micropython/py/asmthumb.c
Damien George 1396a026be py: Add support to save native, viper and asm code to .mpy files.
This commit adds support for saving and loading .mpy files that contain
native code (native, viper and inline-asm).  A lot of the ground work was
already done for this in the form of removing pointers from generated
native code.  The changes here are mainly to link in qstr values to the
native code, and change the format of .mpy files to contain native code
blocks (possibly mixed with bytecode).

A top-level summary:

- @micropython.native, @micropython.viper and @micropython.asm_thumb/
  asm_xtensa are now allowed in .py files when compiling to .mpy, and they
  work transparently to the user.

- Entire .py files can be compiled to native via mpy-cross -X emit=native
  and for the most part the generated .mpy files should work the same as
  their bytecode version.

- The .mpy file format is changed to 1) specify in the header if the file
  contains native code and if so the architecture (eg x86, ARMV7M, Xtensa);
  2) for each function block the kind of code is specified (bytecode,
  native, viper, asm).

- When native code is loaded from a .mpy file the native code must be
  modified (in place) to link qstr values in, just like bytecode (see
  py/persistentcode.c:arch_link_qstr() function).

In addition, this now defines a public, native ABI for dynamically loadable
native code generated by other languages, like C.
2019-03-08 15:53:05 +11:00

397 lines
15 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <assert.h>
#include <string.h>
#include "py/mpconfig.h"
// wrapper around everything in this file
#if MICROPY_EMIT_THUMB || MICROPY_EMIT_INLINE_THUMB
#include "py/mphal.h"
#include "py/asmthumb.h"
#define UNSIGNED_FIT5(x) ((uint32_t)(x) < 32)
#define UNSIGNED_FIT7(x) ((uint32_t)(x) < 128)
#define UNSIGNED_FIT8(x) (((x) & 0xffffff00) == 0)
#define UNSIGNED_FIT16(x) (((x) & 0xffff0000) == 0)
#define SIGNED_FIT8(x) (((x) & 0xffffff80) == 0) || (((x) & 0xffffff80) == 0xffffff80)
#define SIGNED_FIT9(x) (((x) & 0xffffff00) == 0) || (((x) & 0xffffff00) == 0xffffff00)
#define SIGNED_FIT12(x) (((x) & 0xfffff800) == 0) || (((x) & 0xfffff800) == 0xfffff800)
#define SIGNED_FIT23(x) (((x) & 0xffc00000) == 0) || (((x) & 0xffc00000) == 0xffc00000)
// Note: these actually take an imm12 but the high-bit is not encoded here
#define OP_ADD_W_RRI_HI(reg_src) (0xf200 | (reg_src))
#define OP_ADD_W_RRI_LO(reg_dest, imm11) ((imm11 << 4 & 0x7000) | reg_dest << 8 | (imm11 & 0xff))
#define OP_SUB_W_RRI_HI(reg_src) (0xf2a0 | (reg_src))
#define OP_SUB_W_RRI_LO(reg_dest, imm11) ((imm11 << 4 & 0x7000) | reg_dest << 8 | (imm11 & 0xff))
#define OP_LDR_W_HI(reg_base) (0xf8d0 | (reg_base))
#define OP_LDR_W_LO(reg_dest, imm12) ((reg_dest) << 12 | (imm12))
static inline byte *asm_thumb_get_cur_to_write_bytes(asm_thumb_t *as, int n) {
return mp_asm_base_get_cur_to_write_bytes(&as->base, n);
}
void asm_thumb_end_pass(asm_thumb_t *as) {
(void)as;
// could check labels are resolved...
#if __ICACHE_PRESENT == 1
if (as->base.pass == MP_ASM_PASS_EMIT) {
// flush D-cache, so the code emitted is stored in memory
MP_HAL_CLEAN_DCACHE(as->base.code_base, as->base.code_size);
// invalidate I-cache
SCB_InvalidateICache();
}
#endif
}
/*
STATIC void asm_thumb_write_byte_1(asm_thumb_t *as, byte b1) {
byte *c = asm_thumb_get_cur_to_write_bytes(as, 1);
c[0] = b1;
}
*/
/*
#define IMM32_L0(x) ((x) & 0xff)
#define IMM32_L1(x) (((x) >> 8) & 0xff)
#define IMM32_L2(x) (((x) >> 16) & 0xff)
#define IMM32_L3(x) (((x) >> 24) & 0xff)
STATIC void asm_thumb_write_word32(asm_thumb_t *as, int w32) {
byte *c = asm_thumb_get_cur_to_write_bytes(as, 4);
c[0] = IMM32_L0(w32);
c[1] = IMM32_L1(w32);
c[2] = IMM32_L2(w32);
c[3] = IMM32_L3(w32);
}
*/
// rlolist is a bit map indicating desired lo-registers
#define OP_PUSH_RLIST(rlolist) (0xb400 | (rlolist))
#define OP_PUSH_RLIST_LR(rlolist) (0xb400 | 0x0100 | (rlolist))
#define OP_POP_RLIST(rlolist) (0xbc00 | (rlolist))
#define OP_POP_RLIST_PC(rlolist) (0xbc00 | 0x0100 | (rlolist))
// The number of words must fit in 7 unsigned bits
#define OP_ADD_SP(num_words) (0xb000 | (num_words))
#define OP_SUB_SP(num_words) (0xb080 | (num_words))
// locals:
// - stored on the stack in ascending order
// - numbered 0 through num_locals-1
// - SP points to first local
//
// | SP
// v
// l0 l1 l2 ... l(n-1)
// ^ ^
// | low address | high address in RAM
void asm_thumb_entry(asm_thumb_t *as, int num_locals) {
assert(num_locals >= 0);
// work out what to push and how many extra spaces to reserve on stack
// so that we have enough for all locals and it's aligned an 8-byte boundary
// we push extra regs (r1, r2, r3) to help do the stack adjustment
// we probably should just always subtract from sp, since this would be more efficient
// for push rlist, lowest numbered register at the lowest address
uint reglist;
uint stack_adjust;
// don't pop r0 because it's used for return value
switch (num_locals) {
case 0:
reglist = 0xf2;
stack_adjust = 0;
break;
case 1:
reglist = 0xf2;
stack_adjust = 0;
break;
case 2:
reglist = 0xfe;
stack_adjust = 0;
break;
case 3:
reglist = 0xfe;
stack_adjust = 0;
break;
default:
reglist = 0xfe;
stack_adjust = ((num_locals - 3) + 1) & (~1);
break;
}
asm_thumb_op16(as, OP_PUSH_RLIST_LR(reglist));
if (stack_adjust > 0) {
if (UNSIGNED_FIT7(stack_adjust)) {
asm_thumb_op16(as, OP_SUB_SP(stack_adjust));
} else {
asm_thumb_op32(as, OP_SUB_W_RRI_HI(ASM_THUMB_REG_SP), OP_SUB_W_RRI_LO(ASM_THUMB_REG_SP, stack_adjust * 4));
}
}
as->push_reglist = reglist;
as->stack_adjust = stack_adjust;
}
void asm_thumb_exit(asm_thumb_t *as) {
if (as->stack_adjust > 0) {
if (UNSIGNED_FIT7(as->stack_adjust)) {
asm_thumb_op16(as, OP_ADD_SP(as->stack_adjust));
} else {
asm_thumb_op32(as, OP_ADD_W_RRI_HI(ASM_THUMB_REG_SP), OP_ADD_W_RRI_LO(ASM_THUMB_REG_SP, as->stack_adjust * 4));
}
}
asm_thumb_op16(as, OP_POP_RLIST_PC(as->push_reglist));
}
STATIC mp_uint_t get_label_dest(asm_thumb_t *as, uint label) {
assert(label < as->base.max_num_labels);
return as->base.label_offsets[label];
}
void asm_thumb_op16(asm_thumb_t *as, uint op) {
byte *c = asm_thumb_get_cur_to_write_bytes(as, 2);
if (c != NULL) {
// little endian
c[0] = op;
c[1] = op >> 8;
}
}
void asm_thumb_op32(asm_thumb_t *as, uint op1, uint op2) {
byte *c = asm_thumb_get_cur_to_write_bytes(as, 4);
if (c != NULL) {
// little endian, op1 then op2
c[0] = op1;
c[1] = op1 >> 8;
c[2] = op2;
c[3] = op2 >> 8;
}
}
#define OP_FORMAT_4(op, rlo_dest, rlo_src) ((op) | ((rlo_src) << 3) | (rlo_dest))
void asm_thumb_format_4(asm_thumb_t *as, uint op, uint rlo_dest, uint rlo_src) {
assert(rlo_dest < ASM_THUMB_REG_R8);
assert(rlo_src < ASM_THUMB_REG_R8);
asm_thumb_op16(as, OP_FORMAT_4(op, rlo_dest, rlo_src));
}
void asm_thumb_mov_reg_reg(asm_thumb_t *as, uint reg_dest, uint reg_src) {
uint op_lo;
if (reg_src < 8) {
op_lo = reg_src << 3;
} else {
op_lo = 0x40 | ((reg_src - 8) << 3);
}
if (reg_dest < 8) {
op_lo |= reg_dest;
} else {
op_lo |= 0x80 | (reg_dest - 8);
}
// mov reg_dest, reg_src
asm_thumb_op16(as, 0x4600 | op_lo);
}
// if loading lo half with movw, the i16 value will be zero extended into the r32 register!
size_t asm_thumb_mov_reg_i16(asm_thumb_t *as, uint mov_op, uint reg_dest, int i16_src) {
assert(reg_dest < ASM_THUMB_REG_R15);
size_t loc = mp_asm_base_get_code_pos(&as->base);
// mov[wt] reg_dest, #i16_src
asm_thumb_op32(as, mov_op | ((i16_src >> 1) & 0x0400) | ((i16_src >> 12) & 0xf), ((i16_src << 4) & 0x7000) | (reg_dest << 8) | (i16_src & 0xff));
return loc;
}
#define OP_B_N(byte_offset) (0xe000 | (((byte_offset) >> 1) & 0x07ff))
bool asm_thumb_b_n_label(asm_thumb_t *as, uint label) {
mp_uint_t dest = get_label_dest(as, label);
mp_int_t rel = dest - as->base.code_offset;
rel -= 4; // account for instruction prefetch, PC is 4 bytes ahead of this instruction
asm_thumb_op16(as, OP_B_N(rel));
return as->base.pass != MP_ASM_PASS_EMIT || SIGNED_FIT12(rel);
}
#define OP_BCC_N(cond, byte_offset) (0xd000 | ((cond) << 8) | (((byte_offset) >> 1) & 0x00ff))
// all these bit arithmetics need coverage testing!
#define OP_BCC_W_HI(cond, byte_offset) (0xf000 | ((cond) << 6) | (((byte_offset) >> 10) & 0x0400) | (((byte_offset) >> 14) & 0x003f))
#define OP_BCC_W_LO(byte_offset) (0x8000 | ((byte_offset) & 0x2000) | (((byte_offset) >> 1) & 0x0fff))
bool asm_thumb_bcc_nw_label(asm_thumb_t *as, int cond, uint label, bool wide) {
mp_uint_t dest = get_label_dest(as, label);
mp_int_t rel = dest - as->base.code_offset;
rel -= 4; // account for instruction prefetch, PC is 4 bytes ahead of this instruction
if (!wide) {
asm_thumb_op16(as, OP_BCC_N(cond, rel));
return as->base.pass != MP_ASM_PASS_EMIT || SIGNED_FIT9(rel);
} else {
asm_thumb_op32(as, OP_BCC_W_HI(cond, rel), OP_BCC_W_LO(rel));
return true;
}
}
#define OP_BL_HI(byte_offset) (0xf000 | (((byte_offset) >> 12) & 0x07ff))
#define OP_BL_LO(byte_offset) (0xf800 | (((byte_offset) >> 1) & 0x07ff))
bool asm_thumb_bl_label(asm_thumb_t *as, uint label) {
mp_uint_t dest = get_label_dest(as, label);
mp_int_t rel = dest - as->base.code_offset;
rel -= 4; // account for instruction prefetch, PC is 4 bytes ahead of this instruction
asm_thumb_op32(as, OP_BL_HI(rel), OP_BL_LO(rel));
return as->base.pass != MP_ASM_PASS_EMIT || SIGNED_FIT23(rel);
}
size_t asm_thumb_mov_reg_i32(asm_thumb_t *as, uint reg_dest, mp_uint_t i32) {
// movw, movt does it in 8 bytes
// ldr [pc, #], dw does it in 6 bytes, but we might not reach to end of code for dw
size_t loc = mp_asm_base_get_code_pos(&as->base);
asm_thumb_mov_reg_i16(as, ASM_THUMB_OP_MOVW, reg_dest, i32);
asm_thumb_mov_reg_i16(as, ASM_THUMB_OP_MOVT, reg_dest, i32 >> 16);
return loc;
}
void asm_thumb_mov_reg_i32_optimised(asm_thumb_t *as, uint reg_dest, int i32) {
if (reg_dest < 8 && UNSIGNED_FIT8(i32)) {
asm_thumb_mov_rlo_i8(as, reg_dest, i32);
} else if (UNSIGNED_FIT16(i32)) {
asm_thumb_mov_reg_i16(as, ASM_THUMB_OP_MOVW, reg_dest, i32);
} else {
asm_thumb_mov_reg_i32(as, reg_dest, i32);
}
}
#define OP_STR_TO_SP_OFFSET(rlo_dest, word_offset) (0x9000 | ((rlo_dest) << 8) | ((word_offset) & 0x00ff))
#define OP_LDR_FROM_SP_OFFSET(rlo_dest, word_offset) (0x9800 | ((rlo_dest) << 8) | ((word_offset) & 0x00ff))
void asm_thumb_mov_local_reg(asm_thumb_t *as, int local_num, uint rlo_src) {
assert(rlo_src < ASM_THUMB_REG_R8);
int word_offset = local_num;
assert(as->base.pass < MP_ASM_PASS_EMIT || word_offset >= 0);
asm_thumb_op16(as, OP_STR_TO_SP_OFFSET(rlo_src, word_offset));
}
void asm_thumb_mov_reg_local(asm_thumb_t *as, uint rlo_dest, int local_num) {
assert(rlo_dest < ASM_THUMB_REG_R8);
int word_offset = local_num;
assert(as->base.pass < MP_ASM_PASS_EMIT || word_offset >= 0);
asm_thumb_op16(as, OP_LDR_FROM_SP_OFFSET(rlo_dest, word_offset));
}
#define OP_ADD_REG_SP_OFFSET(rlo_dest, word_offset) (0xa800 | ((rlo_dest) << 8) | ((word_offset) & 0x00ff))
void asm_thumb_mov_reg_local_addr(asm_thumb_t *as, uint rlo_dest, int local_num) {
assert(rlo_dest < ASM_THUMB_REG_R8);
int word_offset = local_num;
assert(as->base.pass < MP_ASM_PASS_EMIT || word_offset >= 0);
asm_thumb_op16(as, OP_ADD_REG_SP_OFFSET(rlo_dest, word_offset));
}
void asm_thumb_mov_reg_pcrel(asm_thumb_t *as, uint rlo_dest, uint label) {
mp_uint_t dest = get_label_dest(as, label);
mp_int_t rel = dest - as->base.code_offset;
rel -= 4 + 4; // adjust for mov_reg_i16 and then PC+4 prefetch of add_reg_reg
rel |= 1; // to stay in Thumb state when jumping to this address
asm_thumb_mov_reg_i16(as, ASM_THUMB_OP_MOVW, rlo_dest, rel); // 4 bytes
asm_thumb_add_reg_reg(as, rlo_dest, ASM_THUMB_REG_R15); // 2 bytes
}
static inline void asm_thumb_ldr_reg_reg_i12(asm_thumb_t *as, uint reg_dest, uint reg_base, uint word_offset) {
asm_thumb_op32(as, OP_LDR_W_HI(reg_base), OP_LDR_W_LO(reg_dest, word_offset * 4));
}
void asm_thumb_ldr_reg_reg_i12_optimised(asm_thumb_t *as, uint reg_dest, uint reg_base, uint word_offset) {
if (reg_dest < ASM_THUMB_REG_R8 && reg_base < ASM_THUMB_REG_R8 && UNSIGNED_FIT5(word_offset)) {
asm_thumb_ldr_rlo_rlo_i5(as, reg_dest, reg_base, word_offset);
} else {
asm_thumb_ldr_reg_reg_i12(as, reg_dest, reg_base, word_offset);
}
}
// this could be wrong, because it should have a range of +/- 16MiB...
#define OP_BW_HI(byte_offset) (0xf000 | (((byte_offset) >> 12) & 0x07ff))
#define OP_BW_LO(byte_offset) (0xb800 | (((byte_offset) >> 1) & 0x07ff))
void asm_thumb_b_label(asm_thumb_t *as, uint label) {
mp_uint_t dest = get_label_dest(as, label);
mp_int_t rel = dest - as->base.code_offset;
rel -= 4; // account for instruction prefetch, PC is 4 bytes ahead of this instruction
if (dest != (mp_uint_t)-1 && rel <= -4) {
// is a backwards jump, so we know the size of the jump on the first pass
// calculate rel assuming 12 bit relative jump
if (SIGNED_FIT12(rel)) {
asm_thumb_op16(as, OP_B_N(rel));
} else {
goto large_jump;
}
} else {
// is a forwards jump, so need to assume it's large
large_jump:
asm_thumb_op32(as, OP_BW_HI(rel), OP_BW_LO(rel));
}
}
void asm_thumb_bcc_label(asm_thumb_t *as, int cond, uint label) {
mp_uint_t dest = get_label_dest(as, label);
mp_int_t rel = dest - as->base.code_offset;
rel -= 4; // account for instruction prefetch, PC is 4 bytes ahead of this instruction
if (dest != (mp_uint_t)-1 && rel <= -4) {
// is a backwards jump, so we know the size of the jump on the first pass
// calculate rel assuming 9 bit relative jump
if (SIGNED_FIT9(rel)) {
asm_thumb_op16(as, OP_BCC_N(cond, rel));
} else {
goto large_jump;
}
} else {
// is a forwards jump, so need to assume it's large
large_jump:
asm_thumb_op32(as, OP_BCC_W_HI(cond, rel), OP_BCC_W_LO(rel));
}
}
#define OP_BLX(reg) (0x4780 | ((reg) << 3))
#define OP_SVC(arg) (0xdf00 | (arg))
void asm_thumb_bl_ind(asm_thumb_t *as, uint fun_id, uint reg_temp) {
// Load ptr to function from table, indexed by fun_id, then call it
asm_thumb_ldr_reg_reg_i12_optimised(as, reg_temp, ASM_THUMB_REG_FUN_TABLE, fun_id);
asm_thumb_op16(as, OP_BLX(reg_temp));
}
#endif // MICROPY_EMIT_THUMB || MICROPY_EMIT_INLINE_THUMB