micropython/ports/stm32/mpbthciport.c
Damien George 69522822de stm32/mpbthciport: Allow a board to hook BT HCI poll functions.
Signed-off-by: Damien George <damien@micropython.org>
2021-10-20 21:20:18 +11:00

306 lines
9.9 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2018-2021 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/runtime.h"
#include "py/mphal.h"
#include "extmod/mpbthci.h"
#include "extmod/modbluetooth.h"
#include "mpbthciport.h"
#include "softtimer.h"
#include "pendsv.h"
#include "shared/runtime/mpirq.h"
#if MICROPY_PY_BLUETOOTH
#define DEBUG_printf(...) // printf("mpbthciport.c: " __VA_ARGS__)
uint8_t mp_bluetooth_hci_cmd_buf[4 + 256];
// Soft timer for scheduling a HCI poll.
STATIC soft_timer_entry_t mp_bluetooth_hci_soft_timer;
#if MICROPY_PY_BLUETOOTH_USE_SYNC_EVENTS
// Prevent double-enqueuing of the scheduled task.
STATIC volatile bool events_task_is_scheduled;
#endif
// This is called by soft_timer and executes at IRQ_PRI_PENDSV.
STATIC void mp_bluetooth_hci_soft_timer_callback(soft_timer_entry_t *self) {
mp_bluetooth_hci_poll_now();
}
void mp_bluetooth_hci_init(void) {
#if MICROPY_PY_BLUETOOTH_USE_SYNC_EVENTS
events_task_is_scheduled = false;
#endif
soft_timer_static_init(
&mp_bluetooth_hci_soft_timer,
SOFT_TIMER_MODE_ONE_SHOT,
0,
mp_bluetooth_hci_soft_timer_callback
);
}
STATIC void mp_bluetooth_hci_start_polling(void) {
#if MICROPY_PY_BLUETOOTH_USE_SYNC_EVENTS
events_task_is_scheduled = false;
#endif
mp_bluetooth_hci_poll_now();
}
void mp_bluetooth_hci_poll_in_ms_default(uint32_t ms) {
soft_timer_reinsert(&mp_bluetooth_hci_soft_timer, ms);
}
#if MICROPY_PY_BLUETOOTH_USE_SYNC_EVENTS
// For synchronous mode, we run all BLE stack code inside a scheduled task.
// This task is scheduled periodically via a soft timer, or
// immediately on HCI UART RXIDLE.
STATIC mp_obj_t run_events_scheduled_task(mp_obj_t none_in) {
(void)none_in;
events_task_is_scheduled = false;
// This will process all buffered HCI UART data, and run any callouts or events.
mp_bluetooth_hci_poll();
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(run_events_scheduled_task_obj, run_events_scheduled_task);
// Called periodically (systick) or directly (e.g. UART RX IRQ) in order to
// request that processing happens ASAP in the scheduler.
void mp_bluetooth_hci_poll_now_default(void) {
if (!events_task_is_scheduled) {
events_task_is_scheduled = mp_sched_schedule(MP_OBJ_FROM_PTR(&run_events_scheduled_task_obj), mp_const_none);
if (!events_task_is_scheduled) {
// The schedule queue is full, set callback to try again soon.
mp_bluetooth_hci_poll_in_ms(5);
}
}
}
#else // !MICROPY_PY_BLUETOOTH_USE_SYNC_EVENTS
void mp_bluetooth_hci_poll_now_default(void) {
pendsv_schedule_dispatch(PENDSV_DISPATCH_BLUETOOTH_HCI, mp_bluetooth_hci_poll);
}
#endif
#if defined(STM32WB)
/******************************************************************************/
// HCI over IPCC
#include <string.h>
#include "rfcore.h"
STATIC uint16_t hci_uart_rx_buf_cur;
STATIC uint16_t hci_uart_rx_buf_len;
STATIC uint8_t hci_uart_rx_buf_data[256];
int mp_bluetooth_hci_uart_init(uint32_t port, uint32_t baudrate) {
(void)port;
(void)baudrate;
DEBUG_printf("mp_bluetooth_hci_uart_init (stm32 rfcore)\n");
rfcore_ble_init();
hci_uart_rx_buf_cur = 0;
hci_uart_rx_buf_len = 0;
// Start the HCI polling to process any initial events/packets.
mp_bluetooth_hci_start_polling();
return 0;
}
int mp_bluetooth_hci_uart_deinit(void) {
DEBUG_printf("mp_bluetooth_hci_uart_deinit (stm32 rfcore)\n");
return 0;
}
int mp_bluetooth_hci_uart_set_baudrate(uint32_t baudrate) {
(void)baudrate;
return 0;
}
int mp_bluetooth_hci_uart_write(const uint8_t *buf, size_t len) {
MICROPY_PY_BLUETOOTH_ENTER
rfcore_ble_hci_cmd(len, (const uint8_t *)buf);
MICROPY_PY_BLUETOOTH_EXIT
return 0;
}
// Callback to copy data into local hci_uart_rx_buf_data buffer for subsequent use.
STATIC int mp_bluetooth_hci_uart_msg_cb(void *env, const uint8_t *buf, size_t len) {
(void)env;
if (hci_uart_rx_buf_len + len > MP_ARRAY_SIZE(hci_uart_rx_buf_data)) {
len = MP_ARRAY_SIZE(hci_uart_rx_buf_data) - hci_uart_rx_buf_len;
}
memcpy(hci_uart_rx_buf_data + hci_uart_rx_buf_len, buf, len);
hci_uart_rx_buf_len += len;
return 0;
}
int mp_bluetooth_hci_uart_readchar(void) {
if (hci_uart_rx_buf_cur >= hci_uart_rx_buf_len) {
hci_uart_rx_buf_cur = 0;
hci_uart_rx_buf_len = 0;
rfcore_ble_check_msg(mp_bluetooth_hci_uart_msg_cb, NULL);
}
if (hci_uart_rx_buf_cur < hci_uart_rx_buf_len) {
return hci_uart_rx_buf_data[hci_uart_rx_buf_cur++];
} else {
return -1;
}
}
#else
/******************************************************************************/
// HCI over UART
#include "uart.h"
pyb_uart_obj_t mp_bluetooth_hci_uart_obj;
mp_irq_obj_t mp_bluetooth_hci_uart_irq_obj;
static uint8_t hci_uart_rxbuf[768];
mp_obj_t mp_uart_interrupt(mp_obj_t self_in) {
// Queue up the scheduler to run the HCI UART and event processing ASAP.
mp_bluetooth_hci_poll_now();
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_1(mp_uart_interrupt_obj, mp_uart_interrupt);
int mp_bluetooth_hci_uart_init(uint32_t port, uint32_t baudrate) {
DEBUG_printf("mp_bluetooth_hci_uart_init (stm32)\n");
// bits (8), stop (1), parity (none) and flow (rts/cts) are assumed to match MYNEWT_VAL_BLE_HCI_UART_ constants in syscfg.h.
mp_bluetooth_hci_uart_obj.base.type = &pyb_uart_type;
mp_bluetooth_hci_uart_obj.uart_id = port;
mp_bluetooth_hci_uart_obj.is_static = true;
// We don't want to block indefinitely, but expect flow control is doing its job.
mp_bluetooth_hci_uart_obj.timeout = 200;
mp_bluetooth_hci_uart_obj.timeout_char = 200;
MP_STATE_PORT(pyb_uart_obj_all)[mp_bluetooth_hci_uart_obj.uart_id - 1] = &mp_bluetooth_hci_uart_obj;
// Initialise the UART.
uart_init(&mp_bluetooth_hci_uart_obj, baudrate, UART_WORDLENGTH_8B, UART_PARITY_NONE, UART_STOPBITS_1, UART_HWCONTROL_RTS | UART_HWCONTROL_CTS);
uart_set_rxbuf(&mp_bluetooth_hci_uart_obj, sizeof(hci_uart_rxbuf), hci_uart_rxbuf);
// Add IRQ handler for IDLE (i.e. packet finished).
uart_irq_config(&mp_bluetooth_hci_uart_obj, false);
mp_irq_init(&mp_bluetooth_hci_uart_irq_obj, &uart_irq_methods, MP_OBJ_FROM_PTR(&mp_bluetooth_hci_uart_obj));
mp_bluetooth_hci_uart_obj.mp_irq_obj = &mp_bluetooth_hci_uart_irq_obj;
mp_bluetooth_hci_uart_obj.mp_irq_trigger = UART_FLAG_IDLE;
mp_bluetooth_hci_uart_irq_obj.handler = MP_OBJ_FROM_PTR(&mp_uart_interrupt_obj);
mp_bluetooth_hci_uart_irq_obj.ishard = true;
uart_irq_config(&mp_bluetooth_hci_uart_obj, true);
// Start the HCI polling to process any initial events/packets.
mp_bluetooth_hci_start_polling();
return 0;
}
int mp_bluetooth_hci_uart_deinit(void) {
DEBUG_printf("mp_bluetooth_hci_uart_deinit (stm32)\n");
// TODO: deinit mp_bluetooth_hci_uart_obj
return 0;
}
int mp_bluetooth_hci_uart_set_baudrate(uint32_t baudrate) {
DEBUG_printf("mp_bluetooth_hci_uart_set_baudrate(%lu) (stm32)\n", baudrate);
uart_set_baudrate(&mp_bluetooth_hci_uart_obj, baudrate);
return 0;
}
int mp_bluetooth_hci_uart_write(const uint8_t *buf, size_t len) {
// DEBUG_printf("mp_bluetooth_hci_uart_write (stm32)\n");
mp_bluetooth_hci_controller_wakeup();
int errcode;
uart_tx_data(&mp_bluetooth_hci_uart_obj, (void *)buf, len, &errcode);
if (errcode != 0) {
mp_printf(&mp_plat_print, "\nmp_bluetooth_hci_uart_write: failed to write to UART %d\n", errcode);
}
return 0;
}
// This function expects the controller to be in the wake state via a previous call
// to mp_bluetooth_hci_controller_woken.
int mp_bluetooth_hci_uart_readchar(void) {
// DEBUG_printf("mp_bluetooth_hci_uart_readchar (stm32)\n");
if (uart_rx_any(&mp_bluetooth_hci_uart_obj)) {
// DEBUG_printf("... available\n");
return uart_rx_char(&mp_bluetooth_hci_uart_obj);
} else {
return -1;
}
}
#endif // defined(STM32WB)
// Default (weak) implementation of the HCI controller interface.
// A driver (e.g. cywbt43.c) can override these for controller-specific
// functionality (i.e. power management).
MP_WEAK int mp_bluetooth_hci_controller_init(void) {
DEBUG_printf("mp_bluetooth_hci_controller_init (default)\n");
return 0;
}
MP_WEAK int mp_bluetooth_hci_controller_deinit(void) {
DEBUG_printf("mp_bluetooth_hci_controller_deinit (default)\n");
return 0;
}
MP_WEAK int mp_bluetooth_hci_controller_sleep_maybe(void) {
DEBUG_printf("mp_bluetooth_hci_controller_sleep_maybe (default)\n");
return 0;
}
MP_WEAK bool mp_bluetooth_hci_controller_woken(void) {
DEBUG_printf("mp_bluetooth_hci_controller_woken (default)\n");
return true;
}
MP_WEAK int mp_bluetooth_hci_controller_wakeup(void) {
DEBUG_printf("mp_bluetooth_hci_controller_wakeup (default)\n");
return 0;
}
#endif // MICROPY_PY_BLUETOOTH