micropython/py/gc.c
Damien George 516b09efc3 py, gc: Further reduce heap fragmentation with new, faster gc alloc.
The heap allocation is now exactly as it was before the "faster gc
alloc" patch, but it's still nearly as fast.  It is fixed by being
careful to always update the "last free block" pointer whenever the heap
changes (eg free or realloc).

Tested on all tests by enabling EXTENSIVE_HEAP_PROFILING in py/gc.c:
old and new allocator have exactly the same behaviour, just the new one
is much faster.
2014-08-28 23:06:38 +01:00

753 lines
25 KiB
C

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <assert.h>
#include <stdio.h>
#include <string.h>
#include <stdbool.h>
#include "mpconfig.h"
#include "misc.h"
#include "gc.h"
#include "qstr.h"
#include "obj.h"
#include "runtime.h"
#if MICROPY_ENABLE_GC
#if 0 // print debugging info
#define DEBUG_PRINT (1)
#define DEBUG_printf DEBUG_printf
#else // don't print debugging info
#define DEBUG_printf(...) (void)0
#endif
// make this 1 to dump the heap each time it changes
#define EXTENSIVE_HEAP_PROFILING (0)
#define WORDS_PER_BLOCK (4)
#define BYTES_PER_BLOCK (WORDS_PER_BLOCK * BYTES_PER_WORD)
#define STACK_SIZE (64) // tunable; minimum is 1
STATIC byte *gc_alloc_table_start;
STATIC mp_uint_t gc_alloc_table_byte_len;
#if MICROPY_ENABLE_FINALISER
STATIC byte *gc_finaliser_table_start;
#endif
STATIC mp_uint_t *gc_pool_start;
STATIC mp_uint_t *gc_pool_end;
STATIC int gc_stack_overflow;
STATIC mp_uint_t gc_stack[STACK_SIZE];
STATIC mp_uint_t *gc_sp;
STATIC mp_uint_t gc_lock_depth;
STATIC mp_uint_t gc_last_free_atb_index;
// ATB = allocation table byte
// 0b00 = FREE -- free block
// 0b01 = HEAD -- head of a chain of blocks
// 0b10 = TAIL -- in the tail of a chain of blocks
// 0b11 = MARK -- marked head block
#define AT_FREE (0)
#define AT_HEAD (1)
#define AT_TAIL (2)
#define AT_MARK (3)
#define BLOCKS_PER_ATB (4)
#define ATB_MASK_0 (0x03)
#define ATB_MASK_1 (0x0c)
#define ATB_MASK_2 (0x30)
#define ATB_MASK_3 (0xc0)
#define ATB_0_IS_FREE(a) (((a) & ATB_MASK_0) == 0)
#define ATB_1_IS_FREE(a) (((a) & ATB_MASK_1) == 0)
#define ATB_2_IS_FREE(a) (((a) & ATB_MASK_2) == 0)
#define ATB_3_IS_FREE(a) (((a) & ATB_MASK_3) == 0)
#define BLOCK_SHIFT(block) (2 * ((block) & (BLOCKS_PER_ATB - 1)))
#define ATB_GET_KIND(block) ((gc_alloc_table_start[(block) / BLOCKS_PER_ATB] >> BLOCK_SHIFT(block)) & 3)
#define ATB_ANY_TO_FREE(block) do { gc_alloc_table_start[(block) / BLOCKS_PER_ATB] &= (~(AT_MARK << BLOCK_SHIFT(block))); } while (0)
#define ATB_FREE_TO_HEAD(block) do { gc_alloc_table_start[(block) / BLOCKS_PER_ATB] |= (AT_HEAD << BLOCK_SHIFT(block)); } while (0)
#define ATB_FREE_TO_TAIL(block) do { gc_alloc_table_start[(block) / BLOCKS_PER_ATB] |= (AT_TAIL << BLOCK_SHIFT(block)); } while (0)
#define ATB_HEAD_TO_MARK(block) do { gc_alloc_table_start[(block) / BLOCKS_PER_ATB] |= (AT_MARK << BLOCK_SHIFT(block)); } while (0)
#define ATB_MARK_TO_HEAD(block) do { gc_alloc_table_start[(block) / BLOCKS_PER_ATB] &= (~(AT_TAIL << BLOCK_SHIFT(block))); } while (0)
#define BLOCK_FROM_PTR(ptr) (((ptr) - (mp_uint_t)gc_pool_start) / BYTES_PER_BLOCK)
#define PTR_FROM_BLOCK(block) (((block) * BYTES_PER_BLOCK + (mp_uint_t)gc_pool_start))
#define ATB_FROM_BLOCK(bl) ((bl) / BLOCKS_PER_ATB)
#if MICROPY_ENABLE_FINALISER
// FTB = finaliser table byte
// if set, then the corresponding block may have a finaliser
#define BLOCKS_PER_FTB (8)
#define FTB_GET(block) ((gc_finaliser_table_start[(block) / BLOCKS_PER_FTB] >> ((block) & 7)) & 1)
#define FTB_SET(block) do { gc_finaliser_table_start[(block) / BLOCKS_PER_FTB] |= (1 << ((block) & 7)); } while (0)
#define FTB_CLEAR(block) do { gc_finaliser_table_start[(block) / BLOCKS_PER_FTB] &= (~(1 << ((block) & 7))); } while (0)
#endif
// TODO waste less memory; currently requires that all entries in alloc_table have a corresponding block in pool
void gc_init(void *start, void *end) {
// align end pointer on block boundary
end = (void*)((mp_uint_t)end & (~(BYTES_PER_BLOCK - 1)));
DEBUG_printf("Initializing GC heap: %p..%p = " UINT_FMT " bytes\n", start, end, (byte*)end - (byte*)start);
// calculate parameters for GC (T=total, A=alloc table, F=finaliser table, P=pool; all in bytes):
// T = A + F + P
// F = A * BLOCKS_PER_ATB / BLOCKS_PER_FTB
// P = A * BLOCKS_PER_ATB * BYTES_PER_BLOCK
// => T = A * (1 + BLOCKS_PER_ATB / BLOCKS_PER_FTB + BLOCKS_PER_ATB * BYTES_PER_BLOCK)
mp_uint_t total_byte_len = (byte*)end - (byte*)start;
#if MICROPY_ENABLE_FINALISER
gc_alloc_table_byte_len = total_byte_len * BITS_PER_BYTE / (BITS_PER_BYTE + BITS_PER_BYTE * BLOCKS_PER_ATB / BLOCKS_PER_FTB + BITS_PER_BYTE * BLOCKS_PER_ATB * BYTES_PER_BLOCK);
#else
gc_alloc_table_byte_len = total_byte_len / (1 + BITS_PER_BYTE / 2 * BYTES_PER_BLOCK);
#endif
gc_alloc_table_start = (byte*)start;
#if MICROPY_ENABLE_FINALISER
mp_uint_t gc_finaliser_table_byte_len = (gc_alloc_table_byte_len * BLOCKS_PER_ATB + BLOCKS_PER_FTB - 1) / BLOCKS_PER_FTB;
gc_finaliser_table_start = gc_alloc_table_start + gc_alloc_table_byte_len;
#endif
mp_uint_t gc_pool_block_len = gc_alloc_table_byte_len * BLOCKS_PER_ATB;
gc_pool_start = (mp_uint_t*)((byte*)end - gc_pool_block_len * BYTES_PER_BLOCK);
gc_pool_end = (mp_uint_t*)end;
#if MICROPY_ENABLE_FINALISER
assert((byte*)gc_pool_start >= gc_finaliser_table_start + gc_finaliser_table_byte_len);
#endif
// clear ATBs
memset(gc_alloc_table_start, 0, gc_alloc_table_byte_len);
#if MICROPY_ENABLE_FINALISER
// clear FTBs
memset(gc_finaliser_table_start, 0, gc_finaliser_table_byte_len);
#endif
// allocate first block because gc_pool_start points there and it will never
// be freed, so allocating 1 block with null pointers will minimise memory loss
ATB_FREE_TO_HEAD(0);
for (int i = 0; i < WORDS_PER_BLOCK; i++) {
gc_pool_start[i] = 0;
}
// set last free ATB index to start of heap
gc_last_free_atb_index = 0;
// unlock the GC
gc_lock_depth = 0;
DEBUG_printf("GC layout:\n");
DEBUG_printf(" alloc table at %p, length " UINT_FMT " bytes, " UINT_FMT " blocks\n", gc_alloc_table_start, gc_alloc_table_byte_len, gc_alloc_table_byte_len * BLOCKS_PER_ATB);
#if MICROPY_ENABLE_FINALISER
DEBUG_printf(" finaliser table at %p, length " UINT_FMT " bytes, " UINT_FMT " blocks\n", gc_finaliser_table_start, gc_finaliser_table_byte_len, gc_finaliser_table_byte_len * BLOCKS_PER_FTB);
#endif
DEBUG_printf(" pool at %p, length " UINT_FMT " bytes, " UINT_FMT " blocks\n", gc_pool_start, gc_pool_block_len * BYTES_PER_BLOCK, gc_pool_block_len);
}
void gc_lock(void) {
gc_lock_depth++;
}
void gc_unlock(void) {
gc_lock_depth--;
}
bool gc_is_locked(void) {
return gc_lock_depth != 0;
}
#define VERIFY_PTR(ptr) ( \
(ptr & (BYTES_PER_BLOCK - 1)) == 0 /* must be aligned on a block */ \
&& ptr >= (mp_uint_t)gc_pool_start /* must be above start of pool */ \
&& ptr < (mp_uint_t)gc_pool_end /* must be below end of pool */ \
)
#define VERIFY_MARK_AND_PUSH(ptr) \
do { \
if (VERIFY_PTR(ptr)) { \
mp_uint_t _block = BLOCK_FROM_PTR(ptr); \
if (ATB_GET_KIND(_block) == AT_HEAD) { \
/* an unmarked head, mark it, and push it on gc stack */ \
ATB_HEAD_TO_MARK(_block); \
if (gc_sp < &gc_stack[STACK_SIZE]) { \
*gc_sp++ = _block; \
} else { \
gc_stack_overflow = 1; \
} \
} \
} \
} while (0)
STATIC void gc_drain_stack(void) {
while (gc_sp > gc_stack) {
// pop the next block off the stack
mp_uint_t block = *--gc_sp;
// work out number of consecutive blocks in the chain starting with this one
mp_uint_t n_blocks = 0;
do {
n_blocks += 1;
} while (ATB_GET_KIND(block + n_blocks) == AT_TAIL);
// check this block's children
mp_uint_t *scan = (mp_uint_t*)PTR_FROM_BLOCK(block);
for (mp_uint_t i = n_blocks * WORDS_PER_BLOCK; i > 0; i--, scan++) {
mp_uint_t ptr2 = *scan;
VERIFY_MARK_AND_PUSH(ptr2);
}
}
}
STATIC void gc_deal_with_stack_overflow(void) {
while (gc_stack_overflow) {
gc_stack_overflow = 0;
gc_sp = gc_stack;
// scan entire memory looking for blocks which have been marked but not their children
for (mp_uint_t block = 0; block < gc_alloc_table_byte_len * BLOCKS_PER_ATB; block++) {
// trace (again) if mark bit set
if (ATB_GET_KIND(block) == AT_MARK) {
*gc_sp++ = block;
gc_drain_stack();
}
}
}
}
#if MICROPY_PY_GC_COLLECT_RETVAL
uint gc_collected;
#endif
STATIC void gc_sweep(void) {
#if MICROPY_PY_GC_COLLECT_RETVAL
gc_collected = 0;
#endif
// free unmarked heads and their tails
int free_tail = 0;
for (mp_uint_t block = 0; block < gc_alloc_table_byte_len * BLOCKS_PER_ATB; block++) {
switch (ATB_GET_KIND(block)) {
case AT_HEAD:
#if MICROPY_ENABLE_FINALISER
if (FTB_GET(block)) {
mp_obj_t obj = (mp_obj_t)PTR_FROM_BLOCK(block);
if (((mp_obj_base_t*)obj)->type != MP_OBJ_NULL) {
// if the object has a type then see if it has a __del__ method
mp_obj_t dest[2];
mp_load_method_maybe(obj, MP_QSTR___del__, dest);
if (dest[0] != MP_OBJ_NULL) {
// load_method returned a method
mp_call_method_n_kw(0, 0, dest);
}
}
// clear finaliser flag
FTB_CLEAR(block);
}
#endif
free_tail = 1;
#if MICROPY_PY_GC_COLLECT_RETVAL
gc_collected++;
#endif
// fall through to free the head
case AT_TAIL:
if (free_tail) {
DEBUG_printf("gc_sweep(%p)\n",PTR_FROM_BLOCK(block));
ATB_ANY_TO_FREE(block);
}
break;
case AT_MARK:
ATB_MARK_TO_HEAD(block);
free_tail = 0;
break;
}
}
}
void gc_collect_start(void) {
gc_lock();
gc_stack_overflow = 0;
gc_sp = gc_stack;
}
void gc_collect_root(void **ptrs, mp_uint_t len) {
for (mp_uint_t i = 0; i < len; i++) {
mp_uint_t ptr = (mp_uint_t)ptrs[i];
VERIFY_MARK_AND_PUSH(ptr);
gc_drain_stack();
}
}
void gc_collect_end(void) {
gc_deal_with_stack_overflow();
gc_sweep();
gc_last_free_atb_index = 0;
gc_unlock();
}
void gc_info(gc_info_t *info) {
info->total = (gc_pool_end - gc_pool_start) * sizeof(mp_uint_t);
info->used = 0;
info->free = 0;
info->num_1block = 0;
info->num_2block = 0;
info->max_block = 0;
for (mp_uint_t block = 0, len = 0; block < gc_alloc_table_byte_len * BLOCKS_PER_ATB; block++) {
mp_uint_t kind = ATB_GET_KIND(block);
if (kind == AT_FREE || kind == AT_HEAD) {
if (len == 1) {
info->num_1block += 1;
} else if (len == 2) {
info->num_2block += 1;
}
if (len > info->max_block) {
info->max_block = len;
}
}
switch (kind) {
case AT_FREE:
info->free += 1;
len = 0;
break;
case AT_HEAD:
info->used += 1;
len = 1;
break;
case AT_TAIL:
info->used += 1;
len += 1;
break;
case AT_MARK:
// shouldn't happen
break;
}
}
info->used *= BYTES_PER_BLOCK;
info->free *= BYTES_PER_BLOCK;
}
void *gc_alloc(mp_uint_t n_bytes, bool has_finaliser) {
mp_uint_t n_blocks = ((n_bytes + BYTES_PER_BLOCK - 1) & (~(BYTES_PER_BLOCK - 1))) / BYTES_PER_BLOCK;
DEBUG_printf("gc_alloc(" UINT_FMT " bytes -> " UINT_FMT " blocks)\n", n_bytes, n_blocks);
// check if GC is locked
if (gc_lock_depth > 0) {
return NULL;
}
// check for 0 allocation
if (n_blocks == 0) {
return NULL;
}
mp_uint_t i;
mp_uint_t end_block;
mp_uint_t start_block;
mp_uint_t n_free = 0;
int collected = 0;
for (;;) {
// look for a run of n_blocks available blocks
for (i = gc_last_free_atb_index; i < gc_alloc_table_byte_len; i++) {
byte a = gc_alloc_table_start[i];
if (ATB_0_IS_FREE(a)) { if (++n_free >= n_blocks) { i = i * BLOCKS_PER_ATB + 0; goto found; } } else { n_free = 0; }
if (ATB_1_IS_FREE(a)) { if (++n_free >= n_blocks) { i = i * BLOCKS_PER_ATB + 1; goto found; } } else { n_free = 0; }
if (ATB_2_IS_FREE(a)) { if (++n_free >= n_blocks) { i = i * BLOCKS_PER_ATB + 2; goto found; } } else { n_free = 0; }
if (ATB_3_IS_FREE(a)) { if (++n_free >= n_blocks) { i = i * BLOCKS_PER_ATB + 3; goto found; } } else { n_free = 0; }
}
// nothing found!
if (collected) {
return NULL;
}
DEBUG_printf("gc_alloc(" UINT_FMT "): no free mem, triggering GC\n", n_bytes);
gc_collect();
collected = 1;
}
// found, ending at block i inclusive
found:
// get starting and end blocks, both inclusive
end_block = i;
start_block = i - n_free + 1;
// Set last free ATB index to block after last block we found, for start of
// next scan. To reduce fragmentation, we only do this if we were looking
// for a single free block, which guarantees that there are no free blocks
// before this one. Also, whenever we free or shink a block we must check
// if this index needs adjusting (see gc_realloc and gc_free).
if (n_free == 1) {
gc_last_free_atb_index = (i + 1) / BLOCKS_PER_ATB;
}
// mark first block as used head
ATB_FREE_TO_HEAD(start_block);
// mark rest of blocks as used tail
// TODO for a run of many blocks can make this more efficient
for (mp_uint_t bl = start_block + 1; bl <= end_block; bl++) {
ATB_FREE_TO_TAIL(bl);
}
// get pointer to first block
void *ret_ptr = (void*)(gc_pool_start + start_block * WORDS_PER_BLOCK);
DEBUG_printf("gc_alloc(%p)\n", ret_ptr);
// zero out the additional bytes of the newly allocated blocks
// This is needed because the blocks may have previously held pointers
// to the heap and will not be set to something else if the caller
// doesn't actually use the entire block. As such they will continue
// to point to the heap and may prevent other blocks from being reclaimed.
memset((byte*)ret_ptr + n_bytes, 0, (end_block - start_block + 1) * BYTES_PER_BLOCK - n_bytes);
#if MICROPY_ENABLE_FINALISER
if (has_finaliser) {
// clear type pointer in case it is never set
((mp_obj_base_t*)ret_ptr)->type = MP_OBJ_NULL;
// set mp_obj flag only if it has a finaliser
FTB_SET(start_block);
}
#endif
#if EXTENSIVE_HEAP_PROFILING
gc_dump_alloc_table();
#endif
return ret_ptr;
}
/*
void *gc_alloc(mp_uint_t n_bytes) {
return _gc_alloc(n_bytes, false);
}
void *gc_alloc_with_finaliser(mp_uint_t n_bytes) {
return _gc_alloc(n_bytes, true);
}
*/
// force the freeing of a piece of memory
void gc_free(void *ptr_in) {
if (gc_lock_depth > 0) {
// TODO how to deal with this error?
return;
}
mp_uint_t ptr = (mp_uint_t)ptr_in;
DEBUG_printf("gc_free(%p)\n", ptr);
if (VERIFY_PTR(ptr)) {
mp_uint_t block = BLOCK_FROM_PTR(ptr);
if (ATB_GET_KIND(block) == AT_HEAD) {
// set the last_free pointer to this block if it's earlier in the heap
if (block / BLOCKS_PER_ATB < gc_last_free_atb_index) {
gc_last_free_atb_index = block / BLOCKS_PER_ATB;
}
// free head and all of its tail blocks
do {
ATB_ANY_TO_FREE(block);
block += 1;
} while (ATB_GET_KIND(block) == AT_TAIL);
#if EXTENSIVE_HEAP_PROFILING
gc_dump_alloc_table();
#endif
}
}
}
mp_uint_t gc_nbytes(void *ptr_in) {
mp_uint_t ptr = (mp_uint_t)ptr_in;
if (VERIFY_PTR(ptr)) {
mp_uint_t block = BLOCK_FROM_PTR(ptr);
if (ATB_GET_KIND(block) == AT_HEAD) {
// work out number of consecutive blocks in the chain starting with this on
mp_uint_t n_blocks = 0;
do {
n_blocks += 1;
} while (ATB_GET_KIND(block + n_blocks) == AT_TAIL);
return n_blocks * BYTES_PER_BLOCK;
}
}
// invalid pointer
return 0;
}
#if 0
// old, simple realloc that didn't expand memory in place
void *gc_realloc(void *ptr, mp_uint_t n_bytes) {
mp_uint_t n_existing = gc_nbytes(ptr);
if (n_bytes <= n_existing) {
return ptr;
} else {
bool has_finaliser;
if (ptr == NULL) {
has_finaliser = false;
} else {
#if MICROPY_ENABLE_FINALISER
has_finaliser = FTB_GET(BLOCK_FROM_PTR((mp_uint_t)ptr));
#else
has_finaliser = false;
#endif
}
void *ptr2 = gc_alloc(n_bytes, has_finaliser);
if (ptr2 == NULL) {
return ptr2;
}
memcpy(ptr2, ptr, n_existing);
gc_free(ptr);
return ptr2;
}
}
#else // Alternative gc_realloc impl
void *gc_realloc(void *ptr_in, mp_uint_t n_bytes) {
if (gc_lock_depth > 0) {
return NULL;
}
// check for pure allocation
if (ptr_in == NULL) {
return gc_alloc(n_bytes, false);
}
mp_uint_t ptr = (mp_uint_t)ptr_in;
// sanity check the ptr
if (!VERIFY_PTR(ptr)) {
return NULL;
}
// get first block
mp_uint_t block = BLOCK_FROM_PTR(ptr);
// sanity check the ptr is pointing to the head of a block
if (ATB_GET_KIND(block) != AT_HEAD) {
return NULL;
}
// compute number of new blocks that are requested
mp_uint_t new_blocks = (n_bytes + BYTES_PER_BLOCK - 1) / BYTES_PER_BLOCK;
// get the number of consecutive tail blocks and
// the number of free blocks after last tail block
// stop if we reach (or are at) end of heap
mp_uint_t n_free = 0;
mp_uint_t n_blocks = 1; // counting HEAD block
mp_uint_t max_block = gc_alloc_table_byte_len * BLOCKS_PER_ATB;
while (block + n_blocks + n_free < max_block) {
if (n_blocks + n_free >= new_blocks) {
// stop as soon as we find enough blocks for n_bytes
break;
}
byte block_type = ATB_GET_KIND(block + n_blocks + n_free);
switch (block_type) {
case AT_FREE: n_free++; continue;
case AT_TAIL: n_blocks++; continue;
case AT_MARK: assert(0);
}
break;
}
// return original ptr if it already has the requested number of blocks
if (new_blocks == n_blocks) {
return ptr_in;
}
// check if we can shrink the allocated area
if (new_blocks < n_blocks) {
// free unneeded tail blocks
for (mp_uint_t bl = block + new_blocks; ATB_GET_KIND(bl) == AT_TAIL; bl++) {
ATB_ANY_TO_FREE(bl);
}
// set the last_free pointer to end of this block if it's earlier in the heap
if ((block + new_blocks) / BLOCKS_PER_ATB < gc_last_free_atb_index) {
gc_last_free_atb_index = (block + new_blocks) / BLOCKS_PER_ATB;
}
#if EXTENSIVE_HEAP_PROFILING
gc_dump_alloc_table();
#endif
return ptr_in;
}
// check if we can expand in place
if (new_blocks <= n_blocks + n_free) {
// mark few more blocks as used tail
for (mp_uint_t bl = block + n_blocks; bl < block + new_blocks; bl++) {
assert(ATB_GET_KIND(bl) == AT_FREE);
ATB_FREE_TO_TAIL(bl);
}
// zero out the additional bytes of the newly allocated blocks (see comment above in gc_alloc)
memset((byte*)ptr_in + n_bytes, 0, new_blocks * BYTES_PER_BLOCK - n_bytes);
#if EXTENSIVE_HEAP_PROFILING
gc_dump_alloc_table();
#endif
return ptr_in;
}
// can't resize inplace; try to find a new contiguous chain
void *ptr_out = gc_alloc(n_bytes,
#if MICROPY_ENABLE_FINALISER
FTB_GET(block)
#else
false
#endif
);
// check that the alloc succeeded
if (ptr_out == NULL) {
return NULL;
}
DEBUG_printf("gc_realloc(%p -> %p)\n", ptr_in, ptr_out);
memcpy(ptr_out, ptr_in, n_blocks * BYTES_PER_BLOCK);
gc_free(ptr_in);
return ptr_out;
}
#endif // Alternative gc_realloc impl
void gc_dump_info() {
gc_info_t info;
gc_info(&info);
printf("GC: total: " UINT_FMT ", used: " UINT_FMT ", free: " UINT_FMT "\n", info.total, info.used, info.free);
printf(" No. of 1-blocks: " UINT_FMT ", 2-blocks: " UINT_FMT ", max blk sz: " UINT_FMT "\n",
info.num_1block, info.num_2block, info.max_block);
}
void gc_dump_alloc_table(void) {
static const mp_uint_t DUMP_BYTES_PER_LINE = 64;
#if !EXTENSIVE_HEAP_PROFILING
// When comparing heap output we don't want to print the starting
// pointer of the heap because it changes from run to run.
printf("GC memory layout; from %p:", gc_pool_start);
#endif
for (mp_uint_t bl = 0; bl < gc_alloc_table_byte_len * BLOCKS_PER_ATB; bl++) {
if (bl % DUMP_BYTES_PER_LINE == 0) {
// a new line of blocks
#if EXTENSIVE_HEAP_PROFILING
{
// check if this line contains only free blocks
bool only_free_blocks = true;
for (mp_uint_t bl2 = bl; bl2 < gc_alloc_table_byte_len * BLOCKS_PER_ATB && bl2 < bl + DUMP_BYTES_PER_LINE; bl2++) {
if (ATB_GET_KIND(bl2) != AT_FREE) {
only_free_blocks = false;
break;
}
}
if (only_free_blocks) {
// line contains only free blocks, so skip printing it
bl += DUMP_BYTES_PER_LINE - 1;
continue;
}
}
#endif
// print header for new line of blocks
printf("\n%04x: ", (uint)bl);
}
int c = ' ';
switch (ATB_GET_KIND(bl)) {
case AT_FREE: c = '.'; break;
case AT_HEAD: c = 'h'; break;
/* this prints the uPy object type of the head block
case AT_HEAD: {
mp_uint_t *ptr = gc_pool_start + bl * WORDS_PER_BLOCK;
if (*ptr == (mp_uint_t)&mp_type_tuple) { c = 'T'; }
else if (*ptr == (mp_uint_t)&mp_type_list) { c = 'L'; }
else if (*ptr == (mp_uint_t)&mp_type_dict) { c = 'D'; }
else if (*ptr == (mp_uint_t)&mp_type_float) { c = 'F'; }
else if (*ptr == (mp_uint_t)&mp_type_fun_bc) { c = 'B'; }
else { c = 'h'; }
break;
}
*/
case AT_TAIL: c = 't'; break;
case AT_MARK: c = 'm'; break;
}
printf("%c", c);
}
printf("\n");
}
#if DEBUG_PRINT
void gc_test(void) {
mp_uint_t len = 500;
mp_uint_t *heap = malloc(len);
gc_init(heap, heap + len / sizeof(mp_uint_t));
void *ptrs[100];
{
mp_uint_t **p = gc_alloc(16, false);
p[0] = gc_alloc(64, false);
p[1] = gc_alloc(1, false);
p[2] = gc_alloc(1, false);
p[3] = gc_alloc(1, false);
mp_uint_t ***p2 = gc_alloc(16, false);
p2[0] = p;
p2[1] = p;
ptrs[0] = p2;
}
for (int i = 0; i < 25; i+=2) {
mp_uint_t *p = gc_alloc(i, false);
printf("p=%p\n", p);
if (i & 3) {
//ptrs[i] = p;
}
}
printf("Before GC:\n");
gc_dump_alloc_table();
printf("Starting GC...\n");
gc_collect_start();
gc_collect_root(ptrs, sizeof(ptrs) / sizeof(void*));
gc_collect_end();
printf("After GC:\n");
gc_dump_alloc_table();
}
#endif
#endif // MICROPY_ENABLE_GC