micropython/ports/nrf/modules/machine/rtcounter.c
Christian Walther b10182bbcc nrf: Fix non-running LFCLK.
Under some circumstances, after a hard reset, the low-frequency clock would
not be running.  This caused time.ticks_ms() to return 0, time.sleep_ms()
to get stuck, and other misbehavior.  A soft reboot would return it to a
working state.

The cause was a race condition that was hit when the bootloader would
itself turn LFCLK on, but turn it off again shortly before launching the
main application (this apparently happens with the Adafruit bootloader
from https://github.com/fanoush/ds-d6/tree/master/micropython).  Stopping
the clock is an asynchronous operation and it continues running for a short
time after the stop command is given.  When MicroPython checked whether to
start it by looking at the LFCLKSTAT register (nrf_clock_lf_is_running)
during that time, it would mistakenly not be started again.  What
MicroPython should be looking at is not whether the clock is running at
this time, but whether a start/stop command has been given, which is
indicated by the LFCLKRUN register (nrf_clock_lf_start_task_status_get).
It is not clearly documented, but empirically LFCLKRUN is not just set when
the LFCLKSTART task is triggered, but also cleared when the LFCLKSTOP task
is triggered, which is exactly what we need.

The matter is complicated by the fact that the nRF52832 has an anomaly
(see [errata](https://infocenter.nordicsemi.com/topic/errata_nRF52832_Rev3/ERR/nRF52832/Rev3/latest/anomaly_832_132.html?cp=5_2_1_0_1_33))
where starting the LFCLK will not work between 66µs and 138µs after it last
stopped. Apply a workaround for that.  See nrfx_clock_lfclk_start() in
micropython/lib/nrfx/drivers/src/nrfx_clock.c for reference, but we are not
using that because it also does other things and makes the code larger.

Signed-off-by: Christian Walther <cwalther@gmx.ch>
2024-03-26 13:03:57 +11:00

274 lines
9.0 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Glenn Ruben Bakke
* Copyright (c) 2018 Ayke van Laethem
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/nlr.h"
#include "py/runtime.h"
#include "mphalport.h"
#include "rtcounter.h"
#include "nrfx_rtc.h"
#include "nrf_clock.h"
#if MICROPY_PY_MACHINE_RTCOUNTER
// Count every 125ms (~maximum prescaler setting)
#define RTC_FREQUENCY (8UL)
enum {
RTC_MODE_ONESHOT,
RTC_MODE_PERIODIC,
};
// Volatile part of the RTCounter object.
typedef struct {
mp_obj_t callback;
uint32_t period;
} machine_rtc_config_t;
// Non-volatile part of the RTCounter object.
typedef struct _machine_rtc_obj_t {
mp_obj_base_t base;
const nrfx_rtc_t *p_rtc; // Driver instance
nrfx_rtc_handler_t handler; // interrupt callback
machine_rtc_config_t *config; // pointer to volatile part
} machine_rtc_obj_t;
static const nrfx_rtc_t machine_rtc_instances[] = {
NRFX_RTC_INSTANCE(0),
NRFX_RTC_INSTANCE(1),
#if defined(NRF52_SERIES)
NRFX_RTC_INSTANCE(2),
#endif
};
static machine_rtc_config_t configs[MP_ARRAY_SIZE(machine_rtc_instances)];
static void interrupt_handler0(nrfx_rtc_int_type_t int_type);
static void interrupt_handler1(nrfx_rtc_int_type_t int_type);
#if defined(NRF52_SERIES)
static void interrupt_handler2(nrfx_rtc_int_type_t int_type);
#endif
static const machine_rtc_obj_t machine_rtc_obj[] = {
{{&machine_rtcounter_type}, .p_rtc = &machine_rtc_instances[0], .handler = interrupt_handler0, .config = &configs[0]},
{{&machine_rtcounter_type}, .p_rtc = &machine_rtc_instances[1], .handler = interrupt_handler1, .config = &configs[1]},
#if defined(NRF52_SERIES)
{{&machine_rtcounter_type}, .p_rtc = &machine_rtc_instances[2], .handler = interrupt_handler2, .config = &configs[2]},
#endif
};
static void interrupt_handler(size_t instance_id) {
const machine_rtc_obj_t *self = &machine_rtc_obj[instance_id];
machine_rtc_config_t *config = self->config;
if (config->callback != NULL) {
mp_call_function_1((mp_obj_t)config->callback, (mp_obj_t)self);
}
if (config->period == 0) {
nrfx_rtc_cc_disable(self->p_rtc, 0);
} else { // periodic
uint32_t val = nrfx_rtc_counter_get(self->p_rtc) + config->period;
nrfx_rtc_cc_set(self->p_rtc, 0, val, true);
}
}
static void interrupt_handler0(nrfx_rtc_int_type_t int_type) {
interrupt_handler(0);
}
static void interrupt_handler1(nrfx_rtc_int_type_t int_type) {
interrupt_handler(1);
}
#if defined(NRF52_SERIES)
static void interrupt_handler2(nrfx_rtc_int_type_t int_type) {
interrupt_handler(2);
}
#endif
void rtc_init0(void) {
}
static int rtc_find(mp_obj_t id) {
// given an integer id
int rtc_id = mp_obj_get_int(id);
if (rtc_id >= 0 && rtc_id < MP_ARRAY_SIZE(machine_rtc_obj)) {
return rtc_id;
}
mp_raise_ValueError(MP_ERROR_TEXT("RTCounter doesn't exist"));
}
static void rtc_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
machine_rtc_obj_t *self = self_in;
mp_printf(print, "RTCounter(%u)", self->p_rtc->instance_id);
}
/******************************************************************************/
/* MicroPython bindings for machine API */
const nrfx_rtc_config_t machine_rtc_config = {
.prescaler = RTC_FREQ_TO_PRESCALER(RTC_FREQUENCY),
.reliable = 0,
.tick_latency = 0, // ignored when reliable == 0
#ifdef NRF51
.interrupt_priority = 3,
#else
.interrupt_priority = 6,
#endif
};
static mp_obj_t machine_rtc_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
enum { ARG_id, ARG_period, ARG_mode, ARG_callback };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_id, MP_ARG_OBJ, {.u_obj = MP_OBJ_NEW_SMALL_INT(-1)} },
{ MP_QSTR_period, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = RTC_FREQUENCY} }, // 1 second
{ MP_QSTR_mode, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = RTC_MODE_PERIODIC} },
{ MP_QSTR_callback, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
};
// parse args
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
int rtc_id = rtc_find(args[ARG_id].u_obj);
#if MICROPY_PY_TIME_TICKS
if (rtc_id == 1) {
// time module uses RTC1, prevent using it
mp_raise_ValueError(MP_ERROR_TEXT("RTC1 reserved by time module"));
}
#endif
// const and non-const part of the RTC object.
const machine_rtc_obj_t *self = &machine_rtc_obj[rtc_id];
machine_rtc_config_t *config = self->config;
if (args[ARG_callback].u_obj == mp_const_none) {
config->callback = NULL;
} else if (mp_obj_is_fun(args[ARG_callback].u_obj)) {
config->callback = args[ARG_callback].u_obj;
} else {
mp_raise_ValueError(MP_ERROR_TEXT("callback must be a function"));
}
// Periodic or one-shot
if (args[ARG_mode].u_int == RTC_MODE_ONESHOT) {
// One-shot
config->period = 0;
} else {
// Period between the intervals
config->period = args[ARG_period].u_int;
}
// Start the low-frequency clock (if it hasn't been started already)
mp_nrf_start_lfclk();
// Make sure it's uninitialized.
nrfx_rtc_uninit(self->p_rtc);
nrfx_rtc_counter_clear(self->p_rtc);
// Initialize and set the correct IRQ.
nrfx_rtc_init(self->p_rtc, &machine_rtc_config, self->handler);
nrfx_rtc_cc_set(self->p_rtc, 0 /*channel*/, args[ARG_period].u_int, true /*enable irq*/);
return MP_OBJ_FROM_PTR(self);
}
/// \method start()
/// Start the RTCounter. Timeout occurs after number of periods
/// in the configured frequency has been reached.
///
static mp_obj_t machine_rtc_start(mp_obj_t self_in) {
machine_rtc_obj_t *self = MP_OBJ_TO_PTR(self_in);
nrfx_rtc_enable(self->p_rtc);
return mp_const_none;
}
static MP_DEFINE_CONST_FUN_OBJ_1(machine_rtc_start_obj, machine_rtc_start);
/// \method stop()
/// Stop the RTCounter.
///
static mp_obj_t machine_rtc_stop(mp_obj_t self_in) {
machine_rtc_obj_t *self = MP_OBJ_TO_PTR(self_in);
nrfx_rtc_disable(self->p_rtc);
return mp_const_none;
}
static MP_DEFINE_CONST_FUN_OBJ_1(machine_rtc_stop_obj, machine_rtc_stop);
/// \method counter()
/// Return the current counter value. Wraps around after about 24 days
/// with the current prescaler (2^24 / 8 = 2097152 seconds).
///
static mp_obj_t machine_rtc_counter(mp_obj_t self_in) {
machine_rtc_obj_t *self = MP_OBJ_TO_PTR(self_in);
uint32_t counter = nrfx_rtc_counter_get(self->p_rtc);
return MP_OBJ_NEW_SMALL_INT(counter);
}
static MP_DEFINE_CONST_FUN_OBJ_1(machine_rtc_counter_obj, machine_rtc_counter);
/// \method deinit()
/// Free resources associated with this RTC.
///
static mp_obj_t machine_rtc_deinit(mp_obj_t self_in) {
machine_rtc_obj_t *self = MP_OBJ_TO_PTR(self_in);
nrfx_rtc_uninit(self->p_rtc);
return mp_const_none;
}
static MP_DEFINE_CONST_FUN_OBJ_1(machine_rtc_deinit_obj, machine_rtc_deinit);
static const mp_rom_map_elem_t machine_rtc_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_start), MP_ROM_PTR(&machine_rtc_start_obj) },
{ MP_ROM_QSTR(MP_QSTR_stop), MP_ROM_PTR(&machine_rtc_stop_obj) },
{ MP_ROM_QSTR(MP_QSTR_counter), MP_ROM_PTR(&machine_rtc_counter_obj) },
{ MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&machine_rtc_deinit_obj) },
// constants
{ MP_ROM_QSTR(MP_QSTR_ONESHOT), MP_ROM_INT(RTC_MODE_ONESHOT) },
{ MP_ROM_QSTR(MP_QSTR_PERIODIC), MP_ROM_INT(RTC_MODE_PERIODIC) },
{ MP_ROM_QSTR(MP_QSTR_FREQUENCY), MP_ROM_INT(RTC_FREQUENCY) },
};
static MP_DEFINE_CONST_DICT(machine_rtc_locals_dict, machine_rtc_locals_dict_table);
MP_DEFINE_CONST_OBJ_TYPE(
machine_rtcounter_type,
MP_QSTR_RTCounter,
MP_TYPE_FLAG_NONE,
make_new, machine_rtc_make_new,
print, rtc_print,
locals_dict, &machine_rtc_locals_dict
);
#endif // MICROPY_PY_MACHINE_RTCOUNTER