micropython/docs/library/pyb.DAC.rst
Damien George b30e0d2f26 stm32/dac: Add buffering argument to constructor and init() method.
This can be used to select the output buffer behaviour of the DAC.  The
default values are chosen to retain backwards compatibility with existing
behaviour.

Thanks to @peterhinch for the initial idea to add this feature.
2018-04-11 14:22:21 +10:00

125 lines
4.1 KiB
ReStructuredText

.. currentmodule:: pyb
.. _pyb.DAC:
class DAC -- digital to analog conversion
=========================================
The DAC is used to output analog values (a specific voltage) on pin X5 or pin X6.
The voltage will be between 0 and 3.3V.
*This module will undergo changes to the API.*
Example usage::
from pyb import DAC
dac = DAC(1) # create DAC 1 on pin X5
dac.write(128) # write a value to the DAC (makes X5 1.65V)
dac = DAC(1, bits=12) # use 12 bit resolution
dac.write(4095) # output maximum value, 3.3V
To output a continuous sine-wave::
import math
from pyb import DAC
# create a buffer containing a sine-wave
buf = bytearray(100)
for i in range(len(buf)):
buf[i] = 128 + int(127 * math.sin(2 * math.pi * i / len(buf)))
# output the sine-wave at 400Hz
dac = DAC(1)
dac.write_timed(buf, 400 * len(buf), mode=DAC.CIRCULAR)
To output a continuous sine-wave at 12-bit resolution::
import math
from array import array
from pyb import DAC
# create a buffer containing a sine-wave, using half-word samples
buf = array('H', 2048 + int(2047 * math.sin(2 * math.pi * i / 128)) for i in range(128))
# output the sine-wave at 400Hz
dac = DAC(1, bits=12)
dac.write_timed(buf, 400 * len(buf), mode=DAC.CIRCULAR)
Constructors
------------
.. class:: pyb.DAC(port, bits=8, \*, buffering=None)
Construct a new DAC object.
``port`` can be a pin object, or an integer (1 or 2).
DAC(1) is on pin X5 and DAC(2) is on pin X6.
``bits`` is an integer specifying the resolution, and can be 8 or 12.
The maximum value for the write and write_timed methods will be
2\*\*``bits``-1.
The *buffering* parameter selects the behaviour of the DAC op-amp output
buffer, whose purpose is to reduce the output impedance. It can be
``None`` to select the default (buffering enabled for :meth:`DAC.noise`,
:meth:`DAC.triangle` and :meth:`DAC.write_timed`, and disabled for
:meth:`DAC.write`), ``False`` to disable buffering completely, or ``True``
to enable output buffering.
When buffering is enabled the DAC pin can drive loads down to 5KΩ.
Otherwise it has an output impedance of 15KΩ maximum: consequently
to achieve a 1% accuracy without buffering requires the applied load
to be less than 1.5MΩ. Using the buffer incurs a penalty in accuracy,
especially near the extremes of range.
Methods
-------
.. method:: DAC.init(bits=8, \*, buffering=None)
Reinitialise the DAC. *bits* can be 8 or 12. *buffering* can be
``None``, ``False`` or ``True`; see above constructor for the meaning
of this parameter.
.. method:: DAC.deinit()
De-initialise the DAC making its pin available for other uses.
.. method:: DAC.noise(freq)
Generate a pseudo-random noise signal. A new random sample is written
to the DAC output at the given frequency.
.. method:: DAC.triangle(freq)
Generate a triangle wave. The value on the DAC output changes at
the given frequency, and the frequency of the repeating triangle wave
itself is 2048 times smaller.
.. method:: DAC.write(value)
Direct access to the DAC output. The minimum value is 0. The maximum
value is 2\*\*``bits``-1, where ``bits`` is set when creating the DAC
object or by using the ``init`` method.
.. method:: DAC.write_timed(data, freq, \*, mode=DAC.NORMAL)
Initiates a burst of RAM to DAC using a DMA transfer.
The input data is treated as an array of bytes in 8-bit mode, and
an array of unsigned half-words (array typecode 'H') in 12-bit mode.
``freq`` can be an integer specifying the frequency to write the DAC
samples at, using Timer(6). Or it can be an already-initialised
Timer object which is used to trigger the DAC sample. Valid timers
are 2, 4, 5, 6, 7 and 8.
``mode`` can be ``DAC.NORMAL`` or ``DAC.CIRCULAR``.
Example using both DACs at the same time::
dac1 = DAC(1)
dac2 = DAC(2)
dac1.write_timed(buf1, pyb.Timer(6, freq=100), mode=DAC.CIRCULAR)
dac2.write_timed(buf2, pyb.Timer(7, freq=200), mode=DAC.CIRCULAR)