micropython/stmhal/stm32f405.ld
Sven Wegener abf0f07a5a stmhal: Set entry point for ELF binary debugging
When loading the ELF binary to the board with a debugger, the debugger
needs to know at which point to start executing the code. Currently the
entry point defaults to the start of the .text section.

Signed-off-by: Sven Wegener <sven.wegener@stealer.net>
2014-10-21 16:48:32 +02:00

137 lines
4.0 KiB
Plaintext

/*
GNU linker script for STM32F405
*/
/* Specify the memory areas */
MEMORY
{
FLASH (rx) : ORIGIN = 0x08000000, LENGTH = 0x100000 /* entire flash, 1 MiB */
FLASH_ISR (rx) : ORIGIN = 0x08000000, LENGTH = 0x004000 /* sector 0, 16 KiB */
FLASH_TEXT (rx) : ORIGIN = 0x08020000, LENGTH = 0x080000 /* sectors 5,6,7,8, 4*128KiB = 512 KiB (could increase it more) */
CCMRAM (xrw) : ORIGIN = 0x10000000, LENGTH = 0x010000 /* 64 KiB */
RAM (xrw) : ORIGIN = 0x20000000, LENGTH = 0x020000 /* 128 KiB */
}
ENTRY(Reset_Handler)
/* produce a link error if there is not this amount of RAM for these sections */
_minimum_stack_size = 2K;
_minimum_heap_size = 16K;
/* Define tho top end of the stack. The stack is full descending so begins just
above last byte of RAM. Note that EABI requires the stack to be 8-byte
aligned for a call. */
_estack = ORIGIN(RAM) + LENGTH(RAM);
/* RAM extents for the garbage collector */
_ram_end = ORIGIN(RAM) + LENGTH(RAM);
_heap_end = 0x2001c000; /* tunable */
/* define output sections */
SECTIONS
{
/* The startup code goes first into FLASH */
.isr_vector :
{
. = ALIGN(4);
KEEP(*(.isr_vector)) /* Startup code */
/* This first flash block is 16K annd the isr vectors only take up
about 400 bytes. So we pull in a couple of object files to pad it
out. */
. = ALIGN(4);
*/ff.o(.text*)
*/stm32f4xx_hal_sd.o(.text*)
. = ALIGN(4);
} >FLASH_ISR
/* The program code and other data goes into FLASH */
.text :
{
. = ALIGN(4);
*(.text*) /* .text* sections (code) */
*(.rodata*) /* .rodata* sections (constants, strings, etc.) */
/* *(.glue_7) */ /* glue arm to thumb code */
/* *(.glue_7t) */ /* glue thumb to arm code */
. = ALIGN(4);
_etext = .; /* define a global symbol at end of code */
} >FLASH_TEXT
/*
.ARM.extab :
{
*(.ARM.extab* .gnu.linkonce.armextab.*)
} >FLASH
.ARM :
{
__exidx_start = .;
*(.ARM.exidx*)
__exidx_end = .;
} >FLASH
*/
/* used by the startup to initialize data */
_sidata = LOADADDR(.data);
/* This is the initialized data section
The program executes knowing that the data is in the RAM
but the loader puts the initial values in the FLASH (inidata).
It is one task of the startup to copy the initial values from FLASH to RAM. */
.data :
{
. = ALIGN(4);
_sdata = .; /* create a global symbol at data start; used by startup code in order to initialise the .data section in RAM */
_ram_start = .; /* create a global symbol at ram start for garbage collector */
*(.data*) /* .data* sections */
. = ALIGN(4);
_edata = .; /* define a global symbol at data end; used by startup code in order to initialise the .data section in RAM */
} >RAM AT> FLASH_TEXT
/* Uninitialized data section */
.bss :
{
. = ALIGN(4);
_sbss = .; /* define a global symbol at bss start; used by startup code */
*(.bss*)
*(COMMON)
. = ALIGN(4);
_ebss = .; /* define a global symbol at bss end; used by startup code and GC */
} >RAM
/* this is to define the start of the heap, and make sure we have a minimum size */
.heap :
{
. = ALIGN(4);
PROVIDE ( end = . );
PROVIDE ( _end = . );
_heap_start = .; /* define a global symbol at heap start */
. = . + _minimum_heap_size;
} >RAM
/* this just checks there is enough RAM for the stack */
.stack :
{
. = ALIGN(4);
. = . + _minimum_stack_size;
. = ALIGN(4);
} >RAM
/* Remove information from the standard libraries */
/*
/DISCARD/ :
{
libc.a ( * )
libm.a ( * )
libgcc.a ( * )
}
*/
.ARM.attributes 0 : { *(.ARM.attributes) }
}