micropython/py/objcomplex.c
Damien George 58321dd985 all: Convert mp_uint_t to mp_unary_op_t/mp_binary_op_t where appropriate
The unary-op/binary-op enums are already defined, and there are no
arithmetic tricks used with these types, so it makes sense to use the
correct enum type for arguments that take these values.  It also reduces
code size quite a bit for nan-boxing builds.
2017-08-29 13:16:30 +10:00

256 lines
9.0 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdlib.h>
#include <stdio.h>
#include <assert.h>
#include "py/nlr.h"
#include "py/obj.h"
#include "py/parsenum.h"
#include "py/runtime0.h"
#include "py/runtime.h"
#if MICROPY_PY_BUILTINS_COMPLEX
#include <math.h>
#include "py/formatfloat.h"
typedef struct _mp_obj_complex_t {
mp_obj_base_t base;
mp_float_t real;
mp_float_t imag;
} mp_obj_complex_t;
STATIC void complex_print(const mp_print_t *print, mp_obj_t o_in, mp_print_kind_t kind) {
(void)kind;
mp_obj_complex_t *o = MP_OBJ_TO_PTR(o_in);
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
char buf[16];
#if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_C
const int precision = 6;
#else
const int precision = 7;
#endif
#else
char buf[32];
const int precision = 16;
#endif
if (o->real == 0) {
mp_format_float(o->imag, buf, sizeof(buf), 'g', precision, '\0');
mp_printf(print, "%sj", buf);
} else {
mp_format_float(o->real, buf, sizeof(buf), 'g', precision, '\0');
mp_printf(print, "(%s", buf);
if (o->imag >= 0 || isnan(o->imag)) {
mp_print_str(print, "+");
}
mp_format_float(o->imag, buf, sizeof(buf), 'g', precision, '\0');
mp_printf(print, "%sj)", buf);
}
}
STATIC mp_obj_t complex_make_new(const mp_obj_type_t *type_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
(void)type_in;
mp_arg_check_num(n_args, n_kw, 0, 2, false);
switch (n_args) {
case 0:
return mp_obj_new_complex(0, 0);
case 1:
if (MP_OBJ_IS_STR(args[0])) {
// a string, parse it
size_t l;
const char *s = mp_obj_str_get_data(args[0], &l);
return mp_parse_num_decimal(s, l, true, true, NULL);
} else if (MP_OBJ_IS_TYPE(args[0], &mp_type_complex)) {
// a complex, just return it
return args[0];
} else {
// something else, try to cast it to a complex
return mp_obj_new_complex(mp_obj_get_float(args[0]), 0);
}
case 2:
default: {
mp_float_t real, imag;
if (MP_OBJ_IS_TYPE(args[0], &mp_type_complex)) {
mp_obj_complex_get(args[0], &real, &imag);
} else {
real = mp_obj_get_float(args[0]);
imag = 0;
}
if (MP_OBJ_IS_TYPE(args[1], &mp_type_complex)) {
mp_float_t real2, imag2;
mp_obj_complex_get(args[1], &real2, &imag2);
real -= imag2;
imag += real2;
} else {
imag += mp_obj_get_float(args[1]);
}
return mp_obj_new_complex(real, imag);
}
}
}
STATIC mp_obj_t complex_unary_op(mp_unary_op_t op, mp_obj_t o_in) {
mp_obj_complex_t *o = MP_OBJ_TO_PTR(o_in);
switch (op) {
case MP_UNARY_OP_BOOL: return mp_obj_new_bool(o->real != 0 || o->imag != 0);
case MP_UNARY_OP_HASH: return MP_OBJ_NEW_SMALL_INT(mp_float_hash(o->real) ^ mp_float_hash(o->imag));
case MP_UNARY_OP_POSITIVE: return o_in;
case MP_UNARY_OP_NEGATIVE: return mp_obj_new_complex(-o->real, -o->imag);
default: return MP_OBJ_NULL; // op not supported
}
}
STATIC mp_obj_t complex_binary_op(mp_binary_op_t op, mp_obj_t lhs_in, mp_obj_t rhs_in) {
mp_obj_complex_t *lhs = MP_OBJ_TO_PTR(lhs_in);
return mp_obj_complex_binary_op(op, lhs->real, lhs->imag, rhs_in);
}
STATIC void complex_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) {
if (dest[0] != MP_OBJ_NULL) {
// not load attribute
return;
}
mp_obj_complex_t *self = MP_OBJ_TO_PTR(self_in);
if (attr == MP_QSTR_real) {
dest[0] = mp_obj_new_float(self->real);
} else if (attr == MP_QSTR_imag) {
dest[0] = mp_obj_new_float(self->imag);
}
}
const mp_obj_type_t mp_type_complex = {
{ &mp_type_type },
.name = MP_QSTR_complex,
.print = complex_print,
.make_new = complex_make_new,
.unary_op = complex_unary_op,
.binary_op = complex_binary_op,
.attr = complex_attr,
};
mp_obj_t mp_obj_new_complex(mp_float_t real, mp_float_t imag) {
mp_obj_complex_t *o = m_new_obj(mp_obj_complex_t);
o->base.type = &mp_type_complex;
o->real = real;
o->imag = imag;
return MP_OBJ_FROM_PTR(o);
}
void mp_obj_complex_get(mp_obj_t self_in, mp_float_t *real, mp_float_t *imag) {
assert(MP_OBJ_IS_TYPE(self_in, &mp_type_complex));
mp_obj_complex_t *self = MP_OBJ_TO_PTR(self_in);
*real = self->real;
*imag = self->imag;
}
mp_obj_t mp_obj_complex_binary_op(mp_binary_op_t op, mp_float_t lhs_real, mp_float_t lhs_imag, mp_obj_t rhs_in) {
mp_float_t rhs_real, rhs_imag;
mp_obj_get_complex(rhs_in, &rhs_real, &rhs_imag); // can be any type, this function will convert to float (if possible)
switch (op) {
case MP_BINARY_OP_ADD:
case MP_BINARY_OP_INPLACE_ADD:
lhs_real += rhs_real;
lhs_imag += rhs_imag;
break;
case MP_BINARY_OP_SUBTRACT:
case MP_BINARY_OP_INPLACE_SUBTRACT:
lhs_real -= rhs_real;
lhs_imag -= rhs_imag;
break;
case MP_BINARY_OP_MULTIPLY:
case MP_BINARY_OP_INPLACE_MULTIPLY: {
mp_float_t real;
multiply:
real = lhs_real * rhs_real - lhs_imag * rhs_imag;
lhs_imag = lhs_real * rhs_imag + lhs_imag * rhs_real;
lhs_real = real;
break;
}
case MP_BINARY_OP_FLOOR_DIVIDE:
case MP_BINARY_OP_INPLACE_FLOOR_DIVIDE:
mp_raise_TypeError("can't do truncated division of a complex number");
case MP_BINARY_OP_TRUE_DIVIDE:
case MP_BINARY_OP_INPLACE_TRUE_DIVIDE:
if (rhs_imag == 0) {
if (rhs_real == 0) {
mp_raise_msg(&mp_type_ZeroDivisionError, "complex division by zero");
}
lhs_real /= rhs_real;
lhs_imag /= rhs_real;
} else if (rhs_real == 0) {
mp_float_t real = lhs_imag / rhs_imag;
lhs_imag = -lhs_real / rhs_imag;
lhs_real = real;
} else {
mp_float_t rhs_len_sq = rhs_real*rhs_real + rhs_imag*rhs_imag;
rhs_real /= rhs_len_sq;
rhs_imag /= -rhs_len_sq;
goto multiply;
}
break;
case MP_BINARY_OP_POWER:
case MP_BINARY_OP_INPLACE_POWER: {
// z1**z2 = exp(z2*ln(z1))
// = exp(z2*(ln(|z1|)+i*arg(z1)))
// = exp( (x2*ln1 - y2*arg1) + i*(y2*ln1 + x2*arg1) )
// = exp(x3 + i*y3)
// = exp(x3)*(cos(y3) + i*sin(y3))
mp_float_t abs1 = MICROPY_FLOAT_C_FUN(sqrt)(lhs_real*lhs_real + lhs_imag*lhs_imag);
if (abs1 == 0) {
if (rhs_imag == 0 && rhs_real >= 0) {
lhs_real = (rhs_real == 0);
} else {
mp_raise_msg(&mp_type_ZeroDivisionError, "0.0 to a complex power");
}
} else {
mp_float_t ln1 = MICROPY_FLOAT_C_FUN(log)(abs1);
mp_float_t arg1 = MICROPY_FLOAT_C_FUN(atan2)(lhs_imag, lhs_real);
mp_float_t x3 = rhs_real * ln1 - rhs_imag * arg1;
mp_float_t y3 = rhs_imag * ln1 + rhs_real * arg1;
mp_float_t exp_x3 = MICROPY_FLOAT_C_FUN(exp)(x3);
lhs_real = exp_x3 * MICROPY_FLOAT_C_FUN(cos)(y3);
lhs_imag = exp_x3 * MICROPY_FLOAT_C_FUN(sin)(y3);
}
break;
}
case MP_BINARY_OP_EQUAL: return mp_obj_new_bool(lhs_real == rhs_real && lhs_imag == rhs_imag);
default:
return MP_OBJ_NULL; // op not supported
}
return mp_obj_new_complex(lhs_real, lhs_imag);
}
#endif