micropython/docs/library/network.rst
2015-10-22 16:35:04 +02:00

450 lines
14 KiB
ReStructuredText

****************************************
:mod:`network` --- network configuration
****************************************
.. module:: network
:synopsis: network configuration
This module provides network drivers and routing configuration. Network
drivers for specific hardware are available within this module and are
used to configure a hardware network interface. Configured interfaces
are then available for use via the :mod:`socket` module.
For example::
# configure a specific network interface
# see below for examples of specific drivers
import network
nic = network.Driver(...)
print(nic.ifconfig())
# now use socket as usual
import socket
addr = socket.getaddrinfo('micropython.org', 80)[0][-1]
s = socket.socket()
s.connect(addr)
s.send(b'GET / HTTP/1.1\r\nHost: micropython.org\r\n\r\n')
data = s.recv(1000)
s.close()
.. only:: port_wipy
.. _network.server:
class server
============
The server class controls the behaviour and the configuration of the FTP and telnet
services running on the WiPy. Any changes performed using this class' methods will
affect both.
Constructors
------------
.. class:: network.server(id, ...)
Create a server instance, see ``init`` for parameters of initialization.
Methods
-------
.. method:: server.init(\*, login=('micro', 'python'), timeout=300)
Init (and effectively start the server). Optionally a new ``user``, ``password``
and ``timeout`` (in seconds) can be passed.
.. method:: server.deinit()
Stop the server
.. method:: server.timeout([timeout_in_seconds])
Get or set the server timeout.
.. method:: server.isrunning()
Returns ``True`` if the server is running, ``False`` otherwise.
.. only:: port_pyboard
class CC3K
==========
This class provides a driver for CC3000 wifi modules. Example usage::
import network
nic = network.CC3K(pyb.SPI(2), pyb.Pin.board.Y5, pyb.Pin.board.Y4, pyb.Pin.board.Y3)
nic.connect('your-ssid', 'your-password')
while not nic.isconnected():
pyb.delay(50)
print(nic.ifconfig())
# now use socket as usual
...
For this example to work the CC3000 module must have the following connections:
- MOSI connected to Y8
- MISO connected to Y7
- CLK connected to Y6
- CS connected to Y5
- VBEN connected to Y4
- IRQ connected to Y3
It is possible to use other SPI busses and other pins for CS, VBEN and IRQ.
Constructors
------------
.. class:: CC3K(spi, pin_cs, pin_en, pin_irq)
Create a CC3K driver object, initialise the CC3000 module using the given SPI bus
and pins, and return the CC3K object.
Arguments are:
- ``spi`` is an :ref:`SPI object <pyb.SPI>` which is the SPI bus that the CC3000 is
connected to (the MOSI, MISO and CLK pins).
- ``pin_cs`` is a :ref:`Pin object <pyb.Pin>` which is connected to the CC3000 CS pin.
- ``pin_en`` is a :ref:`Pin object <pyb.Pin>` which is connected to the CC3000 VBEN pin.
- ``pin_irq`` is a :ref:`Pin object <pyb.Pin>` which is connected to the CC3000 IRQ pin.
All of these objects will be initialised by the driver, so there is no need to
initialise them yourself. For example, you can use::
nic = network.CC3K(pyb.SPI(2), pyb.Pin.board.Y5, pyb.Pin.board.Y4, pyb.Pin.board.Y3)
Methods
-------
.. method:: cc3k.connect(ssid, key=None, \*, security=WPA2, bssid=None)
Connect to a wifi access point using the given SSID, and other security
parameters.
.. method:: cc3k.disconnect()
Disconnect from the wifi access point.
.. method:: cc3k.isconnected()
Returns True if connected to a wifi access point and has a valid IP address,
False otherwise.
.. method:: cc3k.ifconfig()
Returns a 7-tuple with (ip, subnet mask, gateway, DNS server, DHCP server,
MAC address, SSID).
.. method:: cc3k.patch_version()
Return the version of the patch program (firmware) on the CC3000.
.. method:: cc3k.patch_program('pgm')
Upload the current firmware to the CC3000. You must pass 'pgm' as the first
argument in order for the upload to proceed.
Constants
---------
.. data:: CC3K.WEP
.. data:: CC3K.WPA
.. data:: CC3K.WPA2
security type to use
class WIZNET5K
==============
This class allows you to control WIZnet5x00 Ethernet adaptors based on
the W5200 and W5500 chipsets (only W5200 tested).
Example usage::
import network
nic = network.WIZNET5K(pyb.SPI(1), pyb.Pin.board.X5, pyb.Pin.board.X4)
print(nic.ifconfig())
# now use socket as usual
...
For this example to work the WIZnet5x00 module must have the following connections:
- MOSI connected to X8
- MISO connected to X7
- SCLK connected to X6
- nSS connected to X5
- nRESET connected to X4
It is possible to use other SPI busses and other pins for nSS and nRESET.
Constructors
------------
.. class:: WIZNET5K(spi, pin_cs, pin_rst)
Create a WIZNET5K driver object, initialise the WIZnet5x00 module using the given
SPI bus and pins, and return the WIZNET5K object.
Arguments are:
- ``spi`` is an :ref:`SPI object <pyb.SPI>` which is the SPI bus that the WIZnet5x00 is
connected to (the MOSI, MISO and SCLK pins).
- ``pin_cs`` is a :ref:`Pin object <pyb.Pin>` which is connected to the WIZnet5x00 nSS pin.
- ``pin_rst`` is a :ref:`Pin object <pyb.Pin>` which is connected to the WIZnet5x00 nRESET pin.
All of these objects will be initialised by the driver, so there is no need to
initialise them yourself. For example, you can use::
nic = network.WIZNET5K(pyb.SPI(1), pyb.Pin.board.X5, pyb.Pin.board.X4)
Methods
-------
.. method:: wiznet5k.ifconfig([(ip, subnet, gateway, dns)])
Get/set IP address, subnet mask, gateway and DNS.
When called with no arguments, this method returns a 4-tuple with the above information.
To set the above values, pass a 4-tuple with the required information. For example::
nic.ifconfig(('192.168.0.4', '255.255.255.0', '192.168.0.1', '8.8.8.8'))
.. method:: wiznet5k.regs()
Dump the WIZnet5x00 registers. Useful for debugging.
.. _network.WLAN:
.. only:: port_esp8266
class WLAN
==========
This class provides a driver for WiFi network processor in the ESP8266. Example usage::
import network
# setup as a station
nic = network.WLAN()
nic.connect('your-ssid', 'your-password')
# now use socket as usual
Constructors
------------
.. class:: WLAN()
Create a WLAN driver object.
Methods
-------
.. method:: wlan.connect(ssid, password)
Connect to the specified wireless network, using the specified password.
.. method:: wlan.disconnect()
Disconnect from the currently connected wireless network.
.. method:: wlan.scan(cb)
Initiate scanning for the available wireless networks.
Scanning is only possible if the radio is in station or station+AP mode; if
called while in AP only mode, an OSError exception will be raised.
Once the scanning is complete, the provided callback function ``cb`` will
be called once for each network found, and passed a tuple with information
about that network:
(ssid, bssid, channel, RSSI, authmode, hidden)
There are five values for authmode:
* 0 -- open
* 1 -- WEP
* 2 -- WPA-PSK
* 3 -- WPA2-PSK
* 4 -- WPA/WPA2-PSK
and two for hidden:
* 0 -- visible
* 1 -- hidden
.. method:: status()
Return the current status of the wireless connection.
The possible statuses are defined as constants:
* ``STAT_IDLE`` -- no connection and no activity,
* ``STAT_CONNECTING`` -- connecting in progress,
* ``STAT_WRONG_PASSWORD`` -- failed due to incorrect password,
* ``STAT_NO_AP_FOUND`` -- failed because no access point replied,
* ``STAT_CONNECT_FAIL`` -- failed due to other problems,
* ``STAT_GOT_IP`` -- connection susccessful.
.. method:: wlan.isconnected()
In case of STA mode, returns ``True`` if connected to a wifi access
point and has a valid IP address. In AP mode returns ``True`` when a
station is connected. Returns ``False`` otherwise.
.. only:: port_wipy
class WLAN
==========
This class provides a driver for the WiFi network processor in the WiPy. Example usage::
import network
import time
# setup as a station
wlan = network.WLAN(mode=WLAN.STA)
wlan.connect('your-ssid', auth=(WLAN.WPA2, 'your-key'))
while not wlan.isconnected():
time.sleep_ms(50)
print(wlan.ifconfig())
# now use socket as usual
...
Constructors
------------
.. class:: WLAN(id=0, ...)
Create a WLAN object, and optionally configure it. See ``init`` for params of configuration.
.. note::
The ``WLAN`` constructor is special in the sense that if no arguments besides the id are given,
it will return the already exisiting ``WLAN`` instance without re-configuring it. This is
because ``WLAN`` is a system feature of the WiPy. If the already existing instance is not
initialized it will do the same as the other constructors an will initialize it with default
values.
Methods
-------
.. method:: wlan.init(mode, \*, ssid, auth, channel, antenna)
Set or get the WiFi network processor configuration.
Arguments are:
- ``mode`` can be either ``WLAN.STA`` or ``WLAN.AP``.
- ``ssid`` is a string with the ssid name. Only needed when mode is ``WLAN.AP``.
- ``auth`` is a tuple with (sec, key). Security can be ``None``, ``WLAN.WEP``,
``WLAN.WPA`` or ``WLAN.WPA2``. The key is a string with the network password.
If ``sec`` is ``WLAN.WEP`` the key must be a string representing hexadecimal
values (e.g. 'ABC1DE45BF'). Only needed when mode is ``WLAN.AP``.
- ``channel`` a number in the range 1-11. Only needed when mode is ``WLAN.AP``.
- ``antenna`` selects between the internal and the external antenna. Can be either
``WLAN.INT_ANT`` or ``WLAN.EXT_ANT``.
For example, you can do::
# create and configure as an access point
wlan.init(mode=WLAN.AP, ssid='wipy-wlan', auth=(WLAN.WPA2,'www.wipy.io'), channel=7, antenna=WLAN.INT_ANT)
or::
# configure as an station
wlan.init(mode=WLAN.STA)
.. method:: wlan.connect(ssid, \*, auth=None, bssid=None, timeout=5000)
Connect to a wifi access point using the given SSID, and other security
parameters.
- ``auth`` is a tuple with (sec, key). Security can be ``None``, ``WLAN.WEP``,
``WLAN.WPA`` or ``WLAN.WPA2``. The key is a string with the network password.
If ``sec`` is ``WLAN.WEP`` the key must be a string representing hexadecimal
values (e.g. 'ABC1DE45BF'). Only needed when mode is ``WLAN.AP``
- ``bssid`` is the MAC address of the AP to connect to. Useful when there are several
APs with the same ssid.
- ``timeout`` is the maximum time in milliseconds to wait for the connection to succeed.
.. method:: wlan.scan()
Performs a network scan and returns a list of named tuples with (ssid, bssid, sec, channel, rssi).
Note that channel is always ``None`` since this info is not provided by the WiPy.
.. method:: wlan.disconnect()
Disconnect from the wifi access point.
.. method:: wlan.isconnected()
In case of STA mode, returns ``True`` if connected to a wifi access point and has a valid IP address.
In AP mode returns ``True`` when a station is connected, ``False`` otherwise.
.. method:: wlan.ifconfig(if_id=0, config=['dhcp' or configtuple])
With no parameters given eturns a 4-tuple of ``(ip, subnet_mask, gateway, DNS_server)``.
if ``'dhcp'`` is passed as a parameter then the DHCP client is enabled and the IP params
are negotiated with the AP.
If the 4-tuple config is given then a static IP is configured. For instance::
wlan.ifconfig(config=('192.168.0.4', '255.255.255.0', '192.168.0.1', '8.8.8.8'))
.. method:: wlan.mode([mode])
Get or set the WLAN mode.
.. method:: wlan.ssid([ssid])
Get or set the SSID when in AP mode.
.. method:: wlan.auth([auth])
Get or set the authentication type when in AP mode.
.. method:: wlan.channel([channel])
Get or set the channel (only applicable in AP mode).
.. method:: wlan.antenna([antenna])
Get or set the antenna type (external or internal).
.. method:: wlan.mac([mac_addr])
Get or set a 6-byte long bytes object with the MAC address.
.. method:: wlan.irq(\*, handler, wake)
Create a callback to be triggered when a WLAN event occurs during ``machine.SLEEP``
mode. Events are triggered by socket activity or by WLAN connection/disconnection.
- ``handler`` is the function that gets called when the irq is triggered.
- ``wake`` must be ``machine.SLEEP``.
Returns an irq object.
Constants
---------
.. data:: WLAN.STA
.. data:: WLAN.AP
selects the WLAN mode
.. data:: WLAN.WEP
.. data:: WLAN.WPA
.. data:: WLAN.WPA2
selects the network security
.. data:: WLAN.INT_ANT
.. data:: WLAN.EXT_ANT
selects the antenna type