micropython/py/emitbc.c
Damien George 60656eaea4 py: Define and use MP_OBJ_ITER_BUF_NSLOTS to get size of stack iter buf.
It improves readability of code and reduces the chance to make a mistake.

This patch also fixes a bug with nan-boxing builds by rounding up the
calculation of the new NSLOTS variable, giving the correct number of slots
(being 4) even if mp_obj_t is larger than the native machine size.
2017-03-23 16:36:08 +11:00

1077 lines
36 KiB
C

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include "py/mpstate.h"
#include "py/emit.h"
#include "py/bc0.h"
#if MICROPY_ENABLE_COMPILER
#define BYTES_FOR_INT ((BYTES_PER_WORD * 8 + 6) / 7)
#define DUMMY_DATA_SIZE (BYTES_FOR_INT)
struct _emit_t {
// Accessed as mp_obj_t, so must be aligned as such, and we rely on the
// memory allocator returning a suitably aligned pointer.
// Should work for cases when mp_obj_t is 64-bit on a 32-bit machine.
byte dummy_data[DUMMY_DATA_SIZE];
pass_kind_t pass : 8;
mp_uint_t last_emit_was_return_value : 8;
int stack_size;
scope_t *scope;
mp_uint_t last_source_line_offset;
mp_uint_t last_source_line;
mp_uint_t max_num_labels;
mp_uint_t *label_offsets;
size_t code_info_offset;
size_t code_info_size;
size_t bytecode_offset;
size_t bytecode_size;
byte *code_base; // stores both byte code and code info
#if MICROPY_PERSISTENT_CODE
uint16_t ct_cur_obj;
uint16_t ct_num_obj;
uint16_t ct_cur_raw_code;
#endif
mp_uint_t *const_table;
};
emit_t *emit_bc_new(void) {
emit_t *emit = m_new0(emit_t, 1);
return emit;
}
void emit_bc_set_max_num_labels(emit_t *emit, mp_uint_t max_num_labels) {
emit->max_num_labels = max_num_labels;
emit->label_offsets = m_new(mp_uint_t, emit->max_num_labels);
}
void emit_bc_free(emit_t *emit) {
m_del(mp_uint_t, emit->label_offsets, emit->max_num_labels);
m_del_obj(emit_t, emit);
}
typedef byte *(*emit_allocator_t)(emit_t *emit, int nbytes);
STATIC void emit_write_uint(emit_t *emit, emit_allocator_t allocator, mp_uint_t val) {
// We store each 7 bits in a separate byte, and that's how many bytes needed
byte buf[BYTES_FOR_INT];
byte *p = buf + sizeof(buf);
// We encode in little-ending order, but store in big-endian, to help decoding
do {
*--p = val & 0x7f;
val >>= 7;
} while (val != 0);
byte *c = allocator(emit, buf + sizeof(buf) - p);
while (p != buf + sizeof(buf) - 1) {
*c++ = *p++ | 0x80;
}
*c = *p;
}
// all functions must go through this one to emit code info
STATIC byte *emit_get_cur_to_write_code_info(emit_t *emit, int num_bytes_to_write) {
//printf("emit %d\n", num_bytes_to_write);
if (emit->pass < MP_PASS_EMIT) {
emit->code_info_offset += num_bytes_to_write;
return emit->dummy_data;
} else {
assert(emit->code_info_offset + num_bytes_to_write <= emit->code_info_size);
byte *c = emit->code_base + emit->code_info_offset;
emit->code_info_offset += num_bytes_to_write;
return c;
}
}
STATIC void emit_write_code_info_byte(emit_t* emit, byte val) {
*emit_get_cur_to_write_code_info(emit, 1) = val;
}
STATIC void emit_write_code_info_uint(emit_t* emit, mp_uint_t val) {
emit_write_uint(emit, emit_get_cur_to_write_code_info, val);
}
STATIC void emit_write_code_info_qstr(emit_t *emit, qstr qst) {
#if MICROPY_PERSISTENT_CODE
assert((qst >> 16) == 0);
byte *c = emit_get_cur_to_write_code_info(emit, 2);
c[0] = qst;
c[1] = qst >> 8;
#else
emit_write_uint(emit, emit_get_cur_to_write_code_info, qst);
#endif
}
#if MICROPY_ENABLE_SOURCE_LINE
STATIC void emit_write_code_info_bytes_lines(emit_t *emit, mp_uint_t bytes_to_skip, mp_uint_t lines_to_skip) {
assert(bytes_to_skip > 0 || lines_to_skip > 0);
//printf(" %d %d\n", bytes_to_skip, lines_to_skip);
while (bytes_to_skip > 0 || lines_to_skip > 0) {
mp_uint_t b, l;
if (lines_to_skip <= 6 || bytes_to_skip > 0xf) {
// use 0b0LLBBBBB encoding
b = MIN(bytes_to_skip, 0x1f);
if (b < bytes_to_skip) {
// we can't skip any lines until we skip all the bytes
l = 0;
} else {
l = MIN(lines_to_skip, 0x3);
}
*emit_get_cur_to_write_code_info(emit, 1) = b | (l << 5);
} else {
// use 0b1LLLBBBB 0bLLLLLLLL encoding (l's LSB in second byte)
b = MIN(bytes_to_skip, 0xf);
l = MIN(lines_to_skip, 0x7ff);
byte *ci = emit_get_cur_to_write_code_info(emit, 2);
ci[0] = 0x80 | b | ((l >> 4) & 0x70);
ci[1] = l;
}
bytes_to_skip -= b;
lines_to_skip -= l;
}
}
#endif
// all functions must go through this one to emit byte code
STATIC byte *emit_get_cur_to_write_bytecode(emit_t *emit, int num_bytes_to_write) {
//printf("emit %d\n", num_bytes_to_write);
if (emit->pass < MP_PASS_EMIT) {
emit->bytecode_offset += num_bytes_to_write;
return emit->dummy_data;
} else {
assert(emit->bytecode_offset + num_bytes_to_write <= emit->bytecode_size);
byte *c = emit->code_base + emit->code_info_size + emit->bytecode_offset;
emit->bytecode_offset += num_bytes_to_write;
return c;
}
}
STATIC void emit_write_bytecode_byte(emit_t *emit, byte b1) {
byte *c = emit_get_cur_to_write_bytecode(emit, 1);
c[0] = b1;
}
STATIC void emit_write_bytecode_byte_byte(emit_t* emit, byte b1, byte b2) {
byte *c = emit_get_cur_to_write_bytecode(emit, 2);
c[0] = b1;
c[1] = b2;
}
// Similar to emit_write_bytecode_uint(), just some extra handling to encode sign
STATIC void emit_write_bytecode_byte_int(emit_t *emit, byte b1, mp_int_t num) {
emit_write_bytecode_byte(emit, b1);
// We store each 7 bits in a separate byte, and that's how many bytes needed
byte buf[BYTES_FOR_INT];
byte *p = buf + sizeof(buf);
// We encode in little-ending order, but store in big-endian, to help decoding
do {
*--p = num & 0x7f;
num >>= 7;
} while (num != 0 && num != -1);
// Make sure that highest bit we stored (mask 0x40) matches sign
// of the number. If not, store extra byte just to encode sign
if (num == -1 && (*p & 0x40) == 0) {
*--p = 0x7f;
} else if (num == 0 && (*p & 0x40) != 0) {
*--p = 0;
}
byte *c = emit_get_cur_to_write_bytecode(emit, buf + sizeof(buf) - p);
while (p != buf + sizeof(buf) - 1) {
*c++ = *p++ | 0x80;
}
*c = *p;
}
STATIC void emit_write_bytecode_byte_uint(emit_t *emit, byte b, mp_uint_t val) {
emit_write_bytecode_byte(emit, b);
emit_write_uint(emit, emit_get_cur_to_write_bytecode, val);
}
#if MICROPY_PERSISTENT_CODE
STATIC void emit_write_bytecode_byte_const(emit_t *emit, byte b, mp_uint_t n, mp_uint_t c) {
if (emit->pass == MP_PASS_EMIT) {
emit->const_table[n] = c;
}
emit_write_bytecode_byte_uint(emit, b, n);
}
#endif
STATIC void emit_write_bytecode_byte_qstr(emit_t* emit, byte b, qstr qst) {
#if MICROPY_PERSISTENT_CODE
assert((qst >> 16) == 0);
byte *c = emit_get_cur_to_write_bytecode(emit, 3);
c[0] = b;
c[1] = qst;
c[2] = qst >> 8;
#else
emit_write_bytecode_byte_uint(emit, b, qst);
#endif
}
STATIC void emit_write_bytecode_byte_obj(emit_t *emit, byte b, mp_obj_t obj) {
#if MICROPY_PERSISTENT_CODE
emit_write_bytecode_byte_const(emit, b,
emit->scope->num_pos_args + emit->scope->num_kwonly_args
+ emit->ct_cur_obj++, (mp_uint_t)obj);
#else
// aligns the pointer so it is friendly to GC
emit_write_bytecode_byte(emit, b);
emit->bytecode_offset = (size_t)MP_ALIGN(emit->bytecode_offset, sizeof(mp_obj_t));
mp_obj_t *c = (mp_obj_t*)emit_get_cur_to_write_bytecode(emit, sizeof(mp_obj_t));
// Verify thar c is already uint-aligned
assert(c == MP_ALIGN(c, sizeof(mp_obj_t)));
*c = obj;
#endif
}
STATIC void emit_write_bytecode_byte_raw_code(emit_t *emit, byte b, mp_raw_code_t *rc) {
#if MICROPY_PERSISTENT_CODE
emit_write_bytecode_byte_const(emit, b,
emit->scope->num_pos_args + emit->scope->num_kwonly_args
+ emit->ct_num_obj + emit->ct_cur_raw_code++, (mp_uint_t)(uintptr_t)rc);
#else
// aligns the pointer so it is friendly to GC
emit_write_bytecode_byte(emit, b);
emit->bytecode_offset = (size_t)MP_ALIGN(emit->bytecode_offset, sizeof(void*));
void **c = (void**)emit_get_cur_to_write_bytecode(emit, sizeof(void*));
// Verify thar c is already uint-aligned
assert(c == MP_ALIGN(c, sizeof(void*)));
*c = rc;
#endif
}
// unsigned labels are relative to ip following this instruction, stored as 16 bits
STATIC void emit_write_bytecode_byte_unsigned_label(emit_t *emit, byte b1, mp_uint_t label) {
mp_uint_t bytecode_offset;
if (emit->pass < MP_PASS_EMIT) {
bytecode_offset = 0;
} else {
bytecode_offset = emit->label_offsets[label] - emit->bytecode_offset - 3;
}
byte *c = emit_get_cur_to_write_bytecode(emit, 3);
c[0] = b1;
c[1] = bytecode_offset;
c[2] = bytecode_offset >> 8;
}
// signed labels are relative to ip following this instruction, stored as 16 bits, in excess
STATIC void emit_write_bytecode_byte_signed_label(emit_t *emit, byte b1, mp_uint_t label) {
int bytecode_offset;
if (emit->pass < MP_PASS_EMIT) {
bytecode_offset = 0;
} else {
bytecode_offset = emit->label_offsets[label] - emit->bytecode_offset - 3 + 0x8000;
}
byte *c = emit_get_cur_to_write_bytecode(emit, 3);
c[0] = b1;
c[1] = bytecode_offset;
c[2] = bytecode_offset >> 8;
}
void mp_emit_bc_start_pass(emit_t *emit, pass_kind_t pass, scope_t *scope) {
emit->pass = pass;
emit->stack_size = 0;
emit->last_emit_was_return_value = false;
emit->scope = scope;
emit->last_source_line_offset = 0;
emit->last_source_line = 1;
if (pass < MP_PASS_EMIT) {
memset(emit->label_offsets, -1, emit->max_num_labels * sizeof(mp_uint_t));
}
emit->bytecode_offset = 0;
emit->code_info_offset = 0;
// Write local state size and exception stack size.
{
mp_uint_t n_state = scope->num_locals + scope->stack_size;
if (n_state == 0) {
// Need at least 1 entry in the state, in the case an exception is
// propagated through this function, the exception is returned in
// the highest slot in the state (fastn[0], see vm.c).
n_state = 1;
}
emit_write_code_info_uint(emit, n_state);
emit_write_code_info_uint(emit, scope->exc_stack_size);
}
// Write scope flags and number of arguments.
// TODO check that num args all fit in a byte
emit_write_code_info_byte(emit, emit->scope->scope_flags);
emit_write_code_info_byte(emit, emit->scope->num_pos_args);
emit_write_code_info_byte(emit, emit->scope->num_kwonly_args);
emit_write_code_info_byte(emit, emit->scope->num_def_pos_args);
// Write size of the rest of the code info. We don't know how big this
// variable uint will be on the MP_PASS_CODE_SIZE pass so we reserve 2 bytes
// for it and hope that is enough! TODO assert this or something.
if (pass == MP_PASS_EMIT) {
emit_write_code_info_uint(emit, emit->code_info_size - emit->code_info_offset);
} else {
emit_get_cur_to_write_code_info(emit, 2);
}
// Write the name and source file of this function.
emit_write_code_info_qstr(emit, scope->simple_name);
emit_write_code_info_qstr(emit, scope->source_file);
// bytecode prelude: initialise closed over variables
for (int i = 0; i < scope->id_info_len; i++) {
id_info_t *id = &scope->id_info[i];
if (id->kind == ID_INFO_KIND_CELL) {
assert(id->local_num < 255);
emit_write_bytecode_byte(emit, id->local_num); // write the local which should be converted to a cell
}
}
emit_write_bytecode_byte(emit, 255); // end of list sentinel
#if MICROPY_PERSISTENT_CODE
emit->ct_cur_obj = 0;
emit->ct_cur_raw_code = 0;
#endif
if (pass == MP_PASS_EMIT) {
// Write argument names (needed to resolve positional args passed as
// keywords). We store them as full word-sized objects for efficient access
// in mp_setup_code_state this is the start of the prelude and is guaranteed
// to be aligned on a word boundary.
// For a given argument position (indexed by i) we need to find the
// corresponding id_info which is a parameter, as it has the correct
// qstr name to use as the argument name. Note that it's not a simple
// 1-1 mapping (ie i!=j in general) because of possible closed-over
// variables. In the case that the argument i has no corresponding
// parameter we use "*" as its name (since no argument can ever be named
// "*"). We could use a blank qstr but "*" is better for debugging.
// Note: there is some wasted RAM here for the case of storing a qstr
// for each closed-over variable, and maybe there is a better way to do
// it, but that would require changes to mp_setup_code_state.
for (int i = 0; i < scope->num_pos_args + scope->num_kwonly_args; i++) {
qstr qst = MP_QSTR__star_;
for (int j = 0; j < scope->id_info_len; ++j) {
id_info_t *id = &scope->id_info[j];
if ((id->flags & ID_FLAG_IS_PARAM) && id->local_num == i) {
qst = id->qst;
break;
}
}
emit->const_table[i] = (mp_uint_t)MP_OBJ_NEW_QSTR(qst);
}
}
}
void mp_emit_bc_end_pass(emit_t *emit) {
if (emit->pass == MP_PASS_SCOPE) {
return;
}
// check stack is back to zero size
assert(emit->stack_size == 0);
emit_write_code_info_byte(emit, 0); // end of line number info
#if MICROPY_PERSISTENT_CODE
assert(emit->pass <= MP_PASS_STACK_SIZE || (emit->ct_num_obj == emit->ct_cur_obj));
emit->ct_num_obj = emit->ct_cur_obj;
#endif
if (emit->pass == MP_PASS_CODE_SIZE) {
#if !MICROPY_PERSISTENT_CODE
// so bytecode is aligned
emit->code_info_offset = (size_t)MP_ALIGN(emit->code_info_offset, sizeof(mp_uint_t));
#endif
// calculate size of total code-info + bytecode, in bytes
emit->code_info_size = emit->code_info_offset;
emit->bytecode_size = emit->bytecode_offset;
emit->code_base = m_new0(byte, emit->code_info_size + emit->bytecode_size);
#if MICROPY_PERSISTENT_CODE
emit->const_table = m_new0(mp_uint_t,
emit->scope->num_pos_args + emit->scope->num_kwonly_args
+ emit->ct_cur_obj + emit->ct_cur_raw_code);
#else
emit->const_table = m_new0(mp_uint_t,
emit->scope->num_pos_args + emit->scope->num_kwonly_args);
#endif
} else if (emit->pass == MP_PASS_EMIT) {
mp_emit_glue_assign_bytecode(emit->scope->raw_code, emit->code_base,
emit->code_info_size + emit->bytecode_size,
emit->const_table,
#if MICROPY_PERSISTENT_CODE_SAVE
emit->ct_cur_obj, emit->ct_cur_raw_code,
#endif
emit->scope->scope_flags);
}
}
bool mp_emit_bc_last_emit_was_return_value(emit_t *emit) {
return emit->last_emit_was_return_value;
}
void mp_emit_bc_adjust_stack_size(emit_t *emit, mp_int_t delta) {
emit->stack_size += delta;
}
void mp_emit_bc_set_source_line(emit_t *emit, mp_uint_t source_line) {
//printf("source: line %d -> %d offset %d -> %d\n", emit->last_source_line, source_line, emit->last_source_line_offset, emit->bytecode_offset);
#if MICROPY_ENABLE_SOURCE_LINE
if (MP_STATE_VM(mp_optimise_value) >= 3) {
// If we compile with -O3, don't store line numbers.
return;
}
if (source_line > emit->last_source_line) {
mp_uint_t bytes_to_skip = emit->bytecode_offset - emit->last_source_line_offset;
mp_uint_t lines_to_skip = source_line - emit->last_source_line;
emit_write_code_info_bytes_lines(emit, bytes_to_skip, lines_to_skip);
emit->last_source_line_offset = emit->bytecode_offset;
emit->last_source_line = source_line;
}
#else
(void)emit;
(void)source_line;
#endif
}
STATIC void emit_bc_pre(emit_t *emit, mp_int_t stack_size_delta) {
if (emit->pass == MP_PASS_SCOPE) {
return;
}
assert((mp_int_t)emit->stack_size + stack_size_delta >= 0);
emit->stack_size += stack_size_delta;
if (emit->stack_size > emit->scope->stack_size) {
emit->scope->stack_size = emit->stack_size;
}
emit->last_emit_was_return_value = false;
}
void mp_emit_bc_label_assign(emit_t *emit, mp_uint_t l) {
emit_bc_pre(emit, 0);
if (emit->pass == MP_PASS_SCOPE) {
return;
}
assert(l < emit->max_num_labels);
if (emit->pass < MP_PASS_EMIT) {
// assign label offset
assert(emit->label_offsets[l] == (mp_uint_t)-1);
emit->label_offsets[l] = emit->bytecode_offset;
} else {
// ensure label offset has not changed from MP_PASS_CODE_SIZE to MP_PASS_EMIT
//printf("l%d: (at %d vs %d)\n", l, emit->bytecode_offset, emit->label_offsets[l]);
assert(emit->label_offsets[l] == emit->bytecode_offset);
}
}
void mp_emit_bc_import_name(emit_t *emit, qstr qst) {
emit_bc_pre(emit, -1);
emit_write_bytecode_byte_qstr(emit, MP_BC_IMPORT_NAME, qst);
}
void mp_emit_bc_import_from(emit_t *emit, qstr qst) {
emit_bc_pre(emit, 1);
emit_write_bytecode_byte_qstr(emit, MP_BC_IMPORT_FROM, qst);
}
void mp_emit_bc_import_star(emit_t *emit) {
emit_bc_pre(emit, -1);
emit_write_bytecode_byte(emit, MP_BC_IMPORT_STAR);
}
void mp_emit_bc_load_const_tok(emit_t *emit, mp_token_kind_t tok) {
emit_bc_pre(emit, 1);
switch (tok) {
case MP_TOKEN_KW_FALSE: emit_write_bytecode_byte(emit, MP_BC_LOAD_CONST_FALSE); break;
case MP_TOKEN_KW_NONE: emit_write_bytecode_byte(emit, MP_BC_LOAD_CONST_NONE); break;
case MP_TOKEN_KW_TRUE: emit_write_bytecode_byte(emit, MP_BC_LOAD_CONST_TRUE); break;
default:
assert(tok == MP_TOKEN_ELLIPSIS);
emit_write_bytecode_byte_obj(emit, MP_BC_LOAD_CONST_OBJ, MP_OBJ_FROM_PTR(&mp_const_ellipsis_obj));
break;
}
}
void mp_emit_bc_load_const_small_int(emit_t *emit, mp_int_t arg) {
emit_bc_pre(emit, 1);
if (-16 <= arg && arg <= 47) {
emit_write_bytecode_byte(emit, MP_BC_LOAD_CONST_SMALL_INT_MULTI + 16 + arg);
} else {
emit_write_bytecode_byte_int(emit, MP_BC_LOAD_CONST_SMALL_INT, arg);
}
}
void mp_emit_bc_load_const_str(emit_t *emit, qstr qst) {
emit_bc_pre(emit, 1);
emit_write_bytecode_byte_qstr(emit, MP_BC_LOAD_CONST_STRING, qst);
}
void mp_emit_bc_load_const_obj(emit_t *emit, mp_obj_t obj) {
emit_bc_pre(emit, 1);
emit_write_bytecode_byte_obj(emit, MP_BC_LOAD_CONST_OBJ, obj);
}
void mp_emit_bc_load_null(emit_t *emit) {
emit_bc_pre(emit, 1);
emit_write_bytecode_byte(emit, MP_BC_LOAD_NULL);
};
void mp_emit_bc_load_fast(emit_t *emit, qstr qst, mp_uint_t local_num) {
(void)qst;
emit_bc_pre(emit, 1);
if (local_num <= 15) {
emit_write_bytecode_byte(emit, MP_BC_LOAD_FAST_MULTI + local_num);
} else {
emit_write_bytecode_byte_uint(emit, MP_BC_LOAD_FAST_N, local_num);
}
}
void mp_emit_bc_load_deref(emit_t *emit, qstr qst, mp_uint_t local_num) {
(void)qst;
emit_bc_pre(emit, 1);
emit_write_bytecode_byte_uint(emit, MP_BC_LOAD_DEREF, local_num);
}
void mp_emit_bc_load_name(emit_t *emit, qstr qst) {
(void)qst;
emit_bc_pre(emit, 1);
emit_write_bytecode_byte_qstr(emit, MP_BC_LOAD_NAME, qst);
if (MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE_DYNAMIC) {
emit_write_bytecode_byte(emit, 0);
}
}
void mp_emit_bc_load_global(emit_t *emit, qstr qst) {
(void)qst;
emit_bc_pre(emit, 1);
emit_write_bytecode_byte_qstr(emit, MP_BC_LOAD_GLOBAL, qst);
if (MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE_DYNAMIC) {
emit_write_bytecode_byte(emit, 0);
}
}
void mp_emit_bc_load_attr(emit_t *emit, qstr qst) {
emit_bc_pre(emit, 0);
emit_write_bytecode_byte_qstr(emit, MP_BC_LOAD_ATTR, qst);
if (MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE_DYNAMIC) {
emit_write_bytecode_byte(emit, 0);
}
}
void mp_emit_bc_load_method(emit_t *emit, qstr qst) {
emit_bc_pre(emit, 1);
emit_write_bytecode_byte_qstr(emit, MP_BC_LOAD_METHOD, qst);
}
void mp_emit_bc_load_build_class(emit_t *emit) {
emit_bc_pre(emit, 1);
emit_write_bytecode_byte(emit, MP_BC_LOAD_BUILD_CLASS);
}
void mp_emit_bc_load_subscr(emit_t *emit) {
emit_bc_pre(emit, -1);
emit_write_bytecode_byte(emit, MP_BC_LOAD_SUBSCR);
}
void mp_emit_bc_store_fast(emit_t *emit, qstr qst, mp_uint_t local_num) {
(void)qst;
emit_bc_pre(emit, -1);
if (local_num <= 15) {
emit_write_bytecode_byte(emit, MP_BC_STORE_FAST_MULTI + local_num);
} else {
emit_write_bytecode_byte_uint(emit, MP_BC_STORE_FAST_N, local_num);
}
}
void mp_emit_bc_store_deref(emit_t *emit, qstr qst, mp_uint_t local_num) {
(void)qst;
emit_bc_pre(emit, -1);
emit_write_bytecode_byte_uint(emit, MP_BC_STORE_DEREF, local_num);
}
void mp_emit_bc_store_name(emit_t *emit, qstr qst) {
emit_bc_pre(emit, -1);
emit_write_bytecode_byte_qstr(emit, MP_BC_STORE_NAME, qst);
}
void mp_emit_bc_store_global(emit_t *emit, qstr qst) {
emit_bc_pre(emit, -1);
emit_write_bytecode_byte_qstr(emit, MP_BC_STORE_GLOBAL, qst);
}
void mp_emit_bc_store_attr(emit_t *emit, qstr qst) {
emit_bc_pre(emit, -2);
emit_write_bytecode_byte_qstr(emit, MP_BC_STORE_ATTR, qst);
if (MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE_DYNAMIC) {
emit_write_bytecode_byte(emit, 0);
}
}
void mp_emit_bc_store_subscr(emit_t *emit) {
emit_bc_pre(emit, -3);
emit_write_bytecode_byte(emit, MP_BC_STORE_SUBSCR);
}
void mp_emit_bc_delete_fast(emit_t *emit, qstr qst, mp_uint_t local_num) {
(void)qst;
emit_write_bytecode_byte_uint(emit, MP_BC_DELETE_FAST, local_num);
}
void mp_emit_bc_delete_deref(emit_t *emit, qstr qst, mp_uint_t local_num) {
(void)qst;
emit_write_bytecode_byte_uint(emit, MP_BC_DELETE_DEREF, local_num);
}
void mp_emit_bc_delete_name(emit_t *emit, qstr qst) {
emit_bc_pre(emit, 0);
emit_write_bytecode_byte_qstr(emit, MP_BC_DELETE_NAME, qst);
}
void mp_emit_bc_delete_global(emit_t *emit, qstr qst) {
emit_bc_pre(emit, 0);
emit_write_bytecode_byte_qstr(emit, MP_BC_DELETE_GLOBAL, qst);
}
void mp_emit_bc_delete_attr(emit_t *emit, qstr qst) {
mp_emit_bc_load_null(emit);
mp_emit_bc_rot_two(emit);
mp_emit_bc_store_attr(emit, qst);
}
void mp_emit_bc_delete_subscr(emit_t *emit) {
mp_emit_bc_load_null(emit);
mp_emit_bc_rot_three(emit);
mp_emit_bc_store_subscr(emit);
}
void mp_emit_bc_dup_top(emit_t *emit) {
emit_bc_pre(emit, 1);
emit_write_bytecode_byte(emit, MP_BC_DUP_TOP);
}
void mp_emit_bc_dup_top_two(emit_t *emit) {
emit_bc_pre(emit, 2);
emit_write_bytecode_byte(emit, MP_BC_DUP_TOP_TWO);
}
void mp_emit_bc_pop_top(emit_t *emit) {
emit_bc_pre(emit, -1);
emit_write_bytecode_byte(emit, MP_BC_POP_TOP);
}
void mp_emit_bc_rot_two(emit_t *emit) {
emit_bc_pre(emit, 0);
emit_write_bytecode_byte(emit, MP_BC_ROT_TWO);
}
void mp_emit_bc_rot_three(emit_t *emit) {
emit_bc_pre(emit, 0);
emit_write_bytecode_byte(emit, MP_BC_ROT_THREE);
}
void mp_emit_bc_jump(emit_t *emit, mp_uint_t label) {
emit_bc_pre(emit, 0);
emit_write_bytecode_byte_signed_label(emit, MP_BC_JUMP, label);
}
void mp_emit_bc_pop_jump_if(emit_t *emit, bool cond, mp_uint_t label) {
emit_bc_pre(emit, -1);
if (cond) {
emit_write_bytecode_byte_signed_label(emit, MP_BC_POP_JUMP_IF_TRUE, label);
} else {
emit_write_bytecode_byte_signed_label(emit, MP_BC_POP_JUMP_IF_FALSE, label);
}
}
void mp_emit_bc_jump_if_or_pop(emit_t *emit, bool cond, mp_uint_t label) {
emit_bc_pre(emit, -1);
if (cond) {
emit_write_bytecode_byte_signed_label(emit, MP_BC_JUMP_IF_TRUE_OR_POP, label);
} else {
emit_write_bytecode_byte_signed_label(emit, MP_BC_JUMP_IF_FALSE_OR_POP, label);
}
}
void mp_emit_bc_unwind_jump(emit_t *emit, mp_uint_t label, mp_uint_t except_depth) {
if (except_depth == 0) {
emit_bc_pre(emit, 0);
if (label & MP_EMIT_BREAK_FROM_FOR) {
// need to pop the iterator if we are breaking out of a for loop
emit_write_bytecode_byte(emit, MP_BC_POP_TOP);
// also pop the iter_buf
for (size_t i = 0; i < MP_OBJ_ITER_BUF_NSLOTS - 1; ++i) {
emit_write_bytecode_byte(emit, MP_BC_POP_TOP);
}
}
emit_write_bytecode_byte_signed_label(emit, MP_BC_JUMP, label & ~MP_EMIT_BREAK_FROM_FOR);
} else {
emit_write_bytecode_byte_signed_label(emit, MP_BC_UNWIND_JUMP, label & ~MP_EMIT_BREAK_FROM_FOR);
emit_write_bytecode_byte(emit, ((label & MP_EMIT_BREAK_FROM_FOR) ? 0x80 : 0) | except_depth);
}
}
void mp_emit_bc_setup_with(emit_t *emit, mp_uint_t label) {
// The SETUP_WITH opcode pops ctx_mgr from the top of the stack
// and then pushes 3 entries: __exit__, ctx_mgr, as_value.
emit_bc_pre(emit, 2);
emit_write_bytecode_byte_unsigned_label(emit, MP_BC_SETUP_WITH, label);
}
void mp_emit_bc_with_cleanup(emit_t *emit, mp_uint_t label) {
mp_emit_bc_pop_block(emit);
mp_emit_bc_load_const_tok(emit, MP_TOKEN_KW_NONE);
mp_emit_bc_label_assign(emit, label);
emit_bc_pre(emit, 2); // ensure we have enough stack space to call the __exit__ method
emit_write_bytecode_byte(emit, MP_BC_WITH_CLEANUP);
emit_bc_pre(emit, -4); // cancel the 2 above, plus the 2 from mp_emit_bc_setup_with
}
void mp_emit_bc_setup_except(emit_t *emit, mp_uint_t label) {
emit_bc_pre(emit, 0);
emit_write_bytecode_byte_unsigned_label(emit, MP_BC_SETUP_EXCEPT, label);
}
void mp_emit_bc_setup_finally(emit_t *emit, mp_uint_t label) {
emit_bc_pre(emit, 0);
emit_write_bytecode_byte_unsigned_label(emit, MP_BC_SETUP_FINALLY, label);
}
void mp_emit_bc_end_finally(emit_t *emit) {
emit_bc_pre(emit, -1);
emit_write_bytecode_byte(emit, MP_BC_END_FINALLY);
}
void mp_emit_bc_get_iter(emit_t *emit, bool use_stack) {
emit_bc_pre(emit, use_stack ? MP_OBJ_ITER_BUF_NSLOTS - 1 : 0);
emit_write_bytecode_byte(emit, use_stack ? MP_BC_GET_ITER_STACK : MP_BC_GET_ITER);
}
void mp_emit_bc_for_iter(emit_t *emit, mp_uint_t label) {
emit_bc_pre(emit, 1);
emit_write_bytecode_byte_unsigned_label(emit, MP_BC_FOR_ITER, label);
}
void mp_emit_bc_for_iter_end(emit_t *emit) {
emit_bc_pre(emit, -MP_OBJ_ITER_BUF_NSLOTS);
}
void mp_emit_bc_pop_block(emit_t *emit) {
emit_bc_pre(emit, 0);
emit_write_bytecode_byte(emit, MP_BC_POP_BLOCK);
}
void mp_emit_bc_pop_except(emit_t *emit) {
emit_bc_pre(emit, 0);
emit_write_bytecode_byte(emit, MP_BC_POP_EXCEPT);
}
void mp_emit_bc_unary_op(emit_t *emit, mp_unary_op_t op) {
emit_bc_pre(emit, 0);
emit_write_bytecode_byte(emit, MP_BC_UNARY_OP_MULTI + op);
}
void mp_emit_bc_binary_op(emit_t *emit, mp_binary_op_t op) {
bool invert = false;
if (op == MP_BINARY_OP_NOT_IN) {
invert = true;
op = MP_BINARY_OP_IN;
} else if (op == MP_BINARY_OP_IS_NOT) {
invert = true;
op = MP_BINARY_OP_IS;
}
emit_bc_pre(emit, -1);
emit_write_bytecode_byte(emit, MP_BC_BINARY_OP_MULTI + op);
if (invert) {
emit_bc_pre(emit, 0);
emit_write_bytecode_byte(emit, MP_BC_UNARY_OP_MULTI + MP_UNARY_OP_NOT);
}
}
void mp_emit_bc_build_tuple(emit_t *emit, mp_uint_t n_args) {
emit_bc_pre(emit, 1 - n_args);
emit_write_bytecode_byte_uint(emit, MP_BC_BUILD_TUPLE, n_args);
}
void mp_emit_bc_build_list(emit_t *emit, mp_uint_t n_args) {
emit_bc_pre(emit, 1 - n_args);
emit_write_bytecode_byte_uint(emit, MP_BC_BUILD_LIST, n_args);
}
void mp_emit_bc_build_map(emit_t *emit, mp_uint_t n_args) {
emit_bc_pre(emit, 1);
emit_write_bytecode_byte_uint(emit, MP_BC_BUILD_MAP, n_args);
}
void mp_emit_bc_store_map(emit_t *emit) {
emit_bc_pre(emit, -2);
emit_write_bytecode_byte(emit, MP_BC_STORE_MAP);
}
#if MICROPY_PY_BUILTINS_SET
void mp_emit_bc_build_set(emit_t *emit, mp_uint_t n_args) {
emit_bc_pre(emit, 1 - n_args);
emit_write_bytecode_byte_uint(emit, MP_BC_BUILD_SET, n_args);
}
#endif
#if MICROPY_PY_BUILTINS_SLICE
void mp_emit_bc_build_slice(emit_t *emit, mp_uint_t n_args) {
emit_bc_pre(emit, 1 - n_args);
emit_write_bytecode_byte_uint(emit, MP_BC_BUILD_SLICE, n_args);
}
#endif
void mp_emit_bc_store_comp(emit_t *emit, scope_kind_t kind, mp_uint_t collection_stack_index) {
int t;
int n;
if (kind == SCOPE_LIST_COMP) {
n = 0;
t = 0;
} else if (!MICROPY_PY_BUILTINS_SET || kind == SCOPE_DICT_COMP) {
n = 1;
t = 1;
} else if (MICROPY_PY_BUILTINS_SET) {
n = 0;
t = 2;
}
emit_bc_pre(emit, -1 - n);
// the lower 2 bits of the opcode argument indicate the collection type
emit_write_bytecode_byte_uint(emit, MP_BC_STORE_COMP, ((collection_stack_index + n) << 2) | t);
}
void mp_emit_bc_unpack_sequence(emit_t *emit, mp_uint_t n_args) {
emit_bc_pre(emit, -1 + n_args);
emit_write_bytecode_byte_uint(emit, MP_BC_UNPACK_SEQUENCE, n_args);
}
void mp_emit_bc_unpack_ex(emit_t *emit, mp_uint_t n_left, mp_uint_t n_right) {
emit_bc_pre(emit, -1 + n_left + n_right + 1);
emit_write_bytecode_byte_uint(emit, MP_BC_UNPACK_EX, n_left | (n_right << 8));
}
void mp_emit_bc_make_function(emit_t *emit, scope_t *scope, mp_uint_t n_pos_defaults, mp_uint_t n_kw_defaults) {
if (n_pos_defaults == 0 && n_kw_defaults == 0) {
emit_bc_pre(emit, 1);
emit_write_bytecode_byte_raw_code(emit, MP_BC_MAKE_FUNCTION, scope->raw_code);
} else {
emit_bc_pre(emit, -1);
emit_write_bytecode_byte_raw_code(emit, MP_BC_MAKE_FUNCTION_DEFARGS, scope->raw_code);
}
}
void mp_emit_bc_make_closure(emit_t *emit, scope_t *scope, mp_uint_t n_closed_over, mp_uint_t n_pos_defaults, mp_uint_t n_kw_defaults) {
if (n_pos_defaults == 0 && n_kw_defaults == 0) {
emit_bc_pre(emit, -n_closed_over + 1);
emit_write_bytecode_byte_raw_code(emit, MP_BC_MAKE_CLOSURE, scope->raw_code);
emit_write_bytecode_byte(emit, n_closed_over);
} else {
assert(n_closed_over <= 255);
emit_bc_pre(emit, -2 - n_closed_over + 1);
emit_write_bytecode_byte_raw_code(emit, MP_BC_MAKE_CLOSURE_DEFARGS, scope->raw_code);
emit_write_bytecode_byte(emit, n_closed_over);
}
}
STATIC void emit_bc_call_function_method_helper(emit_t *emit, mp_int_t stack_adj, mp_uint_t bytecode_base, mp_uint_t n_positional, mp_uint_t n_keyword, mp_uint_t star_flags) {
if (star_flags) {
emit_bc_pre(emit, stack_adj - (mp_int_t)n_positional - 2 * (mp_int_t)n_keyword - 2);
emit_write_bytecode_byte_uint(emit, bytecode_base + 1, (n_keyword << 8) | n_positional); // TODO make it 2 separate uints?
} else {
emit_bc_pre(emit, stack_adj - (mp_int_t)n_positional - 2 * (mp_int_t)n_keyword);
emit_write_bytecode_byte_uint(emit, bytecode_base, (n_keyword << 8) | n_positional); // TODO make it 2 separate uints?
}
}
void mp_emit_bc_call_function(emit_t *emit, mp_uint_t n_positional, mp_uint_t n_keyword, mp_uint_t star_flags) {
emit_bc_call_function_method_helper(emit, 0, MP_BC_CALL_FUNCTION, n_positional, n_keyword, star_flags);
}
void mp_emit_bc_call_method(emit_t *emit, mp_uint_t n_positional, mp_uint_t n_keyword, mp_uint_t star_flags) {
emit_bc_call_function_method_helper(emit, -1, MP_BC_CALL_METHOD, n_positional, n_keyword, star_flags);
}
void mp_emit_bc_return_value(emit_t *emit) {
emit_bc_pre(emit, -1);
emit->last_emit_was_return_value = true;
emit_write_bytecode_byte(emit, MP_BC_RETURN_VALUE);
}
void mp_emit_bc_raise_varargs(emit_t *emit, mp_uint_t n_args) {
assert(n_args <= 2);
emit_bc_pre(emit, -n_args);
emit_write_bytecode_byte_byte(emit, MP_BC_RAISE_VARARGS, n_args);
}
void mp_emit_bc_yield_value(emit_t *emit) {
emit_bc_pre(emit, 0);
emit->scope->scope_flags |= MP_SCOPE_FLAG_GENERATOR;
emit_write_bytecode_byte(emit, MP_BC_YIELD_VALUE);
}
void mp_emit_bc_yield_from(emit_t *emit) {
emit_bc_pre(emit, -1);
emit->scope->scope_flags |= MP_SCOPE_FLAG_GENERATOR;
emit_write_bytecode_byte(emit, MP_BC_YIELD_FROM);
}
void mp_emit_bc_start_except_handler(emit_t *emit) {
mp_emit_bc_adjust_stack_size(emit, 4); // stack adjust for the exception instance, +3 for possible UNWIND_JUMP state
}
void mp_emit_bc_end_except_handler(emit_t *emit) {
mp_emit_bc_adjust_stack_size(emit, -3); // stack adjust
}
#if MICROPY_EMIT_NATIVE
const emit_method_table_t emit_bc_method_table = {
NULL, // set_native_type is never called when emitting bytecode
mp_emit_bc_start_pass,
mp_emit_bc_end_pass,
mp_emit_bc_last_emit_was_return_value,
mp_emit_bc_adjust_stack_size,
mp_emit_bc_set_source_line,
{
mp_emit_bc_load_fast,
mp_emit_bc_load_deref,
mp_emit_bc_load_name,
mp_emit_bc_load_global,
},
{
mp_emit_bc_store_fast,
mp_emit_bc_store_deref,
mp_emit_bc_store_name,
mp_emit_bc_store_global,
},
{
mp_emit_bc_delete_fast,
mp_emit_bc_delete_deref,
mp_emit_bc_delete_name,
mp_emit_bc_delete_global,
},
mp_emit_bc_label_assign,
mp_emit_bc_import_name,
mp_emit_bc_import_from,
mp_emit_bc_import_star,
mp_emit_bc_load_const_tok,
mp_emit_bc_load_const_small_int,
mp_emit_bc_load_const_str,
mp_emit_bc_load_const_obj,
mp_emit_bc_load_null,
mp_emit_bc_load_attr,
mp_emit_bc_load_method,
mp_emit_bc_load_build_class,
mp_emit_bc_load_subscr,
mp_emit_bc_store_attr,
mp_emit_bc_store_subscr,
mp_emit_bc_delete_attr,
mp_emit_bc_delete_subscr,
mp_emit_bc_dup_top,
mp_emit_bc_dup_top_two,
mp_emit_bc_pop_top,
mp_emit_bc_rot_two,
mp_emit_bc_rot_three,
mp_emit_bc_jump,
mp_emit_bc_pop_jump_if,
mp_emit_bc_jump_if_or_pop,
mp_emit_bc_unwind_jump,
mp_emit_bc_unwind_jump,
mp_emit_bc_setup_with,
mp_emit_bc_with_cleanup,
mp_emit_bc_setup_except,
mp_emit_bc_setup_finally,
mp_emit_bc_end_finally,
mp_emit_bc_get_iter,
mp_emit_bc_for_iter,
mp_emit_bc_for_iter_end,
mp_emit_bc_pop_block,
mp_emit_bc_pop_except,
mp_emit_bc_unary_op,
mp_emit_bc_binary_op,
mp_emit_bc_build_tuple,
mp_emit_bc_build_list,
mp_emit_bc_build_map,
mp_emit_bc_store_map,
#if MICROPY_PY_BUILTINS_SET
mp_emit_bc_build_set,
#endif
#if MICROPY_PY_BUILTINS_SLICE
mp_emit_bc_build_slice,
#endif
mp_emit_bc_store_comp,
mp_emit_bc_unpack_sequence,
mp_emit_bc_unpack_ex,
mp_emit_bc_make_function,
mp_emit_bc_make_closure,
mp_emit_bc_call_function,
mp_emit_bc_call_method,
mp_emit_bc_return_value,
mp_emit_bc_raise_varargs,
mp_emit_bc_yield_value,
mp_emit_bc_yield_from,
mp_emit_bc_start_except_handler,
mp_emit_bc_end_except_handler,
};
#else
const mp_emit_method_table_id_ops_t mp_emit_bc_method_table_load_id_ops = {
mp_emit_bc_load_fast,
mp_emit_bc_load_deref,
mp_emit_bc_load_name,
mp_emit_bc_load_global,
};
const mp_emit_method_table_id_ops_t mp_emit_bc_method_table_store_id_ops = {
mp_emit_bc_store_fast,
mp_emit_bc_store_deref,
mp_emit_bc_store_name,
mp_emit_bc_store_global,
};
const mp_emit_method_table_id_ops_t mp_emit_bc_method_table_delete_id_ops = {
mp_emit_bc_delete_fast,
mp_emit_bc_delete_deref,
mp_emit_bc_delete_name,
mp_emit_bc_delete_global,
};
#endif
#endif //MICROPY_ENABLE_COMPILER