micropython/ports/esp32/machine_i2s.c
Damien George e4650125b8 esp32: Update port to support IDF v5.0.2.
This commit updates the esp32 port to work exclusively with ESP-IDF v5.
IDF v5 is needed for some of the newer ESP32 SoCs to work, and it also
cleans up a lot of the inconsistencies between existing SoCs (eg S2, S3,
and C3).

Support for IDF v4 is dropped because it's a lot of effort to maintain both
versions at the same time.

The following components have been verified to work on the various SoCs:

                ESP32     ESP32-S2  ESP32-S3  ESP32-C3
    build       pass      pass      pass      pass
    SPIRAM      pass      pass      pass      N/A
    REPL (UART) pass      pass      pass      pass
    REPL (USB)  N/A       pass      pass      N/A
    filesystem  pass      pass      pass      pass
    GPIO        pass      pass      pass      pass
    SPI         pass      pass      pass      pass
    I2C         pass      pass      pass      pass
    PWM         pass      pass      pass      pass
    ADC         pass      pass      pass      pass
    WiFi STA    pass      pass      pass      pass
    WiFi AP     pass      pass      pass      pass
    BLE         pass      N/A       pass      pass
    ETH         pass      --        --        --
    PPP         pass      pass      pass      --
    sockets     pass      pass      pass      pass
    SSL         pass      ENOMEM    pass      pass
    RMT         pass      pass      pass      pass
    NeoPixel    pass      pass      pass      pass
    I2S         pass      pass      pass      N/A
    ESPNow      pass      pass      pass      pass
    ULP-FSM     pass      pass      pass      N/A
    SDCard      pass      N/A       N/A       pass
    WDT         pass      pass      pass      pass

Signed-off-by: Damien George <damien@micropython.org>
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
2023-06-23 15:34:22 +10:00

825 lines
30 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2021 Mike Teachman
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include <stdbool.h>
#include "py/obj.h"
#include "py/runtime.h"
#include "py/misc.h"
#include "py/stream.h"
#include "py/objstr.h"
#include "modmachine.h"
#include "mphalport.h"
#if MICROPY_PY_MACHINE_I2S
#include "driver/i2s.h"
#include "soc/i2s_reg.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/queue.h"
#include "esp_task.h"
// The I2S module has 3 modes of operation:
//
// Mode1: Blocking
// - readinto() and write() methods block until the supplied buffer is filled (read) or emptied (write)
// - this is the default mode of operation
//
// Mode2: Non-Blocking
// - readinto() and write() methods return immediately.
// - buffer filling and emptying happens asynchronously to the main MicroPython task
// - a callback function is called when the supplied buffer has been filled (read) or emptied (write)
// - non-blocking mode is enabled when a callback is set with the irq() method
// - a FreeRTOS task is created to implement the asynchronous background operations
// - a FreeRTOS queue is used to transfer the supplied buffer to the background task
//
// Mode3: Asyncio
// - implements the stream protocol
// - asyncio mode is enabled when the ioctl() function is called
// - the I2S event queue is used to detect that I2S samples can be read or written from/to DMA memory
//
// The samples contained in the app buffer supplied for the readinto() and write() methods have the following convention:
// Mono: little endian format
// Stereo: little endian format, left channel first
//
// I2S terms:
// "frame": consists of two audio samples (Left audio sample + Right audio sample)
//
// Misc:
// - for Mono configuration:
// - readinto method: samples are gathered from the L channel only
// - write method: every sample is output to both the L and R channels
// - for readinto method the I2S hardware is read using 8-byte frames
// (this is standard for almost all I2S hardware, such as MEMS microphones)
// - all sample data transfers use DMA
#define I2S_TASK_PRIORITY (ESP_TASK_PRIO_MIN + 1)
#define I2S_TASK_STACK_SIZE (2048)
#define DMA_BUF_LEN_IN_I2S_FRAMES (256)
// The transform buffer is used with the readinto() method to bridge the opaque DMA memory on the ESP devices
// with the app buffer. It facilitates audio sample transformations. e.g. 32-bits samples to 16-bit samples.
// The size of 240 bytes is an engineering optimum that balances transfer performance with an acceptable use of heap space
#define SIZEOF_TRANSFORM_BUFFER_IN_BYTES (240)
#define NUM_I2S_USER_FORMATS (4)
#define I2S_RX_FRAME_SIZE_IN_BYTES (8)
typedef enum {
MONO,
STEREO
} format_t;
typedef enum {
BLOCKING,
NON_BLOCKING,
ASYNCIO
} io_mode_t;
typedef enum {
I2S_TX_TRANSFER,
I2S_RX_TRANSFER,
} direction_t;
typedef struct _non_blocking_descriptor_t {
mp_buffer_info_t appbuf;
mp_obj_t callback;
direction_t direction;
} non_blocking_descriptor_t;
typedef struct _machine_i2s_obj_t {
mp_obj_base_t base;
i2s_port_t port;
mp_hal_pin_obj_t sck;
mp_hal_pin_obj_t ws;
mp_hal_pin_obj_t sd;
int8_t mode;
i2s_bits_per_sample_t bits;
format_t format;
int32_t rate;
int32_t ibuf;
mp_obj_t callback_for_non_blocking;
io_mode_t io_mode;
uint8_t transform_buffer[SIZEOF_TRANSFORM_BUFFER_IN_BYTES];
QueueHandle_t i2s_event_queue;
QueueHandle_t non_blocking_mode_queue;
TaskHandle_t non_blocking_mode_task;
} machine_i2s_obj_t;
STATIC mp_obj_t machine_i2s_deinit(mp_obj_t self_in);
// The frame map is used with the readinto() method to transform the audio sample data coming
// from DMA memory (32-bit stereo, with the L and R channels reversed) to the format specified
// in the I2S constructor. e.g. 16-bit mono
STATIC const int8_t i2s_frame_map[NUM_I2S_USER_FORMATS][I2S_RX_FRAME_SIZE_IN_BYTES] = {
{ 6, 7, -1, -1, -1, -1, -1, -1 }, // Mono, 16-bits
{ 4, 5, 6, 7, -1, -1, -1, -1 }, // Mono, 32-bits
{ 6, 7, 2, 3, -1, -1, -1, -1 }, // Stereo, 16-bits
{ 4, 5, 6, 7, 0, 1, 2, 3 }, // Stereo, 32-bits
};
void machine_i2s_init0() {
for (i2s_port_t p = 0; p < I2S_NUM_AUTO; p++) {
MP_STATE_PORT(machine_i2s_obj)[p] = NULL;
}
}
// The following function takes a sample buffer and swaps L/R channels
//
// Background: For 32-bit stereo, the ESP-IDF API has a L/R channel orientation that breaks
// convention with other ESP32 channel formats
//
// appbuf[] = [L_0-7, L_8-15, L_16-23, L_24-31, R_0-7, R_8-15, R_16-23, R_24-31] = [Left channel, Right channel]
// dma[] = [R_0-7, R_8-15, R_16-23, R_24-31, L_0-7, L_8-15, L_16-23, L_24-31] = [Right channel, Left channel]
//
// where:
// L_0-7 is the least significant byte of the 32 bit sample in the Left channel
// L_24-31 is the most significant byte of the 32 bit sample in the Left channel
//
// Example:
//
// appbuf[] = [0x99, 0xBB, 0x11, 0x22, 0x44, 0x55, 0xAB, 0x77] = [Left channel, Right channel]
// dma[] = [0x44, 0x55, 0xAB, 0x77, 0x99, 0xBB, 0x11, 0x22] = [Right channel, Left channel]
// where:
// LEFT Channel = 0x99, 0xBB, 0x11, 0x22
// RIGHT Channel = 0x44, 0x55, 0xAB, 0x77
//
// samples in appbuf are in little endian format:
// 0x77 is the most significant byte of the 32-bit sample
// 0x44 is the least significant byte of the 32-bit sample
STATIC void swap_32_bit_stereo_channels(mp_buffer_info_t *bufinfo) {
int32_t swap_sample;
int32_t *sample = bufinfo->buf;
uint32_t num_samples = bufinfo->len / 4;
for (uint32_t i = 0; i < num_samples; i += 2) {
swap_sample = sample[i + 1];
sample[i + 1] = sample[i];
sample[i] = swap_sample;
}
}
STATIC int8_t get_frame_mapping_index(i2s_bits_per_sample_t bits, format_t format) {
if (format == MONO) {
if (bits == I2S_BITS_PER_SAMPLE_16BIT) {
return 0;
} else { // 32 bits
return 1;
}
} else { // STEREO
if (bits == I2S_BITS_PER_SAMPLE_16BIT) {
return 2;
} else { // 32 bits
return 3;
}
}
}
STATIC i2s_bits_per_sample_t get_dma_bits(uint8_t mode, i2s_bits_per_sample_t bits) {
if (mode == (I2S_MODE_MASTER | I2S_MODE_TX)) {
return bits;
} else { // Master Rx
// read 32 bit samples for I2S hardware. e.g. MEMS microphones
return I2S_BITS_PER_SAMPLE_32BIT;
}
}
STATIC i2s_channel_fmt_t get_dma_format(uint8_t mode, format_t format) {
if (mode == (I2S_MODE_MASTER | I2S_MODE_TX)) {
if (format == MONO) {
return I2S_CHANNEL_FMT_ONLY_LEFT;
} else { // STEREO
return I2S_CHANNEL_FMT_RIGHT_LEFT;
}
} else { // Master Rx
// read stereo frames for all I2S hardware
return I2S_CHANNEL_FMT_RIGHT_LEFT;
}
}
STATIC uint32_t get_dma_buf_count(uint8_t mode, i2s_bits_per_sample_t bits, format_t format, int32_t ibuf) {
// calculate how many DMA buffers need to be allocated
uint32_t dma_frame_size_in_bytes =
(get_dma_bits(mode, bits) / 8) * (get_dma_format(mode, format) == I2S_CHANNEL_FMT_RIGHT_LEFT ? 2: 1);
uint32_t dma_buf_count = ibuf / (DMA_BUF_LEN_IN_I2S_FRAMES * dma_frame_size_in_bytes);
return dma_buf_count;
}
STATIC uint32_t fill_appbuf_from_dma(machine_i2s_obj_t *self, mp_buffer_info_t *appbuf) {
// copy audio samples from DMA memory to the app buffer
// audio samples are read from DMA memory in chunks
// loop, reading and copying chunks until the app buffer is filled
// For asyncio mode, the loop will make an early exit if DMA memory becomes empty
// Example:
// a MicroPython I2S object is configured for 16-bit mono (2 bytes per audio sample).
// For every frame coming from DMA (8 bytes), 2 bytes are "cherry picked" and
// copied to the supplied app buffer.
// Thus, for every 1 byte copied to the app buffer, 4 bytes are read from DMA memory.
// If a 8kB app buffer is supplied, 32kB of audio samples is read from DMA memory.
uint32_t a_index = 0;
uint8_t *app_p = appbuf->buf;
uint8_t appbuf_sample_size_in_bytes = (self->bits / 8) * (self->format == STEREO ? 2: 1);
uint32_t num_bytes_needed_from_dma = appbuf->len * (I2S_RX_FRAME_SIZE_IN_BYTES / appbuf_sample_size_in_bytes);
while (num_bytes_needed_from_dma) {
size_t num_bytes_requested_from_dma = MIN(sizeof(self->transform_buffer), num_bytes_needed_from_dma);
size_t num_bytes_received_from_dma = 0;
TickType_t delay;
if (self->io_mode == ASYNCIO) {
delay = 0; // stop i2s_read() operation if DMA memory becomes empty
} else {
delay = portMAX_DELAY; // block until supplied buffer is filled
}
esp_err_t ret = i2s_read(
self->port,
self->transform_buffer,
num_bytes_requested_from_dma,
&num_bytes_received_from_dma,
delay);
check_esp_err(ret);
// process the transform buffer one frame at a time.
// copy selected bytes from the transform buffer into the user supplied appbuf.
// Example:
// a MicroPython I2S object is configured for 16-bit mono. This configuration associates to
// a frame map index of 0 = { 6, 7, -1, -1, -1, -1, -1, -1 } in the i2s_frame_map array
// This mapping indicates:
// appbuf[x+0] = frame[6]
// appbuf[x+1] = frame[7]
// frame bytes 0-5 are not used
uint32_t t_index = 0;
uint8_t f_index = get_frame_mapping_index(self->bits, self->format);
while (t_index < num_bytes_received_from_dma) {
uint8_t *transform_p = self->transform_buffer + t_index;
for (uint8_t i = 0; i < I2S_RX_FRAME_SIZE_IN_BYTES; i++) {
int8_t t_to_a_mapping = i2s_frame_map[f_index][i];
if (t_to_a_mapping != -1) {
*app_p++ = transform_p[t_to_a_mapping];
a_index++;
}
t_index++;
}
}
num_bytes_needed_from_dma -= num_bytes_received_from_dma;
if ((self->io_mode == ASYNCIO) && (num_bytes_received_from_dma < num_bytes_requested_from_dma)) {
// Unable to fill the entire app buffer from DMA memory. This indicates all DMA RX buffers are empty.
// Clear the I2S event queue so ioctl() indicates that the I2S object cannot currently
// supply more audio samples
xQueueReset(self->i2s_event_queue);
break;
}
}
return a_index;
}
STATIC size_t copy_appbuf_to_dma(machine_i2s_obj_t *self, mp_buffer_info_t *appbuf) {
if ((self->bits == I2S_BITS_PER_SAMPLE_32BIT) && (self->format == STEREO)) {
swap_32_bit_stereo_channels(appbuf);
}
size_t num_bytes_written = 0;
TickType_t delay;
if (self->io_mode == ASYNCIO) {
delay = 0; // stop i2s_write() operation if DMA memory becomes full
} else {
delay = portMAX_DELAY; // block until supplied buffer is emptied
}
esp_err_t ret = i2s_write(self->port, appbuf->buf, appbuf->len, &num_bytes_written, delay);
check_esp_err(ret);
if ((self->io_mode == ASYNCIO) && (num_bytes_written < appbuf->len)) {
// Unable to empty the entire app buffer into DMA memory. This indicates all DMA TX buffers are full.
// Clear the I2S event queue so ioctl() indicates that the I2S object cannot currently
// accept more audio samples
xQueueReset(self->i2s_event_queue);
// Undo the swap transformation as the buffer has not been completely emptied.
// The asyncio stream writer will use the same buffer in a future write call.
if ((self->bits == I2S_BITS_PER_SAMPLE_32BIT) && (self->format == STEREO)) {
swap_32_bit_stereo_channels(appbuf);
}
}
return num_bytes_written;
}
// FreeRTOS task used for non-blocking mode
STATIC void task_for_non_blocking_mode(void *self_in) {
machine_i2s_obj_t *self = (machine_i2s_obj_t *)self_in;
non_blocking_descriptor_t descriptor;
for (;;) {
if (xQueueReceive(self->non_blocking_mode_queue, &descriptor, portMAX_DELAY)) {
if (descriptor.direction == I2S_TX_TRANSFER) {
copy_appbuf_to_dma(self, &descriptor.appbuf);
} else { // RX
fill_appbuf_from_dma(self, &descriptor.appbuf);
}
mp_sched_schedule(descriptor.callback, MP_OBJ_FROM_PTR(self));
}
}
}
STATIC void machine_i2s_init_helper(machine_i2s_obj_t *self, size_t n_pos_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum {
ARG_sck,
ARG_ws,
ARG_sd,
ARG_mode,
ARG_bits,
ARG_format,
ARG_rate,
ARG_ibuf,
};
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_sck, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_ws, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_sd, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_mode, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_bits, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_format, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_rate, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_ibuf, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_pos_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
//
// ---- Check validity of arguments ----
//
// are Pins valid?
int8_t sck = args[ARG_sck].u_obj == MP_OBJ_NULL ? -1 : mp_hal_get_pin_obj(args[ARG_sck].u_obj);
int8_t ws = args[ARG_ws].u_obj == MP_OBJ_NULL ? -1 : mp_hal_get_pin_obj(args[ARG_ws].u_obj);
int8_t sd = args[ARG_sd].u_obj == MP_OBJ_NULL ? -1 : mp_hal_get_pin_obj(args[ARG_sd].u_obj);
// is Mode valid?
i2s_mode_t mode = args[ARG_mode].u_int;
if ((mode != (I2S_MODE_MASTER | I2S_MODE_RX)) &&
(mode != (I2S_MODE_MASTER | I2S_MODE_TX))) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid mode"));
}
// is Bits valid?
i2s_bits_per_sample_t bits = args[ARG_bits].u_int;
if ((bits != I2S_BITS_PER_SAMPLE_16BIT) &&
(bits != I2S_BITS_PER_SAMPLE_32BIT)) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid bits"));
}
// is Format valid?
format_t format = args[ARG_format].u_int;
if ((format != STEREO) &&
(format != MONO)) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid format"));
}
// is Rate valid?
// Not checked: ESP-IDF I2S API does not indicate a valid range for sample rate
// is Ibuf valid?
// Not checked: ESP-IDF I2S API will return error if requested buffer size exceeds available memory
self->sck = sck;
self->ws = ws;
self->sd = sd;
self->mode = mode;
self->bits = bits;
self->format = format;
self->rate = args[ARG_rate].u_int;
self->ibuf = args[ARG_ibuf].u_int;
self->callback_for_non_blocking = MP_OBJ_NULL;
self->i2s_event_queue = NULL;
self->non_blocking_mode_queue = NULL;
self->non_blocking_mode_task = NULL;
self->io_mode = BLOCKING;
i2s_config_t i2s_config;
i2s_config.communication_format = I2S_COMM_FORMAT_I2S;
i2s_config.mode = mode;
i2s_config.bits_per_sample = get_dma_bits(mode, bits);
i2s_config.channel_format = get_dma_format(mode, format);
i2s_config.sample_rate = self->rate;
i2s_config.intr_alloc_flags = ESP_INTR_FLAG_LOWMED;
i2s_config.dma_buf_count = get_dma_buf_count(mode, bits, format, self->ibuf);
i2s_config.dma_buf_len = DMA_BUF_LEN_IN_I2S_FRAMES;
i2s_config.use_apll = false;
i2s_config.tx_desc_auto_clear = true;
i2s_config.fixed_mclk = 0;
i2s_config.mclk_multiple = I2S_MCLK_MULTIPLE_256;
i2s_config.bits_per_chan = 0;
// I2S queue size equals the number of DMA buffers
check_esp_err(i2s_driver_install(self->port, &i2s_config, i2s_config.dma_buf_count, &self->i2s_event_queue));
// apply low-level workaround for bug in some ESP-IDF versions that swap
// the left and right channels
// https://github.com/espressif/esp-idf/issues/6625
#if CONFIG_IDF_TARGET_ESP32S3
REG_SET_BIT(I2S_TX_CONF_REG(self->port), I2S_TX_MSB_SHIFT);
REG_SET_BIT(I2S_TX_CONF_REG(self->port), I2S_RX_MSB_SHIFT);
#else
REG_SET_BIT(I2S_CONF_REG(self->port), I2S_TX_MSB_RIGHT);
REG_SET_BIT(I2S_CONF_REG(self->port), I2S_RX_MSB_RIGHT);
#endif
i2s_pin_config_t pin_config;
pin_config.mck_io_num = I2S_PIN_NO_CHANGE;
pin_config.bck_io_num = self->sck;
pin_config.ws_io_num = self->ws;
if (mode == (I2S_MODE_MASTER | I2S_MODE_RX)) {
pin_config.data_in_num = self->sd;
pin_config.data_out_num = I2S_PIN_NO_CHANGE;
} else { // TX
pin_config.data_in_num = I2S_PIN_NO_CHANGE;
pin_config.data_out_num = self->sd;
}
check_esp_err(i2s_set_pin(self->port, &pin_config));
}
STATIC void machine_i2s_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
machine_i2s_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_printf(print, "I2S(id=%u,\n"
"sck="MP_HAL_PIN_FMT ",\n"
"ws="MP_HAL_PIN_FMT ",\n"
"sd="MP_HAL_PIN_FMT ",\n"
"mode=%u,\n"
"bits=%u, format=%u,\n"
"rate=%d, ibuf=%d)",
self->port,
mp_hal_pin_name(self->sck),
mp_hal_pin_name(self->ws),
mp_hal_pin_name(self->sd),
self->mode,
self->bits, self->format,
self->rate, self->ibuf
);
}
STATIC mp_obj_t machine_i2s_make_new(const mp_obj_type_t *type, size_t n_pos_args, size_t n_kw_args, const mp_obj_t *args) {
mp_arg_check_num(n_pos_args, n_kw_args, 1, MP_OBJ_FUN_ARGS_MAX, true);
i2s_port_t port = mp_obj_get_int(args[0]);
if (port < 0 || port >= I2S_NUM_AUTO) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid id"));
}
machine_i2s_obj_t *self;
if (MP_STATE_PORT(machine_i2s_obj)[port] == NULL) {
self = m_new_obj_with_finaliser(machine_i2s_obj_t);
self->base.type = &machine_i2s_type;
MP_STATE_PORT(machine_i2s_obj)[port] = self;
self->port = port;
} else {
self = MP_STATE_PORT(machine_i2s_obj)[port];
machine_i2s_deinit(self);
}
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw_args, args + n_pos_args);
machine_i2s_init_helper(self, n_pos_args - 1, args + 1, &kw_args);
return MP_OBJ_FROM_PTR(self);
}
STATIC mp_obj_t machine_i2s_obj_init(size_t n_pos_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
machine_i2s_obj_t *self = pos_args[0];
machine_i2s_deinit(self);
machine_i2s_init_helper(self, n_pos_args - 1, pos_args + 1, kw_args);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(machine_i2s_init_obj, 1, machine_i2s_obj_init);
STATIC mp_obj_t machine_i2s_deinit(mp_obj_t self_in) {
machine_i2s_obj_t *self = MP_OBJ_TO_PTR(self_in);
i2s_driver_uninstall(self->port);
if (self->non_blocking_mode_task != NULL) {
vTaskDelete(self->non_blocking_mode_task);
self->non_blocking_mode_task = NULL;
}
if (self->non_blocking_mode_queue != NULL) {
vQueueDelete(self->non_blocking_mode_queue);
self->non_blocking_mode_queue = NULL;
}
self->i2s_event_queue = NULL;
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(machine_i2s_deinit_obj, machine_i2s_deinit);
STATIC mp_obj_t machine_i2s_irq(mp_obj_t self_in, mp_obj_t handler) {
machine_i2s_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (handler != mp_const_none && !mp_obj_is_callable(handler)) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid callback"));
}
if (handler != mp_const_none) {
self->io_mode = NON_BLOCKING;
// create a queue linking the MicroPython task to a FreeRTOS task
// that manages the non blocking mode of operation
self->non_blocking_mode_queue = xQueueCreate(1, sizeof(non_blocking_descriptor_t));
// non-blocking mode requires a background FreeRTOS task
if (xTaskCreatePinnedToCore(
task_for_non_blocking_mode,
"i2s_non_blocking",
I2S_TASK_STACK_SIZE,
self,
I2S_TASK_PRIORITY,
(TaskHandle_t *)&self->non_blocking_mode_task,
MP_TASK_COREID) != pdPASS) {
mp_raise_msg(&mp_type_RuntimeError, MP_ERROR_TEXT("failed to create I2S task"));
}
} else {
if (self->non_blocking_mode_task != NULL) {
vTaskDelete(self->non_blocking_mode_task);
self->non_blocking_mode_task = NULL;
}
if (self->non_blocking_mode_queue != NULL) {
vQueueDelete(self->non_blocking_mode_queue);
self->non_blocking_mode_queue = NULL;
}
self->io_mode = BLOCKING;
}
self->callback_for_non_blocking = handler;
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(machine_i2s_irq_obj, machine_i2s_irq);
// Shift() is typically used as a volume control.
// shift=1 increases volume by 6dB, shift=-1 decreases volume by 6dB
STATIC mp_obj_t machine_i2s_shift(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_buf, ARG_bits, ARG_shift};
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_buf, MP_ARG_REQUIRED | MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_bits, MP_ARG_REQUIRED | MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_shift, MP_ARG_REQUIRED | MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
};
// parse args
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(args[ARG_buf].u_obj, &bufinfo, MP_BUFFER_RW);
int16_t *buf_16 = bufinfo.buf;
int32_t *buf_32 = bufinfo.buf;
uint8_t bits = args[ARG_bits].u_int;
int8_t shift = args[ARG_shift].u_int;
uint32_t num_audio_samples;
switch (bits) {
case 16:
num_audio_samples = bufinfo.len / 2;
break;
case 32:
num_audio_samples = bufinfo.len / 4;
break;
default:
mp_raise_ValueError(MP_ERROR_TEXT("invalid bits"));
break;
}
for (uint32_t i = 0; i < num_audio_samples; i++) {
switch (bits) {
case 16:
if (shift >= 0) {
buf_16[i] = buf_16[i] << shift;
} else {
buf_16[i] = buf_16[i] >> abs(shift);
}
break;
case 32:
if (shift >= 0) {
buf_32[i] = buf_32[i] << shift;
} else {
buf_32[i] = buf_32[i] >> abs(shift);
}
break;
}
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(machine_i2s_shift_fun_obj, 0, machine_i2s_shift);
STATIC MP_DEFINE_CONST_STATICMETHOD_OBJ(machine_i2s_shift_obj, MP_ROM_PTR(&machine_i2s_shift_fun_obj));
STATIC const mp_rom_map_elem_t machine_i2s_locals_dict_table[] = {
// Methods
{ MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&machine_i2s_init_obj) },
{ MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&mp_stream_readinto_obj) },
{ MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&mp_stream_write_obj) },
{ MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&machine_i2s_deinit_obj) },
{ MP_ROM_QSTR(MP_QSTR_irq), MP_ROM_PTR(&machine_i2s_irq_obj) },
{ MP_ROM_QSTR(MP_QSTR___del__), MP_ROM_PTR(&machine_i2s_deinit_obj) },
// Static method
{ MP_ROM_QSTR(MP_QSTR_shift), MP_ROM_PTR(&machine_i2s_shift_obj) },
// Constants
{ MP_ROM_QSTR(MP_QSTR_RX), MP_ROM_INT(I2S_MODE_MASTER | I2S_MODE_RX) },
{ MP_ROM_QSTR(MP_QSTR_TX), MP_ROM_INT(I2S_MODE_MASTER | I2S_MODE_TX) },
{ MP_ROM_QSTR(MP_QSTR_STEREO), MP_ROM_INT(STEREO) },
{ MP_ROM_QSTR(MP_QSTR_MONO), MP_ROM_INT(MONO) },
};
MP_DEFINE_CONST_DICT(machine_i2s_locals_dict, machine_i2s_locals_dict_table);
STATIC mp_uint_t machine_i2s_stream_read(mp_obj_t self_in, void *buf_in, mp_uint_t size, int *errcode) {
machine_i2s_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (self->mode != (I2S_MODE_MASTER | I2S_MODE_RX)) {
*errcode = MP_EPERM;
return MP_STREAM_ERROR;
}
uint8_t appbuf_sample_size_in_bytes = (self->bits / 8) * (self->format == STEREO ? 2: 1);
if (size % appbuf_sample_size_in_bytes != 0) {
*errcode = MP_EINVAL;
return MP_STREAM_ERROR;
}
if (size == 0) {
return 0;
}
if (self->io_mode == NON_BLOCKING) {
non_blocking_descriptor_t descriptor;
descriptor.appbuf.buf = (void *)buf_in;
descriptor.appbuf.len = size;
descriptor.callback = self->callback_for_non_blocking;
descriptor.direction = I2S_RX_TRANSFER;
// send the descriptor to the task that handles non-blocking mode
xQueueSend(self->non_blocking_mode_queue, &descriptor, 0);
return size;
} else { // blocking or asyncio mode
mp_buffer_info_t appbuf;
appbuf.buf = (void *)buf_in;
appbuf.len = size;
uint32_t num_bytes_read = fill_appbuf_from_dma(self, &appbuf);
return num_bytes_read;
}
}
STATIC mp_uint_t machine_i2s_stream_write(mp_obj_t self_in, const void *buf_in, mp_uint_t size, int *errcode) {
machine_i2s_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (self->mode != (I2S_MODE_MASTER | I2S_MODE_TX)) {
*errcode = MP_EPERM;
return MP_STREAM_ERROR;
}
if (size == 0) {
return 0;
}
if (self->io_mode == NON_BLOCKING) {
non_blocking_descriptor_t descriptor;
descriptor.appbuf.buf = (void *)buf_in;
descriptor.appbuf.len = size;
descriptor.callback = self->callback_for_non_blocking;
descriptor.direction = I2S_TX_TRANSFER;
// send the descriptor to the task that handles non-blocking mode
xQueueSend(self->non_blocking_mode_queue, &descriptor, 0);
return size;
} else { // blocking or asyncio mode
mp_buffer_info_t appbuf;
appbuf.buf = (void *)buf_in;
appbuf.len = size;
size_t num_bytes_written = copy_appbuf_to_dma(self, &appbuf);
return num_bytes_written;
}
}
STATIC mp_uint_t machine_i2s_ioctl(mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) {
machine_i2s_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_uint_t ret;
mp_uint_t flags = arg;
self->io_mode = ASYNCIO; // a call to ioctl() is an indication that asyncio is being used
if (request == MP_STREAM_POLL) {
ret = 0;
if (flags & MP_STREAM_POLL_RD) {
if (self->mode != (I2S_MODE_MASTER | I2S_MODE_RX)) {
*errcode = MP_EPERM;
return MP_STREAM_ERROR;
}
i2s_event_t i2s_event;
// check event queue to determine if a DMA buffer has been filled
// (which is an indication that at least one DMA buffer is available to be read)
// note: timeout = 0 so the call is non-blocking
if (xQueueReceive(self->i2s_event_queue, &i2s_event, 0)) {
if (i2s_event.type == I2S_EVENT_RX_DONE) {
// getting here means that at least one DMA buffer is now full
// indicating that audio samples can be read from the I2S object
ret |= MP_STREAM_POLL_RD;
}
}
}
if (flags & MP_STREAM_POLL_WR) {
if (self->mode != (I2S_MODE_MASTER | I2S_MODE_TX)) {
*errcode = MP_EPERM;
return MP_STREAM_ERROR;
}
i2s_event_t i2s_event;
// check event queue to determine if a DMA buffer has been emptied
// (which is an indication that at least one DMA buffer is available to be written)
// note: timeout = 0 so the call is non-blocking
if (xQueueReceive(self->i2s_event_queue, &i2s_event, 0)) {
if (i2s_event.type == I2S_EVENT_TX_DONE) {
// getting here means that at least one DMA buffer is now empty
// indicating that audio samples can be written to the I2S object
ret |= MP_STREAM_POLL_WR;
}
}
}
} else {
*errcode = MP_EINVAL;
ret = MP_STREAM_ERROR;
}
return ret;
}
STATIC const mp_stream_p_t i2s_stream_p = {
.read = machine_i2s_stream_read,
.write = machine_i2s_stream_write,
.ioctl = machine_i2s_ioctl,
.is_text = false,
};
MP_DEFINE_CONST_OBJ_TYPE(
machine_i2s_type,
MP_QSTR_I2S,
MP_TYPE_FLAG_ITER_IS_STREAM,
make_new, machine_i2s_make_new,
print, machine_i2s_print,
protocol, &i2s_stream_p,
locals_dict, &machine_i2s_locals_dict
);
MP_REGISTER_ROOT_POINTER(struct _machine_i2s_obj_t *machine_i2s_obj[I2S_NUM_AUTO]);
#endif // MICROPY_PY_MACHINE_I2S