micropython/ports/mimxrt/machine_spi.c
robert-hh f45412793e mimxrt/machine_spi: Add the SPI class to the machine module.
This class supports SPI bus controller mode, with blocking transfers.

SPI device numbers start at 0, to comply with the pinout of the Teensy
boards.  With the configured clock frequency the fastest baud rate is
33MHz.  For messages longer 16 bytes DMA is used.  The class uses the
existing framework with extmod/machine_spi.c.

Extended driver options:

- drive=n with n being between 1 and 6 or PIN.POWER_1 to PIN.POWER_6.
  Since the pins used by the SPI are fixed, no Pin settings can be made.
  Thus the drive option is added allowing to control ringing and crosstalk
  on the connection.

- gap_ns=nnnnn is the time between sent data items in a frame given in ns.
  Default is 2 clock cycles.
2021-06-26 22:14:47 +10:00

335 lines
14 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Damien P. George
* Copyright (c) 2021 Robert Hammelrath
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/runtime.h"
#include "py/mphal.h"
#include "py/mperrno.h"
#include "extmod/machine_spi.h"
#include "modmachine.h"
#include "dma_channel.h"
#include "fsl_cache.h"
#include "fsl_dmamux.h"
#include "fsl_iomuxc.h"
#include "fsl_lpspi.h"
#include "fsl_lpspi_edma.h"
#define DEFAULT_SPI_BAUDRATE (1000000)
#define DEFAULT_SPI_POLARITY (0)
#define DEFAULT_SPI_PHASE (0)
#define DEFAULT_SPI_BITS (8)
#define DEFAULT_SPI_FIRSTBIT (kLPSPI_MsbFirst)
#define DEFAULT_SPI_DRIVE (6)
#define CLOCK_DIVIDER (1)
#define MICROPY_HW_SPI_NUM MP_ARRAY_SIZE(spi_index_table)
#define SCK (iomux_table[index])
#define CS0 (iomux_table[index + 1])
#define SDO (iomux_table[index + 2])
#define SDI (iomux_table[index + 3])
typedef struct _machine_spi_obj_t {
mp_obj_base_t base;
uint8_t spi_id;
uint8_t mode;
uint8_t spi_hw_id;
bool transfer_busy;
LPSPI_Type *spi_inst;
lpspi_master_config_t *master_config;
} machine_spi_obj_t;
typedef struct _iomux_table_t {
uint32_t muxRegister;
uint32_t muxMode;
uint32_t inputRegister;
uint32_t inputDaisy;
uint32_t configRegister;
} iomux_table_t;
STATIC const uint8_t spi_index_table[] = MICROPY_HW_SPI_INDEX;
STATIC LPSPI_Type *spi_base_ptr_table[] = LPSPI_BASE_PTRS;
static const iomux_table_t iomux_table[] = {
IOMUX_TABLE_SPI
};
static uint16_t dma_req_src_rx[] = DMA_REQ_SRC_RX;
static uint16_t dma_req_src_tx[] = DMA_REQ_SRC_TX;
bool lpspi_set_iomux(int8_t spi, uint8_t drive) {
int index = (spi - 1) * 4;
if (SCK.muxRegister != 0) {
IOMUXC_SetPinMux(SCK.muxRegister, SCK.muxMode, SCK.inputRegister, SCK.inputDaisy, SCK.configRegister, 0U);
IOMUXC_SetPinConfig(SCK.muxRegister, SCK.muxMode, SCK.inputRegister, SCK.inputDaisy, SCK.configRegister,
0x1080u | drive << IOMUXC_SW_PAD_CTL_PAD_DSE_SHIFT);
IOMUXC_SetPinMux(CS0.muxRegister, CS0.muxMode, CS0.inputRegister, CS0.inputDaisy, CS0.configRegister, 0U);
IOMUXC_SetPinConfig(CS0.muxRegister, CS0.muxMode, CS0.inputRegister, CS0.inputDaisy, CS0.configRegister,
0x1080u | drive << IOMUXC_SW_PAD_CTL_PAD_DSE_SHIFT);
IOMUXC_SetPinMux(SDO.muxRegister, SDO.muxMode, SDO.inputRegister, SDO.inputDaisy, SDO.configRegister, 0U);
IOMUXC_SetPinConfig(SDO.muxRegister, SDO.muxMode, SDO.inputRegister, SDO.inputDaisy, SDO.configRegister,
0x1080u | drive << IOMUXC_SW_PAD_CTL_PAD_DSE_SHIFT);
IOMUXC_SetPinMux(SDI.muxRegister, SDI.muxMode, SDI.inputRegister, SDI.inputDaisy, SDI.configRegister, 0U);
IOMUXC_SetPinConfig(SDI.muxRegister, SDI.muxMode, SDI.inputRegister, SDI.inputDaisy, SDI.configRegister,
0x1080u | drive << IOMUXC_SW_PAD_CTL_PAD_DSE_SHIFT);
return true;
} else {
return false;
}
}
STATIC void machine_spi_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
static const char *firstbit_str[] = {"MSB", "LSB"};
machine_spi_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_printf(print, "SPI(%u, baudrate=%u, polarity=%u, phase=%u, bits=%u, firstbit=%s, gap_ns=%d)",
self->spi_id, self->master_config->baudRate, self->master_config->cpol,
self->master_config->cpha, self->master_config->bitsPerFrame,
firstbit_str[self->master_config->direction], self->master_config->betweenTransferDelayInNanoSec);
}
mp_obj_t machine_spi_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
enum { ARG_id, ARG_baudrate, ARG_polarity, ARG_phase, ARG_bits, ARG_firstbit, ARG_gap_ns, ARG_drive };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_id, MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_baudrate, MP_ARG_INT, {.u_int = DEFAULT_SPI_BAUDRATE} },
{ MP_QSTR_polarity, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = DEFAULT_SPI_POLARITY} },
{ MP_QSTR_phase, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = DEFAULT_SPI_PHASE} },
{ MP_QSTR_bits, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = DEFAULT_SPI_BITS} },
{ MP_QSTR_firstbit, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = DEFAULT_SPI_FIRSTBIT} },
{ MP_QSTR_gap_ns, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_drive, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = DEFAULT_SPI_DRIVE} },
};
static bool clk_init = true;
// Parse the arguments.
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// Get the SPI bus id.
int spi_id = mp_obj_get_int(args[ARG_id].u_obj);
if (spi_id < 0 || spi_id >= MP_ARRAY_SIZE(spi_index_table)) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("SPI(%d) doesn't exist"), spi_id);
}
// Get peripheral object.
uint8_t spi_hw_id = spi_index_table[spi_id]; // the hw spi number 1..n
machine_spi_obj_t *self = m_new_obj(machine_spi_obj_t);
self->base.type = &machine_spi_type;
self->spi_id = spi_id;
self->spi_inst = spi_base_ptr_table[spi_hw_id];
self->spi_hw_id = spi_hw_id;
uint8_t drive = args[ARG_drive].u_int;
if (drive < 1 || drive > 7) {
drive = DEFAULT_SPI_DRIVE;
}
if (clk_init) {
clk_init = false;
/*Set clock source for LPSPI*/
CLOCK_SetMux(kCLOCK_LpspiMux, 1); // Clock source is kCLOCK_Usb1PllPfd1Clk
CLOCK_SetDiv(kCLOCK_LpspiDiv, CLOCK_DIVIDER);
}
lpspi_set_iomux(spi_index_table[spi_id], drive);
LPSPI_Reset(self->spi_inst);
LPSPI_Enable(self->spi_inst, false); // Disable first before new settings are applies
self->master_config = m_new_obj(lpspi_master_config_t);
LPSPI_MasterGetDefaultConfig(self->master_config);
// Initialise the SPI peripheral.
self->master_config->baudRate = args[ARG_baudrate].u_int;
self->master_config->betweenTransferDelayInNanoSec = 1000000000 / self->master_config->baudRate * 2;
self->master_config->cpol = args[ARG_polarity].u_int;
self->master_config->cpha = args[ARG_phase].u_int;
self->master_config->bitsPerFrame = args[ARG_bits].u_int;
self->master_config->direction = args[ARG_firstbit].u_int;
if (args[ARG_gap_ns].u_int != -1) {
self->master_config->betweenTransferDelayInNanoSec = args[ARG_gap_ns].u_int;
}
LPSPI_MasterInit(self->spi_inst, self->master_config, CLOCK_GetFreq(kCLOCK_Usb1PllPfd0Clk) / (CLOCK_DIVIDER + 1));
return MP_OBJ_FROM_PTR(self);
}
STATIC void machine_spi_init(mp_obj_base_t *self_in, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_baudrate, ARG_polarity, ARG_phase, ARG_bits, ARG_firstbit, ARG_gap_ns };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_baudrate, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_polarity, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_phase, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_bits, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_firstbit, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_gap_ns, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
};
// Parse the arguments.
machine_spi_obj_t *self = (machine_spi_obj_t *)self_in;
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// Reconfigure the baudrate if requested.
if (args[ARG_baudrate].u_int != -1) {
self->master_config->baudRate = args[ARG_baudrate].u_int;
self->master_config->betweenTransferDelayInNanoSec = 1000000000 / self->master_config->baudRate * 2;
}
// Reconfigure the format if requested.
if (args[ARG_polarity].u_int != -1) {
self->master_config->cpol = args[ARG_polarity].u_int;
}
if (args[ARG_phase].u_int != -1) {
self->master_config->cpha = args[ARG_phase].u_int;
}
if (args[ARG_bits].u_int != -1) {
self->master_config->bitsPerFrame = args[ARG_bits].u_int;
}
if (args[ARG_firstbit].u_int != -1) {
self->master_config->direction = args[ARG_firstbit].u_int;
}
if (args[ARG_gap_ns].u_int != -1) {
self->master_config->betweenTransferDelayInNanoSec = args[ARG_gap_ns].u_int;
}
LPSPI_Enable(self->spi_inst, false); // Disable first before new settings are applies
LPSPI_MasterInit(self->spi_inst, self->master_config, CLOCK_GetFreq(kCLOCK_Usb1PllPfd0Clk) / (CLOCK_DIVIDER + 1));
}
void LPSPI_EDMAMasterCallback(LPSPI_Type *base, lpspi_master_edma_handle_t *handle, status_t status, void *self_in) {
machine_spi_obj_t *self = (machine_spi_obj_t *)self_in;
self->transfer_busy = false;
}
STATIC void machine_spi_transfer(mp_obj_base_t *self_in, size_t len, const uint8_t *src, uint8_t *dest) {
machine_spi_obj_t *self = (machine_spi_obj_t *)self_in;
// Use DMA for large transfers if channels are available
const size_t dma_min_size_threshold = 16; // That's the FIFO size
int chan_tx = -1;
int chan_rx = -1;
if (len >= dma_min_size_threshold) {
// Use two DMA channels to service the two FIFOs
chan_rx = allocate_dma_channel();
chan_tx = allocate_dma_channel();
}
bool use_dma = chan_rx >= 0 && chan_tx >= 0;
if (use_dma) {
edma_config_t userConfig;
/* DMA MUX init*/
DMAMUX_Init(DMAMUX);
DMAMUX_SetSource(DMAMUX, chan_rx, dma_req_src_rx[self->spi_hw_id]); // ## SPIn source
DMAMUX_EnableChannel(DMAMUX, chan_rx);
DMAMUX_SetSource(DMAMUX, chan_tx, dma_req_src_tx[self->spi_hw_id]);
DMAMUX_EnableChannel(DMAMUX, chan_tx);
EDMA_GetDefaultConfig(&userConfig);
EDMA_Init(DMA0, &userConfig);
lpspi_master_edma_handle_t g_master_edma_handle;
edma_handle_t lpspiEdmaMasterRxRegToRxDataHandle;
edma_handle_t lpspiEdmaMasterTxDataToTxRegHandle;
// Set up lpspi EDMA master
EDMA_CreateHandle(&(lpspiEdmaMasterRxRegToRxDataHandle), DMA0, chan_rx);
EDMA_CreateHandle(&(lpspiEdmaMasterTxDataToTxRegHandle), DMA0, chan_tx);
LPSPI_MasterTransferCreateHandleEDMA(self->spi_inst, &g_master_edma_handle, LPSPI_EDMAMasterCallback, self,
&lpspiEdmaMasterRxRegToRxDataHandle,
&lpspiEdmaMasterTxDataToTxRegHandle);
// Start master transfer
lpspi_transfer_t masterXfer;
masterXfer.txData = (uint8_t *)src;
masterXfer.rxData = (uint8_t *)dest;
masterXfer.dataSize = len;
masterXfer.configFlags = kLPSPI_MasterPcs0 | kLPSPI_MasterPcsContinuous | kLPSPI_MasterByteSwap;
// Reconfigure the TCR, required after switch between DMA vs. non-DMA
LPSPI_Enable(self->spi_inst, false); // Disable first before new settings are applied
self->spi_inst->TCR = LPSPI_TCR_CPOL(self->master_config->cpol) | LPSPI_TCR_CPHA(self->master_config->cpha) |
LPSPI_TCR_LSBF(self->master_config->direction) | LPSPI_TCR_FRAMESZ(self->master_config->bitsPerFrame - 1) |
(self->spi_inst->TCR & LPSPI_TCR_PRESCALE_MASK) | LPSPI_TCR_PCS(self->master_config->whichPcs);
LPSPI_Enable(self->spi_inst, true);
self->transfer_busy = true;
if (dest) {
L1CACHE_DisableDCache();
} else if (src) {
DCACHE_CleanByRange((uint32_t)src, len);
}
LPSPI_MasterTransferEDMA(self->spi_inst, &g_master_edma_handle, &masterXfer);
while (self->transfer_busy) {
MICROPY_EVENT_POLL_HOOK
}
L1CACHE_EnableDCache();
}
// Release DMA channels, even if never allocated.
if (chan_rx >= 0) {
free_dma_channel(chan_rx);
}
if (chan_tx >= 0) {
free_dma_channel(chan_tx);
}
if (!use_dma) {
// Reconfigure the TCR, required after switch between DMA vs. non-DMA
LPSPI_Enable(self->spi_inst, false); // Disable first before new settings are applied
self->spi_inst->TCR = LPSPI_TCR_CPOL(self->master_config->cpol) | LPSPI_TCR_CPHA(self->master_config->cpha) |
LPSPI_TCR_LSBF(self->master_config->direction) | LPSPI_TCR_FRAMESZ(self->master_config->bitsPerFrame - 1) |
(self->spi_inst->TCR & LPSPI_TCR_PRESCALE_MASK) | LPSPI_TCR_PCS(self->master_config->whichPcs);
LPSPI_Enable(self->spi_inst, true);
lpspi_transfer_t masterXfer;
masterXfer.txData = (uint8_t *)src;
masterXfer.rxData = (uint8_t *)dest;
masterXfer.dataSize = len;
masterXfer.configFlags = kLPSPI_MasterPcs0 | kLPSPI_MasterPcsContinuous | kLPSPI_MasterByteSwap;
LPSPI_MasterTransferBlocking(self->spi_inst, &masterXfer);
}
}
STATIC const mp_machine_spi_p_t machine_spi_p = {
.init = machine_spi_init,
.transfer = machine_spi_transfer,
};
const mp_obj_type_t machine_spi_type = {
{ &mp_type_type },
.name = MP_QSTR_SPI,
.print = machine_spi_print,
.make_new = machine_spi_make_new,
.protocol = &machine_spi_p,
.locals_dict = (mp_obj_dict_t *)&mp_machine_spi_locals_dict,
};