micropython/ports/samd/machine_spi.c
Angus Gratton decf8e6a8b all: Remove the "STATIC" macro and just use "static" instead.
The STATIC macro was introduced a very long time ago in commit
d5df6cd44a433d6253a61cb0f987835fbc06b2de.  The original reason for this was
to have the option to define it to nothing so that all static functions
become global functions and therefore visible to certain debug tools, so
one could do function size comparison and other things.

This STATIC feature is rarely (if ever) used.  And with the use of LTO and
heavy inline optimisation, analysing the size of individual functions when
they are not static is not a good representation of the size of code when
fully optimised.

So the macro does not have much use and it's simpler to just remove it.
Then you know exactly what it's doing.  For example, newcomers don't have
to learn what the STATIC macro is and why it exists.  Reading the code is
also less "loud" with a lowercase static.

One other minor point in favour of removing it, is that it stops bugs with
`STATIC inline`, which should always be `static inline`.

Methodology for this commit was:

1) git ls-files | egrep '\.[ch]$' | \
   xargs sed -Ei "s/(^| )STATIC($| )/\1static\2/"

2) Do some manual cleanup in the diff by searching for the word STATIC in
   comments and changing those back.

3) "git-grep STATIC docs/", manually fixed those cases.

4) "rg -t python STATIC", manually fixed codegen lines that used STATIC.

This work was funded through GitHub Sponsors.

Signed-off-by: Angus Gratton <angus@redyak.com.au>
2024-03-07 14:20:42 +11:00

336 lines
12 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Damien P. George
* Copyright (c) 2022 Robert Hammelrath
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/runtime.h"
#if MICROPY_PY_MACHINE_SPI
#include "py/mphal.h"
#include "extmod/modmachine.h"
#include "samd_soc.h"
#include "pin_af.h"
#include "clock_config.h"
#define DEFAULT_SPI_BAUDRATE (1000000)
#define DEFAULT_SPI_POLARITY (0)
#define DEFAULT_SPI_PHASE (0)
#define DEFAULT_SPI_BITS (8)
#define DEFAULT_SPI_FIRSTBIT (0)
typedef struct _machine_spi_obj_t {
mp_obj_base_t base;
uint8_t id;
uint8_t polarity;
uint8_t phase;
uint8_t firstbit;
uint8_t sck;
uint8_t mosi;
uint8_t miso;
uint8_t new;
uint32_t baudrate;
sercom_pad_config_t sck_pad_config;
sercom_pad_config_t mosi_pad_config;
sercom_pad_config_t miso_pad_config;
uint8_t *dest;
size_t rxlen;
} machine_spi_obj_t;
void common_spi_irq_handler(int spi_id) {
// handle Sercom IRQ RXC
machine_spi_obj_t *self = MP_STATE_PORT(sercom_table[spi_id]);
// Handle IRQ
if (self != NULL) {
Sercom *spi = sercom_instance[self->id];
if (spi->SPI.INTFLAG.bit.RXC != 0) {
if (self->rxlen > 0) {
*(self->dest)++ = spi->SPI.DATA.bit.DATA;
self->rxlen--;
} else {
// Just in the unlikely case there is data but no space in the buffer
// discard the data and clear the intflag
uint32_t temp;
(void)temp;
temp = spi->SPI.DATA.bit.DATA;
}
}
}
}
static void machine_spi_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
machine_spi_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_printf(print, "SPI(%u, baudrate=%u, firstbit=%u, polarity=%u, phase=%u, bits=8)",
self->id, self->baudrate, self->firstbit, self->polarity, self->phase);
}
static void machine_spi_init(mp_obj_base_t *self_in, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_baudrate, ARG_polarity, ARG_phase, ARG_firstbit,
ARG_sck, ARG_mosi, ARG_miso};
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_baudrate, MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_polarity, MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_phase, MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_firstbit, MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_sck, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
{ MP_QSTR_mosi, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
{ MP_QSTR_miso, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
};
machine_spi_obj_t *self = MP_OBJ_TO_PTR(self_in);
// Parse args
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// Set baudrate if configured.
if (args[ARG_baudrate].u_int >= 0) {
self->baudrate = args[ARG_baudrate].u_int;
}
// Set polarity if configured.
if (args[ARG_polarity].u_int >= 0) {
self->polarity = args[ARG_polarity].u_int;
}
// Set phase if configured.
if (args[ARG_phase].u_int >= 0) {
self->phase = args[ARG_phase].u_int;
}
// Set firstbit if configured.
if (args[ARG_firstbit].u_int >= 0) {
self->firstbit = args[ARG_firstbit].u_int;
}
// Set SCK/MOSI/MISO pins if configured.
if (args[ARG_sck].u_obj != mp_const_none) {
self->sck = mp_hal_get_pin_obj(args[ARG_sck].u_obj);
}
if (args[ARG_mosi].u_obj != mp_const_none) {
self->mosi = mp_hal_get_pin_obj(args[ARG_mosi].u_obj);
}
if (args[ARG_miso].u_obj != mp_const_none) {
self->miso = mp_hal_get_pin_obj(args[ARG_miso].u_obj);
}
// Initialise the SPI peripheral if any arguments given, or it was not initialised previously.
if (n_args > 0 || kw_args->used > 0 || self->new) {
self->new = false;
// Get the pad and alt-fct numbers.
self->sck_pad_config = get_sercom_config(self->sck, self->id);
self->mosi_pad_config = get_sercom_config(self->mosi, self->id);
uint8_t dopo = 0;
#if defined(MCU_SAMD21)
if (self->mosi_pad_config.pad_nr == 0 && self->sck_pad_config.pad_nr == 1) {
dopo = 0;
} else if (self->mosi_pad_config.pad_nr == 2 && self->sck_pad_config.pad_nr == 3) {
dopo = 1;
} else if (self->mosi_pad_config.pad_nr == 3 && self->sck_pad_config.pad_nr == 1) {
dopo = 2;
} else if (self->mosi_pad_config.pad_nr == 0 && self->sck_pad_config.pad_nr == 3) {
dopo = 3;
} else {
mp_raise_ValueError(MP_ERROR_TEXT("invalid pin for sck or mosi"));
}
#elif defined(MCU_SAMD51)
if (self->mosi_pad_config.pad_nr == 0 && self->sck_pad_config.pad_nr == 1) {
dopo = 0;
} else if (self->mosi_pad_config.pad_nr == 3 && self->sck_pad_config.pad_nr == 1) {
dopo = 2;
} else {
mp_raise_ValueError(MP_ERROR_TEXT("invalid pin for sck or mosi"));
}
#endif
if (self->miso != 0xff) { // Miso may be undefined
self->miso_pad_config = get_sercom_config(self->miso, self->id);
mp_hal_set_pin_mux(self->miso, self->miso_pad_config.alt_fct);
}
// Configure the Pin mux.
mp_hal_set_pin_mux(self->sck, self->sck_pad_config.alt_fct);
mp_hal_set_pin_mux(self->mosi, self->mosi_pad_config.alt_fct);
// Set up the clocks
enable_sercom_clock(self->id);
// Configure the SPI
Sercom *spi = sercom_instance[self->id];
// Reset (clear) the peripheral registers.
while (spi->SPI.SYNCBUSY.bit.SWRST) {
}
spi->SPI.CTRLA.bit.SWRST = 1;
while (spi->SPI.SYNCBUSY.bit.SWRST) {
}
// Set the registers
spi->SPI.CTRLA.bit.MODE = 0x03; // SPI master mode
spi->SPI.CTRLA.bit.CPOL = self->polarity;
spi->SPI.CTRLA.bit.CPHA = self->phase;
spi->SPI.CTRLA.bit.DIPO = self->miso_pad_config.pad_nr;
spi->SPI.CTRLA.bit.DOPO = dopo;
spi->SPI.CTRLA.bit.DORD = self->firstbit;
// Enable receive only if miso is defined
if (self->miso != 0xff) {
spi->SPI.CTRLB.reg = SERCOM_SPI_CTRLB_RXEN;
while (spi->SPI.SYNCBUSY.bit.CTRLB) {
}
}
#if defined(MCU_SAMD51)
spi->SPI.CTRLC.reg = 1; // 1 clock cycle character spacing
#endif
// SPI is driven by the clock of GCLK Generator 2, freq by get_peripheral_freq()
// baud = bus_freq / (2 * baudrate) - 1
uint32_t baud = get_peripheral_freq() / (2 * self->baudrate);
if (baud > 0) { // Avoid underflow
baud -= 1;
}
if (baud > 255) { // Avoid overflow
baud = 255;
}
spi->SPI.BAUD.reg = baud; // Set Baud
// Enable RXC interrupt only if miso is defined
if (self->miso != 0xff) {
#if defined(MCU_SAMD21)
NVIC_EnableIRQ(SERCOM0_IRQn + self->id);
#elif defined(MCU_SAMD51)
NVIC_EnableIRQ(SERCOM0_0_IRQn + 4 * self->id + 2);
#endif
sercom_register_irq(self->id, &common_spi_irq_handler);
}
sercom_enable(spi, 1);
}
}
static mp_obj_t machine_spi_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
// Get SPI bus.
int spi_id = mp_obj_get_int(args[0]);
if (spi_id < 0 || spi_id > SERCOM_INST_NUM) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("SPI(%d) doesn't exist"), spi_id);
}
// Create the SPI object and fill it with defaults.
machine_spi_obj_t *self = mp_obj_malloc(machine_spi_obj_t, &machine_spi_type);
self->id = spi_id;
self->baudrate = DEFAULT_SPI_BAUDRATE;
self->polarity = DEFAULT_SPI_POLARITY;
self->phase = DEFAULT_SPI_PHASE;
self->firstbit = DEFAULT_SPI_FIRSTBIT;
self->mosi = 0xff; // 0xff: pin not defined (yet)
self->miso = 0xff;
self->sck = 0xff;
self->new = true;
MP_STATE_PORT(sercom_table[spi_id]) = self;
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
machine_spi_init((mp_obj_base_t *)self, n_args - 1, args + 1, &kw_args);
return self;
}
static void machine_sercom_deinit(mp_obj_base_t *self_in) {
machine_spi_obj_t *self = MP_OBJ_TO_PTR(self_in);
Sercom *spi = sercom_instance[self->id];
// Disable interrupts (if any)
spi->SPI.INTENCLR.reg = 0xff;
sercom_enable(spi, 0);
// clear table entry of spi
MP_STATE_PORT(sercom_table[self->id]) = NULL;
}
static void machine_spi_transfer(mp_obj_base_t *self_in, size_t len, const uint8_t *src, uint8_t *dest) {
machine_spi_obj_t *self = (machine_spi_obj_t *)self_in;
Sercom *spi = sercom_instance[self->id];
size_t txlen = len;
// Clear the input queue, if needed
while (dest && spi->SPI.INTFLAG.bit.RXC) {
uint32_t temp;
(void)temp;
temp = spi->SPI.DATA.bit.DATA;
}
// Set up the irq data pointers and enable IRQ
if (dest) {
if (self->miso == 0xff) {
mp_raise_ValueError(MP_ERROR_TEXT("read is not enabled"));
}
spi->SPI.INTENSET.reg = SERCOM_SPI_INTENSET_RXC;
self->dest = dest;
self->rxlen = len;
}
// Send by polling & receive by IRQ
while (txlen) {
if (spi->SPI.INTFLAG.bit.DRE) {
spi->SPI.DATA.bit.DATA = *src;
src += 1;
txlen--;
}
}
// Receive the remaining data, if any and clear IRQ
// Do no wait forever.
if (dest) {
int32_t timeout = 1000;
while (self->rxlen > 0 && timeout) {
timeout--;
MICROPY_EVENT_POLL_HOOK
}
spi->SPI.INTENCLR.reg = SERCOM_SPI_INTENCLR_RXC;
} else {
// Wait for the data being shifted out.
while (!spi->SPI.INTFLAG.bit.TXC) {
}
}
}
static const mp_machine_spi_p_t machine_spi_p = {
.init = machine_spi_init,
.deinit = machine_sercom_deinit,
.transfer = machine_spi_transfer,
};
MP_DEFINE_CONST_OBJ_TYPE(
machine_spi_type,
MP_QSTR_SPI,
MP_TYPE_FLAG_NONE,
make_new, machine_spi_make_new,
print, machine_spi_print,
protocol, &machine_spi_p,
locals_dict, &mp_machine_spi_locals_dict
);
#endif