micropython/ports/stm32/servo.c
Damien George cb3456ddfe stm32: Don't use %lu or %lx for formatting, use just %u or %x.
On this 32-bit arch there's no need to use the long version of the format
specifier.  It's only there to appease the compiler which checks the type
of the args passed to printf.  Removing the "l" saves a bit of code space.
2018-05-04 15:52:03 +10:00

334 lines
12 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include "py/runtime.h"
#include "py/mphal.h"
#include "pin.h"
#include "timer.h"
#include "servo.h"
#if MICROPY_HW_ENABLE_SERVO
// This file implements the pyb.Servo class which controls standard hobby servo
// motors that have 3-wires (ground, power, signal).
//
// The driver uses hardware PWM to drive servos on pins X1, X2, X3, X4 which are
// assumed to be on PA0, PA1, PA2, PA3 but not necessarily in that order (the
// pins PA0-PA3 are used directly if the X pins are not defined).
//
// TIM2 and TIM5 have CH1-CH4 on PA0-PA3 respectively. They are both 32-bit
// counters with 16-bit prescaler. TIM5 is used by this driver.
#define PYB_SERVO_NUM (4)
typedef struct _pyb_servo_obj_t {
mp_obj_base_t base;
const pin_obj_t *pin;
uint8_t pulse_min; // units of 10us
uint8_t pulse_max; // units of 10us
uint8_t pulse_centre; // units of 10us
uint8_t pulse_angle_90; // units of 10us; pulse at 90 degrees, minus pulse_centre
uint8_t pulse_speed_100; // units of 10us; pulse at 100% forward speed, minus pulse_centre
uint16_t pulse_cur; // units of 10us
uint16_t pulse_dest; // units of 10us
int16_t pulse_accum;
uint16_t time_left;
} pyb_servo_obj_t;
STATIC pyb_servo_obj_t pyb_servo_obj[PYB_SERVO_NUM];
void servo_init(void) {
timer_tim5_init();
// reset servo objects
for (int i = 0; i < PYB_SERVO_NUM; i++) {
pyb_servo_obj[i].base.type = &pyb_servo_type;
pyb_servo_obj[i].pulse_min = 64;
pyb_servo_obj[i].pulse_max = 242;
pyb_servo_obj[i].pulse_centre = 150;
pyb_servo_obj[i].pulse_angle_90 = 97;
pyb_servo_obj[i].pulse_speed_100 = 70;
pyb_servo_obj[i].pulse_cur = 150;
pyb_servo_obj[i].pulse_dest = 0;
pyb_servo_obj[i].time_left = 0;
}
// assign servo objects to specific pins (must be some permutation of PA0-PA3)
#ifdef pyb_pin_X1
pyb_servo_obj[0].pin = pyb_pin_X1;
pyb_servo_obj[1].pin = pyb_pin_X2;
pyb_servo_obj[2].pin = pyb_pin_X3;
pyb_servo_obj[3].pin = pyb_pin_X4;
#else
pyb_servo_obj[0].pin = pin_A0;
pyb_servo_obj[1].pin = pin_A1;
pyb_servo_obj[2].pin = pin_A2;
pyb_servo_obj[3].pin = pin_A3;
#endif
}
void servo_timer_irq_callback(void) {
bool need_it = false;
for (int i = 0; i < PYB_SERVO_NUM; i++) {
pyb_servo_obj_t *s = &pyb_servo_obj[i];
if (s->pulse_cur != s->pulse_dest) {
// clamp pulse to within min/max
if (s->pulse_dest < s->pulse_min) {
s->pulse_dest = s->pulse_min;
} else if (s->pulse_dest > s->pulse_max) {
s->pulse_dest = s->pulse_max;
}
// adjust cur to get closer to dest
if (s->time_left <= 1) {
s->pulse_cur = s->pulse_dest;
s->time_left = 0;
} else {
s->pulse_accum += s->pulse_dest - s->pulse_cur;
s->pulse_cur += s->pulse_accum / s->time_left;
s->pulse_accum %= s->time_left;
s->time_left--;
need_it = true;
}
// set the pulse width
*(&TIM5->CCR1 + s->pin->pin) = s->pulse_cur;
}
}
if (need_it) {
__HAL_TIM_ENABLE_IT(&TIM5_Handle, TIM_IT_UPDATE);
} else {
__HAL_TIM_DISABLE_IT(&TIM5_Handle, TIM_IT_UPDATE);
}
}
STATIC void servo_init_channel(pyb_servo_obj_t *s) {
static const uint8_t channel_table[4] =
{TIM_CHANNEL_1, TIM_CHANNEL_2, TIM_CHANNEL_3, TIM_CHANNEL_4};
uint32_t channel = channel_table[s->pin->pin];
// GPIO configuration
mp_hal_pin_config(s->pin, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, GPIO_AF2_TIM5);
// PWM mode configuration
TIM_OC_InitTypeDef oc_init;
oc_init.OCMode = TIM_OCMODE_PWM1;
oc_init.Pulse = s->pulse_cur; // units of 10us
oc_init.OCPolarity = TIM_OCPOLARITY_HIGH;
oc_init.OCFastMode = TIM_OCFAST_DISABLE;
HAL_TIM_PWM_ConfigChannel(&TIM5_Handle, &oc_init, channel);
// start PWM
HAL_TIM_PWM_Start(&TIM5_Handle, channel);
}
/******************************************************************************/
// MicroPython bindings
STATIC mp_obj_t pyb_servo_set(mp_obj_t port, mp_obj_t value) {
int p = mp_obj_get_int(port);
int v = mp_obj_get_int(value);
if (v < 50) { v = 50; }
if (v > 250) { v = 250; }
switch (p) {
case 1: TIM5->CCR1 = v; break;
case 2: TIM5->CCR2 = v; break;
case 3: TIM5->CCR3 = v; break;
case 4: TIM5->CCR4 = v; break;
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_2(pyb_servo_set_obj, pyb_servo_set);
STATIC mp_obj_t pyb_pwm_set(mp_obj_t period, mp_obj_t pulse) {
int pe = mp_obj_get_int(period);
int pu = mp_obj_get_int(pulse);
TIM5->ARR = pe;
TIM5->CCR3 = pu;
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_2(pyb_pwm_set_obj, pyb_pwm_set);
STATIC void pyb_servo_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
pyb_servo_obj_t *self = self_in;
mp_printf(print, "<Servo %u at %uus>", self - &pyb_servo_obj[0] + 1, 10 * self->pulse_cur);
}
/// \classmethod \constructor(id)
/// Create a servo object. `id` is 1-4.
STATIC mp_obj_t pyb_servo_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 1, 1, false);
// get servo number
mp_int_t servo_id = mp_obj_get_int(args[0]) - 1;
// check servo number
if (!(0 <= servo_id && servo_id < PYB_SERVO_NUM)) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Servo(%d) doesn't exist", servo_id + 1));
}
// get and init servo object
pyb_servo_obj_t *s = &pyb_servo_obj[servo_id];
s->pulse_dest = s->pulse_cur;
s->time_left = 0;
servo_init_channel(s);
return s;
}
/// \method pulse_width([value])
/// Get or set the pulse width in milliseconds.
STATIC mp_obj_t pyb_servo_pulse_width(size_t n_args, const mp_obj_t *args) {
pyb_servo_obj_t *self = args[0];
if (n_args == 1) {
// get pulse width, in us
return mp_obj_new_int(10 * self->pulse_cur);
} else {
// set pulse width, in us
self->pulse_dest = mp_obj_get_int(args[1]) / 10;
self->time_left = 0;
servo_timer_irq_callback();
return mp_const_none;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_servo_pulse_width_obj, 1, 2, pyb_servo_pulse_width);
/// \method calibration([pulse_min, pulse_max, pulse_centre, [pulse_angle_90, pulse_speed_100]])
/// Get or set the calibration of the servo timing.
// TODO should accept 1 arg, a 5-tuple of values to set
STATIC mp_obj_t pyb_servo_calibration(size_t n_args, const mp_obj_t *args) {
pyb_servo_obj_t *self = args[0];
if (n_args == 1) {
// get calibration values
mp_obj_t tuple[5];
tuple[0] = mp_obj_new_int(10 * self->pulse_min);
tuple[1] = mp_obj_new_int(10 * self->pulse_max);
tuple[2] = mp_obj_new_int(10 * self->pulse_centre);
tuple[3] = mp_obj_new_int(10 * (self->pulse_angle_90 + self->pulse_centre));
tuple[4] = mp_obj_new_int(10 * (self->pulse_speed_100 + self->pulse_centre));
return mp_obj_new_tuple(5, tuple);
} else if (n_args >= 4) {
// set min, max, centre
self->pulse_min = mp_obj_get_int(args[1]) / 10;
self->pulse_max = mp_obj_get_int(args[2]) / 10;
self->pulse_centre = mp_obj_get_int(args[3]) / 10;
if (n_args == 4) {
return mp_const_none;
} else if (n_args == 6) {
self->pulse_angle_90 = mp_obj_get_int(args[4]) / 10 - self->pulse_centre;
self->pulse_speed_100 = mp_obj_get_int(args[5]) / 10 - self->pulse_centre;
return mp_const_none;
}
}
// bad number of arguments
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "calibration expecting 1, 4 or 6 arguments, got %d", n_args));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_servo_calibration_obj, 1, 6, pyb_servo_calibration);
/// \method angle([angle, time=0])
/// Get or set the angle of the servo.
///
/// - `angle` is the angle to move to in degrees.
/// - `time` is the number of milliseconds to take to get to the specified angle.
STATIC mp_obj_t pyb_servo_angle(size_t n_args, const mp_obj_t *args) {
pyb_servo_obj_t *self = args[0];
if (n_args == 1) {
// get angle
return mp_obj_new_int((self->pulse_cur - self->pulse_centre) * 90 / self->pulse_angle_90);
} else {
#if MICROPY_PY_BUILTINS_FLOAT
self->pulse_dest = self->pulse_centre + self->pulse_angle_90 * mp_obj_get_float(args[1]) / 90.0;
#else
self->pulse_dest = self->pulse_centre + self->pulse_angle_90 * mp_obj_get_int(args[1]) / 90;
#endif
if (n_args == 2) {
// set angle immediately
self->time_left = 0;
} else {
// set angle over a given time (given in milli seconds)
self->time_left = mp_obj_get_int(args[2]) / 20;
self->pulse_accum = 0;
}
servo_timer_irq_callback();
return mp_const_none;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_servo_angle_obj, 1, 3, pyb_servo_angle);
/// \method speed([speed, time=0])
/// Get or set the speed of a continuous rotation servo.
///
/// - `speed` is the speed to move to change to, between -100 and 100.
/// - `time` is the number of milliseconds to take to get to the specified speed.
STATIC mp_obj_t pyb_servo_speed(size_t n_args, const mp_obj_t *args) {
pyb_servo_obj_t *self = args[0];
if (n_args == 1) {
// get speed
return mp_obj_new_int((self->pulse_cur - self->pulse_centre) * 100 / self->pulse_speed_100);
} else {
#if MICROPY_PY_BUILTINS_FLOAT
self->pulse_dest = self->pulse_centre + self->pulse_speed_100 * mp_obj_get_float(args[1]) / 100.0;
#else
self->pulse_dest = self->pulse_centre + self->pulse_speed_100 * mp_obj_get_int(args[1]) / 100;
#endif
if (n_args == 2) {
// set speed immediately
self->time_left = 0;
} else {
// set speed over a given time (given in milli seconds)
self->time_left = mp_obj_get_int(args[2]) / 20;
self->pulse_accum = 0;
}
servo_timer_irq_callback();
return mp_const_none;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_servo_speed_obj, 1, 3, pyb_servo_speed);
STATIC const mp_rom_map_elem_t pyb_servo_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_pulse_width), MP_ROM_PTR(&pyb_servo_pulse_width_obj) },
{ MP_ROM_QSTR(MP_QSTR_calibration), MP_ROM_PTR(&pyb_servo_calibration_obj) },
{ MP_ROM_QSTR(MP_QSTR_angle), MP_ROM_PTR(&pyb_servo_angle_obj) },
{ MP_ROM_QSTR(MP_QSTR_speed), MP_ROM_PTR(&pyb_servo_speed_obj) },
};
STATIC MP_DEFINE_CONST_DICT(pyb_servo_locals_dict, pyb_servo_locals_dict_table);
const mp_obj_type_t pyb_servo_type = {
{ &mp_type_type },
.name = MP_QSTR_Servo,
.print = pyb_servo_print,
.make_new = pyb_servo_make_new,
.locals_dict = (mp_obj_dict_t*)&pyb_servo_locals_dict,
};
#endif // MICROPY_HW_ENABLE_SERVO