micropython/ports/nrf/mphalport.c
Damien George 38e7b842c6 ports: Implement simple write polling for stdout.
This is a best-effort implementation of write polling.  It's difficult to
do correctly because if there are multiple output streams (eg UART and USB
CDC) then some may not be writeable while others are.  A full solution
should also have a return value from mp_hal_stdout_tx_strn(), returning the
number of bytes written to the stream(s).  That's also hard to define.

The renesas-ra and stm32 ports already implement a similar best-effort
mechanism for write polling.

Fixes issue #11026.

Signed-off-by: Damien George <damien@micropython.org>
2023-03-23 13:51:17 +11:00

382 lines
11 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2015 Glenn Ruben Bakke
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <string.h>
#include "py/mpstate.h"
#include "py/mphal.h"
#include "py/mperrno.h"
#include "py/runtime.h"
#include "py/stream.h"
#include "uart.h"
#include "nrfx_errors.h"
#include "nrfx_config.h"
#if MICROPY_PY_TIME_TICKS
#include "nrfx_rtc.h"
#include "nrf_clock.h"
#endif
#if MICROPY_PY_TIME_TICKS
// Use RTC1 for time ticks generation (ms and us) with 32kHz tick resolution
// and overflow handling in RTC IRQ.
#define RTC_TICK_INCREASE_MSEC (33)
#define RTC_RESCHEDULE_CC(rtc, cc_nr, ticks) \
do { \
nrfx_rtc_cc_set(&rtc, cc_nr, nrfx_rtc_counter_get(&rtc) + ticks, true); \
} while (0);
// RTC overflow irq handling notes:
// - If has_overflowed is set it could be before or after COUNTER is read.
// If before then an adjustment must be made, if after then no adjustment is necessary.
// - The before case is when COUNTER is very small (because it just overflowed and was set to zero),
// the after case is when COUNTER is very large (because it's just about to overflow
// but we read it right before it overflows).
// - The extra check for counter is to distinguish these cases. 1<<23 because it's halfway
// between min and max values of COUNTER.
#define RTC1_GET_TICKS_ATOMIC(rtc, overflows, counter) \
do { \
rtc.p_reg->INTENCLR = RTC_INTENCLR_OVRFLW_Msk; \
overflows = rtc_overflows; \
counter = rtc.p_reg->COUNTER; \
uint32_t has_overflowed = rtc.p_reg->EVENTS_OVRFLW; \
if (has_overflowed && counter < (1 << 23)) { \
overflows += 1; \
} \
rtc.p_reg->INTENSET = RTC_INTENSET_OVRFLW_Msk; \
} while (0);
nrfx_rtc_t rtc1 = NRFX_RTC_INSTANCE(1);
volatile mp_uint_t rtc_overflows = 0;
const nrfx_rtc_config_t rtc_config_time_ticks = {
.prescaler = 0,
.reliable = 0,
.tick_latency = 0,
#ifdef NRF51
.interrupt_priority = 1,
#else
.interrupt_priority = 3,
#endif
};
STATIC void rtc_irq_time(nrfx_rtc_int_type_t event) {
// irq handler for overflow
if (event == NRFX_RTC_INT_OVERFLOW) {
rtc_overflows += 1;
}
// irq handler for wakeup from WFI (~1msec)
if (event == NRFX_RTC_INT_COMPARE0) {
RTC_RESCHEDULE_CC(rtc1, 0, RTC_TICK_INCREASE_MSEC)
}
}
void rtc1_init_time_ticks(void) {
// Start the low-frequency clock (if it hasn't been started already)
if (!nrf_clock_lf_is_running(NRF_CLOCK)) {
nrf_clock_task_trigger(NRF_CLOCK, NRF_CLOCK_TASK_LFCLKSTART);
}
// Uninitialize first, then set overflow IRQ and first CC event
nrfx_rtc_uninit(&rtc1);
nrfx_rtc_init(&rtc1, &rtc_config_time_ticks, rtc_irq_time);
nrfx_rtc_overflow_enable(&rtc1, true);
RTC_RESCHEDULE_CC(rtc1, 0, RTC_TICK_INCREASE_MSEC)
nrfx_rtc_enable(&rtc1);
}
mp_uint_t mp_hal_ticks_ms(void) {
// Compute: (rtc_overflows << 24 + COUNTER) * 1000 / 32768
//
// Note that COUNTER * 1000 / 32768 would overflow during calculation, so use
// the less obvious * 125 / 4096 calculation (overflow secure).
//
// Make sure not to call this function within an irq with higher prio than the
// RTC's irq. This would introduce the danger of preempting the RTC irq and
// calling mp_hal_ticks_ms() at that time would return a false result.
uint32_t overflows;
uint32_t counter;
// guard against overflow irq
RTC1_GET_TICKS_ATOMIC(rtc1, overflows, counter)
return (overflows << 9) * 1000 + (counter * 125 / 4096);
}
mp_uint_t mp_hal_ticks_us(void) {
// Compute: ticks_us = (overflows << 24 + counter) * 1000000 / 32768
// = (overflows << 15 * 15625) + (counter * 15625 / 512)
// Since this function is likely to be called in a poll loop it must
// be fast, using an optimized 64bit mult/divide.
uint32_t overflows;
uint32_t counter;
// guard against overflow irq
RTC1_GET_TICKS_ATOMIC(rtc1, overflows, counter)
// first compute counter * 15625
uint32_t counter_lo = (counter & 0xffff) * 15625;
uint32_t counter_hi = (counter >> 16) * 15625;
// actual value is counter_hi << 16 + counter_lo
return ((overflows << 15) * 15625) + ((counter_hi << 7) + (counter_lo >> 9));
}
#else
mp_uint_t mp_hal_ticks_ms(void) {
return 0;
}
#endif
uint64_t mp_hal_time_ns(void) {
return 0;
}
// this table converts from HAL_StatusTypeDef to POSIX errno
const byte mp_hal_status_to_errno_table[4] = {
[HAL_OK] = 0,
[HAL_ERROR] = MP_EIO,
[HAL_BUSY] = MP_EBUSY,
[HAL_TIMEOUT] = MP_ETIMEDOUT,
};
NORETURN void mp_hal_raise(HAL_StatusTypeDef status) {
mp_raise_OSError(mp_hal_status_to_errno_table[status]);
}
#if !MICROPY_KBD_EXCEPTION
void mp_hal_set_interrupt_char(int c) {
}
#endif
#if !MICROPY_PY_BLE_NUS && !MICROPY_HW_USB_CDC
uintptr_t mp_hal_stdio_poll(uintptr_t poll_flags) {
uintptr_t ret = 0;
if ((poll_flags & MP_STREAM_POLL_RD) && MP_STATE_PORT(board_stdio_uart) != NULL
&& uart_rx_any(MP_STATE_PORT(board_stdio_uart))) {
ret |= MP_STREAM_POLL_RD;
}
if ((poll_flags & MP_STREAM_POLL_WR) && MP_STATE_PORT(board_stdio_uart) != NULL) {
ret |= MP_STREAM_POLL_WR;
}
return ret;
}
int mp_hal_stdin_rx_chr(void) {
for (;;) {
if (MP_STATE_PORT(board_stdio_uart) != NULL && uart_rx_any(MP_STATE_PORT(board_stdio_uart))) {
return uart_rx_char(MP_STATE_PORT(board_stdio_uart));
}
MICROPY_EVENT_POLL_HOOK
}
return 0;
}
void mp_hal_stdout_tx_strn(const char *str, mp_uint_t len) {
if (MP_STATE_PORT(board_stdio_uart) != NULL) {
uart_tx_strn(MP_STATE_PORT(board_stdio_uart), str, len);
}
}
void mp_hal_stdout_tx_strn_cooked(const char *str, mp_uint_t len) {
if (MP_STATE_PORT(board_stdio_uart) != NULL) {
uart_tx_strn_cooked(MP_STATE_PORT(board_stdio_uart), str, len);
}
}
#endif
void mp_hal_stdout_tx_str(const char *str) {
mp_hal_stdout_tx_strn(str, strlen(str));
}
#if MICROPY_PY_TIME_TICKS
void mp_hal_delay_us(mp_uint_t us) {
uint32_t now;
if (us == 0) {
return;
}
now = mp_hal_ticks_us();
while (mp_hal_ticks_us() - now < us) {
}
}
void mp_hal_delay_ms(mp_uint_t ms) {
uint32_t now;
if (ms == 0) {
return;
}
now = mp_hal_ticks_ms();
while (mp_hal_ticks_ms() - now < ms) {
MICROPY_EVENT_POLL_HOOK
}
}
#else
void mp_hal_delay_us(mp_uint_t us) {
if (us == 0) {
return;
}
register uint32_t delay __ASM("r0") = us;
__ASM volatile (
"1:\n"
#ifdef NRF51
" SUB %0, %0, #1\n"
#else
" SUBS %0, %0, #1\n"
#endif
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
#if defined(NRF52) || defined(NRF9160_XXAA)
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
#endif
" BNE 1b\n"
: "+r" (delay));
}
void mp_hal_delay_ms(mp_uint_t ms) {
for (mp_uint_t i = 0; i < ms; i++)
{
mp_hal_delay_us(999);
}
}
#endif
#if defined(NRFX_LOG_ENABLED) && (NRFX_LOG_ENABLED == 1)
static const char nrfx_error_unknown[1] = "";
static const char nrfx_error_success[] = "NRFX_SUCCESS";
static const char nrfx_error_internal[] = "NRFX_ERROR_INTERNAL";
static const char nrfx_error_no_mem[] = "NRFX_ERROR_NO_MEM";
static const char nrfx_error_not_supported[] = "NRFX_ERROR_NOT_SUPPORTED";
static const char nrfx_error_invalid_param[] = "NRFX_ERROR_INVALID_PARAM";
static const char nrfx_error_invalid_state[] = "NRFX_ERROR_INVALID_STATE";
static const char nrfx_error_invalid_length[] = "NRFX_ERROR_INVALID_LENGTH";
static const char nrfx_error_timeout[] = "NRFX_ERROR_TIMEOUT";
static const char nrfx_error_forbidden[] = "NRFX_ERROR_FORBIDDEN";
static const char nrfx_error_null[] = "NRFX_ERROR_NULL";
static const char nrfx_error_invalid_addr[] = "NRFX_ERROR_INVALID_ADDR";
static const char nrfx_error_busy[] = "NRFX_ERROR_BUSY";
static const char nrfx_error_already_initalized[] = "NRFX_ERROR_ALREADY_INITIALIZED";
static const char *nrfx_error_strings[13] = {
nrfx_error_success,
nrfx_error_internal,
nrfx_error_no_mem,
nrfx_error_not_supported,
nrfx_error_invalid_param,
nrfx_error_invalid_state,
nrfx_error_invalid_length,
nrfx_error_timeout,
nrfx_error_forbidden,
nrfx_error_null,
nrfx_error_invalid_addr,
nrfx_error_busy,
nrfx_error_already_initalized
};
static const char nrfx_drv_error_twi_err_overrun[] = "NRFX_ERROR_DRV_TWI_ERR_OVERRUN";
static const char nrfx_drv_error_twi_err_anack[] = "NRFX_ERROR_DRV_TWI_ERR_ANACK";
static const char nrfx_drv_error_twi_err_dnack[] = "NRFX_ERROR_DRV_TWI_ERR_DNACK";
static const char *nrfx_drv_error_strings[3] = {
nrfx_drv_error_twi_err_overrun,
nrfx_drv_error_twi_err_anack,
nrfx_drv_error_twi_err_dnack
};
const char *nrfx_error_code_lookup(uint32_t err_code) {
if (err_code >= NRFX_ERROR_BASE_NUM && err_code <= NRFX_ERROR_BASE_NUM + 13) {
return nrfx_error_strings[err_code - NRFX_ERROR_BASE_NUM];
} else if (err_code >= NRFX_ERROR_DRIVERS_BASE_NUM && err_code <= NRFX_ERROR_DRIVERS_BASE_NUM + 3) {
return nrfx_drv_error_strings[err_code - NRFX_ERROR_DRIVERS_BASE_NUM];
}
return nrfx_error_unknown;
}
#endif // NRFX_LOG_ENABLED
MP_REGISTER_ROOT_POINTER(struct _machine_hard_uart_obj_t *board_stdio_uart);