micropython/py/modmath.c
Paul Sokolovsky 6d1eabfeaa unix/mpconfigport: Move log2() definition to modmath.c.
It's safer to define it where it's used, defining it for all source files
may lead to hard to diagnose conflicts in corner cases.
2015-11-13 15:24:48 +02:00

243 lines
9.7 KiB
C

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/builtin.h"
#if MICROPY_PY_BUILTINS_FLOAT && MICROPY_PY_MATH
#include <math.h>
/// \module math - mathematical functions
///
/// The `math` module provides some basic mathematical funtions for
/// working with floating-point numbers.
//TODO: Change macros to check for overflow and raise OverflowError or RangeError
#define MATH_FUN_1(py_name, c_name) \
STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj) { return mp_obj_new_float(MICROPY_FLOAT_C_FUN(c_name)(mp_obj_get_float(x_obj))); } \
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_## py_name ## _obj, mp_math_ ## py_name);
#define MATH_FUN_2(py_name, c_name) \
STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj, mp_obj_t y_obj) { return mp_obj_new_float(MICROPY_FLOAT_C_FUN(c_name)(mp_obj_get_float(x_obj), mp_obj_get_float(y_obj))); } \
STATIC MP_DEFINE_CONST_FUN_OBJ_2(mp_math_## py_name ## _obj, mp_math_ ## py_name);
#define MATH_FUN_1_TO_BOOL(py_name, c_name) \
STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj) { return mp_obj_new_bool(c_name(mp_obj_get_float(x_obj))); } \
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_## py_name ## _obj, mp_math_ ## py_name);
#define MATH_FUN_1_TO_INT(py_name, c_name) \
STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj) { mp_int_t x = MICROPY_FLOAT_C_FUN(c_name)(mp_obj_get_float(x_obj)); return mp_obj_new_int(x); } \
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_## py_name ## _obj, mp_math_ ## py_name);
#if MP_NEED_LOG2
// 1.442695040888963407354163704 is 1/_M_LN2
#define log2(x) (log(x) * 1.442695040888963407354163704)
#endif
/// \function sqrt(x)
/// Returns the square root of `x`.
MATH_FUN_1(sqrt, sqrt)
/// \function pow(x, y)
/// Returns `x` to the power of `y`.
MATH_FUN_2(pow, pow)
/// \function exp(x)
MATH_FUN_1(exp, exp)
/// \function expm1(x)
MATH_FUN_1(expm1, expm1)
/// \function log2(x)
MATH_FUN_1(log2, log2)
/// \function log10(x)
MATH_FUN_1(log10, log10)
/// \function cosh(x)
MATH_FUN_1(cosh, cosh)
/// \function sinh(x)
MATH_FUN_1(sinh, sinh)
/// \function tanh(x)
MATH_FUN_1(tanh, tanh)
/// \function acosh(x)
MATH_FUN_1(acosh, acosh)
/// \function asinh(x)
MATH_FUN_1(asinh, asinh)
/// \function atanh(x)
MATH_FUN_1(atanh, atanh)
/// \function cos(x)
MATH_FUN_1(cos, cos)
/// \function sin(x)
MATH_FUN_1(sin, sin)
/// \function tan(x)
MATH_FUN_1(tan, tan)
/// \function acos(x)
MATH_FUN_1(acos, acos)
/// \function asin(x)
MATH_FUN_1(asin, asin)
/// \function atan(x)
MATH_FUN_1(atan, atan)
/// \function atan2(y, x)
MATH_FUN_2(atan2, atan2)
/// \function ceil(x)
MATH_FUN_1_TO_INT(ceil, ceil)
/// \function copysign(x, y)
MATH_FUN_2(copysign, copysign)
/// \function fabs(x)
MATH_FUN_1(fabs, fabs)
/// \function floor(x)
MATH_FUN_1_TO_INT(floor, floor) //TODO: delegate to x.__floor__() if x is not a float
/// \function fmod(x, y)
MATH_FUN_2(fmod, fmod)
/// \function isfinite(x)
MATH_FUN_1_TO_BOOL(isfinite, isfinite)
/// \function isinf(x)
MATH_FUN_1_TO_BOOL(isinf, isinf)
/// \function isnan(x)
MATH_FUN_1_TO_BOOL(isnan, isnan)
/// \function trunc(x)
MATH_FUN_1_TO_INT(trunc, trunc)
/// \function ldexp(x, exp)
MATH_FUN_2(ldexp, ldexp)
#if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
/// \function erf(x)
/// Return the error function of `x`.
MATH_FUN_1(erf, erf)
/// \function erfc(x)
/// Return the complementary error function of `x`.
MATH_FUN_1(erfc, erfc)
/// \function gamma(x)
/// Return the gamma function of `x`.
MATH_FUN_1(gamma, tgamma)
/// \function lgamma(x)
/// return the natural logarithm of the gamma function of `x`.
MATH_FUN_1(lgamma, lgamma)
#endif
//TODO: factorial, fsum
// Function that takes a variable number of arguments
// log(x[, base])
STATIC mp_obj_t mp_math_log(mp_uint_t n_args, const mp_obj_t *args) {
mp_float_t l = MICROPY_FLOAT_C_FUN(log)(mp_obj_get_float(args[0]));
if (n_args == 1) {
return mp_obj_new_float(l);
} else {
return mp_obj_new_float(l / MICROPY_FLOAT_C_FUN(log)(mp_obj_get_float(args[1])));
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(mp_math_log_obj, 1, 2, mp_math_log);
// Functions that return a tuple
/// \function frexp(x)
/// Converts a floating-point number to fractional and integral components.
STATIC mp_obj_t mp_math_frexp(mp_obj_t x_obj) {
int int_exponent = 0;
mp_float_t significand = MICROPY_FLOAT_C_FUN(frexp)(mp_obj_get_float(x_obj), &int_exponent);
mp_obj_t tuple[2];
tuple[0] = mp_obj_new_float(significand);
tuple[1] = mp_obj_new_int(int_exponent);
return mp_obj_new_tuple(2, tuple);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_frexp_obj, mp_math_frexp);
/// \function modf(x)
STATIC mp_obj_t mp_math_modf(mp_obj_t x_obj) {
mp_float_t int_part = 0.0;
mp_float_t fractional_part = MICROPY_FLOAT_C_FUN(modf)(mp_obj_get_float(x_obj), &int_part);
mp_obj_t tuple[2];
tuple[0] = mp_obj_new_float(fractional_part);
tuple[1] = mp_obj_new_float(int_part);
return mp_obj_new_tuple(2, tuple);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_modf_obj, mp_math_modf);
// Angular conversions
/// \function radians(x)
STATIC mp_obj_t mp_math_radians(mp_obj_t x_obj) {
return mp_obj_new_float(mp_obj_get_float(x_obj) * M_PI / 180.0);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_radians_obj, mp_math_radians);
/// \function degrees(x)
STATIC mp_obj_t mp_math_degrees(mp_obj_t x_obj) {
return mp_obj_new_float(mp_obj_get_float(x_obj) * 180.0 / M_PI);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_degrees_obj, mp_math_degrees);
STATIC const mp_map_elem_t mp_module_math_globals_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_math) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_e), mp_const_float_e },
{ MP_OBJ_NEW_QSTR(MP_QSTR_pi), mp_const_float_pi },
{ MP_OBJ_NEW_QSTR(MP_QSTR_sqrt), (mp_obj_t)&mp_math_sqrt_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_pow), (mp_obj_t)&mp_math_pow_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_exp), (mp_obj_t)&mp_math_exp_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_expm1), (mp_obj_t)&mp_math_expm1_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_log), (mp_obj_t)&mp_math_log_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_log2), (mp_obj_t)&mp_math_log2_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_log10), (mp_obj_t)&mp_math_log10_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_cosh), (mp_obj_t)&mp_math_cosh_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_sinh), (mp_obj_t)&mp_math_sinh_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_tanh), (mp_obj_t)&mp_math_tanh_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_acosh), (mp_obj_t)&mp_math_acosh_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_asinh), (mp_obj_t)&mp_math_asinh_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_atanh), (mp_obj_t)&mp_math_atanh_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_cos), (mp_obj_t)&mp_math_cos_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_sin), (mp_obj_t)&mp_math_sin_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_tan), (mp_obj_t)&mp_math_tan_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_acos), (mp_obj_t)&mp_math_acos_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_asin), (mp_obj_t)&mp_math_asin_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_atan), (mp_obj_t)&mp_math_atan_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_atan2), (mp_obj_t)&mp_math_atan2_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_ceil), (mp_obj_t)&mp_math_ceil_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_copysign), (mp_obj_t)&mp_math_copysign_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_fabs), (mp_obj_t)&mp_math_fabs_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_floor), (mp_obj_t)&mp_math_floor_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_fmod), (mp_obj_t)&mp_math_fmod_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_frexp), (mp_obj_t)&mp_math_frexp_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_ldexp), (mp_obj_t)&mp_math_ldexp_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_modf), (mp_obj_t)&mp_math_modf_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_isfinite), (mp_obj_t)&mp_math_isfinite_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_isinf), (mp_obj_t)&mp_math_isinf_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_isnan), (mp_obj_t)&mp_math_isnan_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_trunc), (mp_obj_t)&mp_math_trunc_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_radians), (mp_obj_t)&mp_math_radians_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_degrees), (mp_obj_t)&mp_math_degrees_obj },
#if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
{ MP_OBJ_NEW_QSTR(MP_QSTR_erf), (mp_obj_t)&mp_math_erf_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_erfc), (mp_obj_t)&mp_math_erfc_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_gamma), (mp_obj_t)&mp_math_gamma_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_lgamma), (mp_obj_t)&mp_math_lgamma_obj },
#endif
};
STATIC MP_DEFINE_CONST_DICT(mp_module_math_globals, mp_module_math_globals_table);
const mp_obj_module_t mp_module_math = {
.base = { &mp_type_module },
.name = MP_QSTR_math,
.globals = (mp_obj_dict_t*)&mp_module_math_globals,
};
#endif // MICROPY_PY_BUILTINS_FLOAT && MICROPY_PY_MATH