef *init = &self->spi->Init;
init->Mode = vals[0].u_int;
// compute the baudrate prescaler from the requested baudrate
// select a prescaler that yields at most the requested baudrate
uint spi_clock;
if (self->spi->Instance == SPI1) {
// SPI1 is on APB2
spi_clock = HAL_RCC_GetPCLK2Freq();
} else {
// SPI2 and SPI3 are on APB1
spi_clock = HAL_RCC_GetPCLK1Freq();
}
uint br_prescale = spi_clock / vals[1].u_int;
if (br_prescale <= 2) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2; }
else if (br_prescale <= 4) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_4; }
else if (br_prescale <= 8) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8; }
else if (br_prescale <= 16) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_16; }
else if (br_prescale <= 32) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_32; }
else if (br_prescale <= 64) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_64; }
else if (br_prescale <= 128) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_128; }
else { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256; }
init->CLKPolarity = vals[2].u_int == 0 ? SPI_POLARITY_LOW : SPI_POLARITY_HIGH;
init->CLKPhase = vals[3].u_int == 1 ? SPI_PHASE_1EDGE : SPI_PHASE_2EDGE;
init->Direction = vals[4].u_int;
init->DataSize = (vals[5].u_int == 16) ? SPI_DATASIZE_16BIT : SPI_DATASIZE_8BIT;
init->NSS = vals[6].u_int;
init->FirstBit = vals[7].u_int;
init->TIMode = vals[8].u_bool ? SPI_TIMODE_ENABLED : SPI_TIMODE_DISABLED;
if (vals[9].u_obj == mp_const_none) {
init->CRCCalculation = SPI_CRCCALCULATION_DISABLED;
init->CRCPolynomial = 0;
} else {
init->CRCCalculation = SPI_CRCCALCULATION_ENABLED;
init->CRCPolynomial = mp_obj_get_int(vals[9].u_obj);
}
// init the SPI bus
spi_init(self->spi);
return mp_const_none;
}
STATIC mp_obj_t pyb_spi_make_new(mp_obj_t type_in, uint n_args, uint n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
// get SPI number
machine_int_t spi_id = mp_obj_get_int(args[0]) - 1;
// check SPI number
if (!(0 <= spi_id && spi_id < PYB_NUM_SPI && pyb_spi_obj[spi_id].spi != NULL)) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "SPI bus %d does not exist", spi_id + 1));
}
// get SPI object
const pyb_spi_obj_t *spi_obj = &pyb_spi_obj[spi_id];
if (n_args > 1 || n_kw > 0) {
// start the peripheral
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
pyb_spi_init_helper(spi_obj, n_args - 1, args + 1, &kw_args);
}
return (mp_obj_t)spi_obj;
}
STATIC mp_obj_t pyb_spi_init(uint n_args, const mp_obj_t *args, mp_map_t *kw_args) {
return pyb_spi_init_helper(args[0], n_args - 1, args + 1, kw_args);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_spi_init_obj, 1, pyb_spi_init);
STATIC mp_obj_t pyb_spi_deinit(mp_obj_t self_in) {
pyb_spi_obj_t *self = self_in;
spi_deinit(self->spi);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_spi_deinit_obj, pyb_spi_deinit);
STATIC const mp_arg_t pyb_spi_send_args[] = {
{ MP_QSTR_send, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
};
#define PYB_SPI_SEND_NUM_ARGS ARRAY_SIZE(pyb_spi_send_args)
STATIC mp_obj_t pyb_spi_send(uint n_args, const mp_obj_t *args, mp_map_t *kw_args) {
// TODO assumes transmission size is 8-bits wide
pyb_spi_obj_t *self = args[0];
// parse args
mp_arg_val_t vals[PYB_SPI_SEND_NUM_ARGS];
mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_SPI_SEND_NUM_ARGS, pyb_spi_send_args, vals);
// get the buffer to send from
mp_buffer_info_t bufinfo;
uint8_t data[1];
pyb_buf_get_for_send(vals[0].u_obj, &bufinfo, data);
// send the data
HAL_StatusTypeDef status = HAL_SPI_Transmit(self->spi, bufinfo.buf, bufinfo.len, vals[1].u_int);
if (status != HAL_OK) {
// TODO really need a HardwareError object, or something
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_Exception, "HAL_SPI_Transmit failed with code %d", status));
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_spi_send_obj, 1, pyb_spi_send);
STATIC const mp_arg_t pyb_spi_recv_args[] = {
{ MP_QSTR_recv, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
};
#define PYB_SPI_RECV_NUM_ARGS ARRAY_SIZE(pyb_spi_recv_args)
STATIC mp_obj_t pyb_spi_recv(uint n_args, const mp_obj_t *args, mp_map_t *kw_args) {
// TODO assumes transmission size is 8-bits wide
pyb_spi_obj_t *self = args[0];
// parse args
mp_arg_val_t vals[PYB_SPI_RECV_NUM_ARGS];
mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_SPI_RECV_NUM_ARGS, pyb_spi_recv_args, vals);
// get the buffer to receive into
mp_buffer_info_t bufinfo;
mp_obj_t o_ret = pyb_buf_get_for_recv(vals[0].u_obj, &bufinfo);
// receive the data
HAL_StatusTypeDef status = HAL_SPI_Receive(self->spi, bufinfo.buf, bufinfo.len, vals[1].u_int);
if (status != HAL_OK) {
// TODO really need a HardwareError object, or something
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_Exception, "HAL_SPI_Receive failed with code %d", status));
}
// return the received data
if (o_ret == MP_OBJ_NULL) {
return vals[0].u_obj;
} else {
return mp_obj_str_builder_end(o_ret);
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_spi_recv_obj, 1, pyb_spi_recv);
STATIC const mp_arg_t pyb_spi_send_recv_args[] = {
{ MP_QSTR_send, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_recv, MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
};
#define PYB_SPI_SEND_RECV_NUM_ARGS ARRAY_SIZE(pyb_spi_send_recv_args)
STATIC mp_obj_t pyb_spi_send_recv(uint n_args, const mp_obj_t *args, mp_map_t *kw_args) {
// TODO assumes transmission size is 8-bits wide
pyb_spi_obj_t *self = args[0];
// parse args
mp_arg_val_t vals[PYB_SPI_SEND_RECV_NUM_ARGS];
mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_SPI_SEND_RECV_NUM_ARGS, pyb_spi_send_recv_args, vals);
// get buffers to send from/receive to
mp_buffer_info_t bufinfo_send;
uint8_t data_send[1];
mp_buffer_info_t bufinfo_recv;
mp_obj_t o_ret;
if (vals[0].u_obj == vals[1].u_obj) {
// same object for send and receive, it must be a r/w buffer
mp_get_buffer_raise(vals[0].u_obj, &bufinfo_send, MP_BUFFER_RW);
bufinfo_recv = bufinfo_send;
o_ret = MP_OBJ_NULL;
} else {
// get the buffer to send from
pyb_buf_get_for_send(vals[0].u_obj, &bufinfo_send, data_send);
// get the buffer to receive into
if (vals[1].u_obj == MP_OBJ_NULL) {
// only send argument given, so create a fresh buffer of the send length
bufinfo_recv.len = bufinfo_send.len;
bufinfo_recv.typecode = 'B';
o_ret = mp_obj_str_builder_start(&mp_type_bytes, bufinfo_recv.len, (byte**)&bufinfo_recv.buf);
} else {
// recv argument given
mp_get_buffer_raise(vals[1].u_obj, &bufinfo_recv, MP_BUFFER_WRITE);
if (bufinfo_recv.len != bufinfo_send.len) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "recv must be same length as send"));
}
o_ret = MP_OBJ_NULL;
}
}
// send and receive the data
HAL_StatusTypeDef status = HAL_SPI_TransmitReceive(self->spi, bufinfo_send.buf, bufinfo_recv.buf, bufinfo_send.len, vals[2].u_int);
if (status != HAL_OK) {
// TODO really need a HardwareError object, or something
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_Exception, "HAL_SPI_TransmitReceive failed with code %d", status));
}
// return the received data
if (o_ret == MP_OBJ_NULL) {
return vals[1].u_obj;
} else {
return mp_obj_str_builder_end(o_ret);
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_spi_send_recv_obj, 1, pyb_spi_send_recv);
STATIC const mp_map_elem_t pyb_spi_locals_dict_table[] = {
// instance methods
{ MP_OBJ_NEW_QSTR(MP_QSTR_init), (mp_obj_t)&pyb_spi_init_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_deinit), (mp_obj_t)&pyb_spi_deinit_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_send), (mp_obj_t)&pyb_spi_send_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_recv), (mp_obj_t)&pyb_spi_recv_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_send_recv), (mp_obj_t)&pyb_spi_send_recv_obj },
// class constants
{ MP_OBJ_NEW_QSTR(MP_QSTR_MASTER), MP_OBJ_NEW_SMALL_INT(SPI_MODE_MASTER) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_SLAVE), MP_OBJ_NEW_SMALL_INT(SPI_MODE_SLAVE) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_MSB), MP_OBJ_NEW_SMALL_INT(SPI_FIRSTBIT_MSB) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_LSB), MP_OBJ_NEW_SMALL_INT(SPI_FIRSTBIT_LSB) },
/* TODO
{ MP_OBJ_NEW_QSTR(MP_QSTR_DIRECTION_2LINES ((uint32_t)0x00000000)
{ MP_OBJ_NEW_QSTR(MP_QSTR_DIRECTION_2LINES_RXONLY SPI_CR1_RXONLY
{ MP_OBJ_NEW_QSTR(MP_QSTR_DIRECTION_1LINE SPI_CR1_BIDIMODE
{ MP_OBJ_NEW_QSTR(MP_QSTR_NSS_SOFT SPI_CR1_SSM
{ MP_OBJ_NEW_QSTR(MP_QSTR_NSS_HARD_INPUT ((uint32_t)0x00000000)
{ MP_OBJ_NEW_QSTR(MP_QSTR_NSS_HARD_OUTPUT ((uint32_t)0x00040000)
*/
};
STATIC MP_DEFINE_CONST_DICT(pyb_spi_locals_dict, pyb_spi_locals_dict_table);
const mp_obj_type_t pyb_spi_type = {
{ &mp_type_type },
.name = MP_QSTR_SPI,
.print = pyb_spi_print,
.make_new = pyb_spi_make_new,
.locals_dict = (mp_obj_t)&pyb_spi_locals_dict,
};