micropython/teensy/main.c
Paul Sokolovsky d3b1f0b627 py/runtime: mp_stack_ctrl_init() should be called immediately on startup.
Calling it from mp_init() is too late for some ports (like Unix), and leads
to incomplete stack frame being captured, with following GC issues. So, now
each port should call mp_stack_ctrl_init() on its own, ASAP after startup,
and taking special precautions so it really was called before stack variables
get allocated (because if such variable with a pointer is missed, it may lead
to over-collecting (typical symptom is segfaulting)).
2016-01-29 02:13:42 +02:00

384 lines
9.7 KiB
C

#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "py/nlr.h"
#include "py/parse.h"
#include "py/lexer.h"
#include "py/runtime.h"
#include "py/stackctrl.h"
#include "py/gc.h"
#include "py/mphal.h"
#include "gccollect.h"
#include "lib/utils/pyexec.h"
#include "readline.h"
#include "lexermemzip.h"
#include "Arduino.h"
#include "servo.h"
#include "led.h"
#include "uart.h"
#include "pin.h"
extern uint32_t _heap_start;
void flash_error(int n) {
for (int i = 0; i < n; i++) {
led_state(PYB_LED_BUILTIN, 1);
delay(250);
led_state(PYB_LED_BUILTIN, 0);
delay(250);
}
}
void NORETURN __fatal_error(const char *msg) {
for (volatile uint delay = 0; delay < 10000000; delay++) {
}
led_state(1, 1);
led_state(2, 1);
led_state(3, 1);
led_state(4, 1);
mp_hal_stdout_tx_strn("\nFATAL ERROR:\n", 14);
mp_hal_stdout_tx_strn(msg, strlen(msg));
for (uint i = 0;;) {
led_toggle(((i++) & 3) + 1);
for (volatile uint delay = 0; delay < 10000000; delay++) {
}
if (i >= 16) {
// to conserve power
__WFI();
}
}
}
void nlr_jump_fail(void *val) {
printf("FATAL: uncaught exception %p\n", val);
__fatal_error("");
}
void __assert_func(const char *file, int line, const char *func, const char *expr) {
printf("Assertion failed: %s, file %s, line %d\n", expr, file, line);
__fatal_error("");
}
mp_obj_t pyb_analog_read(mp_obj_t pin_obj) {
uint pin = mp_obj_get_int(pin_obj);
int val = analogRead(pin);
return MP_OBJ_NEW_SMALL_INT(val);
}
mp_obj_t pyb_analog_write(mp_obj_t pin_obj, mp_obj_t val_obj) {
uint pin = mp_obj_get_int(pin_obj);
int val = mp_obj_get_int(val_obj);
analogWrite(pin, val);
return mp_const_none;
}
mp_obj_t pyb_analog_write_resolution(mp_obj_t res_obj) {
int res = mp_obj_get_int(res_obj);
analogWriteResolution(res);
return mp_const_none;
}
mp_obj_t pyb_analog_write_frequency(mp_obj_t pin_obj, mp_obj_t freq_obj) {
uint pin = mp_obj_get_int(pin_obj);
int freq = mp_obj_get_int(freq_obj);
analogWriteFrequency(pin, freq);
return mp_const_none;
}
#if 0
// get lots of info about the board
static mp_obj_t pyb_info(void) {
// get and print unique id; 96 bits
{
byte *id = (byte*)0x40048058;
printf("ID=%02x%02x%02x%02x:%02x%02x%02x%02x:%02x%02x%02x%02x\n", id[0], id[1], id[2], id[3], id[4], id[5], id[6], id[7], id[8], id[9], id[10], id[11]);
}
// get and print clock speeds
printf("CPU=%u\nBUS=%u\nMEM=%u\n", F_CPU, F_BUS, F_MEM);
// to print info about memory
{
printf("_sdata=%p\n", &_sdata);
printf("_edata=%p\n", &_edata);
printf("_sbss=%p\n", &_sbss);
printf("_ebss=%p\n", &_ebss);
printf("_estack=%p\n", &_estack);
printf("_etext=%p\n", &_etext);
printf("_heap_start=%p\n", &_heap_start);
}
// GC info
{
gc_info_t info;
gc_info(&info);
printf("GC:\n");
printf(" %u total\n", info.total);
printf(" %u used %u free\n", info.used, info.free);
printf(" 1=%u 2=%u m=%u\n", info.num_1block, info.num_2block, info.max_block);
}
#if 0
// free space on flash
{
DWORD nclst;
FATFS *fatfs;
f_getfree("0:", &nclst, &fatfs);
printf("LFS free: %u bytes\n", (uint)(nclst * fatfs->csize * 512));
}
#endif
return mp_const_none;
}
#endif
#define RAM_START (0x1FFF8000) // fixed for chip
#define HEAP_END (0x20006000) // tunable
#define RAM_END (0x20008000) // fixed for chip
#if 0
void gc_helper_get_regs_and_clean_stack(mp_uint_t *regs, mp_uint_t heap_end);
mp_obj_t pyb_gc(void) {
gc_collect();
return mp_const_none;
}
mp_obj_t pyb_gpio(int n_args, mp_obj_t *args) {
//assert(1 <= n_args && n_args <= 2);
uint pin = mp_obj_get_int(args[0]);
if (pin > CORE_NUM_DIGITAL) {
goto pin_error;
}
if (n_args == 1) {
// get pin
pinMode(pin, INPUT);
return MP_OBJ_NEW_SMALL_INT(digitalRead(pin));
}
// set pin
pinMode(pin, OUTPUT);
digitalWrite(pin, mp_obj_is_true(args[1]));
return mp_const_none;
pin_error:
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "pin %d does not exist", pin));
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_gpio_obj, 1, 2, pyb_gpio);
#if 0
mp_obj_t pyb_hid_send_report(mp_obj_t arg) {
mp_obj_t *items = mp_obj_get_array_fixed_n(arg, 4);
uint8_t data[4];
data[0] = mp_obj_get_int(items[0]);
data[1] = mp_obj_get_int(items[1]);
data[2] = mp_obj_get_int(items[2]);
data[3] = mp_obj_get_int(items[3]);
usb_hid_send_report(data);
return mp_const_none;
}
#endif
#endif // 0
STATIC mp_obj_t pyb_config_source_dir = MP_OBJ_NULL;
STATIC mp_obj_t pyb_config_main = MP_OBJ_NULL;
STATIC mp_obj_t pyb_config_usb_mode = MP_OBJ_NULL;
mp_obj_t pyb_source_dir(mp_obj_t source_dir) {
if (MP_OBJ_IS_STR(source_dir)) {
pyb_config_source_dir = source_dir;
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_1(pyb_source_dir_obj, pyb_source_dir);
mp_obj_t pyb_main(mp_obj_t main) {
if (MP_OBJ_IS_STR(main)) {
pyb_config_main = main;
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_1(pyb_main_obj, pyb_main);
STATIC mp_obj_t pyb_usb_mode(mp_obj_t usb_mode) {
if (MP_OBJ_IS_STR(usb_mode)) {
pyb_config_usb_mode = usb_mode;
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_1(pyb_usb_mode_obj, pyb_usb_mode);
#if 0
mp_obj_t pyb_delay(mp_obj_t count) {
delay(mp_obj_get_int(count));
return mp_const_none;
}
mp_obj_t pyb_led(mp_obj_t state) {
led_state(PYB_LED_BUILTIN, mp_obj_is_true(state));
return state;
}
#endif // 0
#if 0
char *strdup(const char *str) {
uint32_t len = strlen(str);
char *s2 = m_new(char, len + 1);
memcpy(s2, str, len);
s2[len] = 0;
return s2;
}
#endif
int main(void) {
// TODO: Put this in a more common initialization function.
// Turn on STKALIGN which keeps the stack 8-byte aligned for interrupts
// (per EABI)
#define SCB_CCR_STKALIGN (1 << 9)
SCB_CCR |= SCB_CCR_STKALIGN;
mp_stack_ctrl_init();
mp_stack_set_limit(10240);
pinMode(LED_BUILTIN, OUTPUT);
led_init();
// int first_soft_reset = true;
soft_reset:
led_state(PYB_LED_BUILTIN, 1);
// GC init
gc_init(&_heap_start, (void*)HEAP_END);
// Micro Python init
mp_init();
mp_obj_list_init(mp_sys_path, 0);
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR_)); // current dir (or base dir of the script)
mp_obj_list_init(mp_sys_argv, 0);
readline_init0();
pin_init0();
#if 0
// add some functions to the python namespace
{
mp_store_name(MP_QSTR_help, mp_make_function_n(0, pyb_help));
mp_obj_t m = mp_obj_new_module(MP_QSTR_pyb);
mp_store_attr(m, MP_QSTR_info, mp_make_function_n(0, pyb_info));
mp_store_attr(m, MP_QSTR_source_dir, mp_make_function_n(1, pyb_source_dir));
mp_store_attr(m, MP_QSTR_main, mp_make_function_n(1, pyb_main));
mp_store_attr(m, MP_QSTR_gc, mp_make_function_n(0, pyb_gc));
mp_store_attr(m, MP_QSTR_delay, mp_make_function_n(1, pyb_delay));
mp_store_attr(m, MP_QSTR_led, mp_make_function_n(1, pyb_led));
mp_store_attr(m, MP_QSTR_LED, (mp_obj_t)&pyb_led_type);
mp_store_attr(m, MP_QSTR_analogRead, mp_make_function_n(1, pyb_analog_read));
mp_store_attr(m, MP_QSTR_analogWrite, mp_make_function_n(2, pyb_analog_write));
mp_store_attr(m, MP_QSTR_analogWriteResolution, mp_make_function_n(1, pyb_analog_write_resolution));
mp_store_attr(m, MP_QSTR_analogWriteFrequency, mp_make_function_n(2, pyb_analog_write_frequency));
mp_store_attr(m, MP_QSTR_gpio, (mp_obj_t)&pyb_gpio_obj);
mp_store_attr(m, MP_QSTR_Servo, mp_make_function_n(0, pyb_Servo));
mp_store_name(MP_QSTR_pyb, m);
}
#endif
#if MICROPY_MODULE_FROZEN
pyexec_frozen_module("boot");
#else
if (!pyexec_file("/boot.py")) {
flash_error(4);
}
#endif
// Turn bootup LED off
led_state(PYB_LED_BUILTIN, 0);
// run main script
#if MICROPY_MODULE_FROZEN
pyexec_frozen_module("main");
#else
{
vstr_t *vstr = vstr_new();
vstr_add_str(vstr, "/");
if (pyb_config_main == MP_OBJ_NULL) {
vstr_add_str(vstr, "main.py");
} else {
vstr_add_str(vstr, mp_obj_str_get_str(pyb_config_main));
}
if (!pyexec_file(vstr_null_terminated_str(vstr))) {
flash_error(3);
}
vstr_free(vstr);
}
#endif
// enter REPL
// REPL mode can change, or it can request a soft reset
for (;;) {
if (pyexec_mode_kind == PYEXEC_MODE_RAW_REPL) {
if (pyexec_raw_repl() != 0) {
break;
}
} else {
if (pyexec_friendly_repl() != 0) {
break;
}
}
}
printf("PYB: soft reboot\n");
// first_soft_reset = false;
goto soft_reset;
}
// stub out __libc_init_array. It's called by mk20dx128.c and is used to call
// global C++ constructors. Since this is a C-only projects, we don't need to
// call constructors.
void __libc_init_array(void) {
}
// ultoa is used by usb_init_serialnumber. Normally ultoa would be provided
// by nonstd.c from the teensy core, but it conflicts with some of the
// MicroPython functions in string0.c, so we provide ultoa here.
char * ultoa(unsigned long val, char *buf, int radix)
{
unsigned digit;
int i=0, j;
char t;
while (1) {
digit = val % radix;
buf[i] = ((digit < 10) ? '0' + digit : 'A' + digit - 10);
val /= radix;
if (val == 0) break;
i++;
}
buf[i + 1] = 0;
for (j=0; j < i; j++, i--) {
t = buf[j];
buf[j] = buf[i];
buf[i] = t;
}
return buf;
}