micropython/py/persistentcode.c
Damien George 627ba38154 py/parsenum: Optimise when building with complex disabled.
To reduce code size when MICROPY_PY_BUILTINS_COMPLEX is disabled.

Signed-off-by: Damien George <damien@micropython.org>
2022-06-23 11:46:47 +10:00

647 lines
21 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013-2020 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include "py/reader.h"
#include "py/nativeglue.h"
#include "py/persistentcode.h"
#include "py/bc0.h"
#include "py/objstr.h"
#include "py/mpthread.h"
#if MICROPY_PERSISTENT_CODE_LOAD || MICROPY_PERSISTENT_CODE_SAVE
#include "py/smallint.h"
#define QSTR_LAST_STATIC MP_QSTR_zip
#if MICROPY_DYNAMIC_COMPILER
#define MPY_FEATURE_ARCH_DYNAMIC mp_dynamic_compiler.native_arch
#else
#define MPY_FEATURE_ARCH_DYNAMIC MPY_FEATURE_ARCH
#endif
typedef struct _bytecode_prelude_t {
uint n_state;
uint n_exc_stack;
uint scope_flags;
uint n_pos_args;
uint n_kwonly_args;
uint n_def_pos_args;
uint code_info_size;
} bytecode_prelude_t;
#endif // MICROPY_PERSISTENT_CODE_LOAD || MICROPY_PERSISTENT_CODE_SAVE
#if MICROPY_PERSISTENT_CODE_LOAD
#include "py/parsenum.h"
STATIC int read_byte(mp_reader_t *reader);
STATIC size_t read_uint(mp_reader_t *reader);
#if MICROPY_EMIT_MACHINE_CODE
typedef struct _reloc_info_t {
mp_reader_t *reader;
mp_module_context_t *context;
uint8_t *rodata;
uint8_t *bss;
} reloc_info_t;
void mp_native_relocate(void *ri_in, uint8_t *text, uintptr_t reloc_text) {
// Relocate native code
reloc_info_t *ri = ri_in;
uint8_t op;
uintptr_t *addr_to_adjust = NULL;
while ((op = read_byte(ri->reader)) != 0xff) {
if (op & 1) {
// Point to new location to make adjustments
size_t addr = read_uint(ri->reader);
if ((addr & 1) == 0) {
// Point to somewhere in text
addr_to_adjust = &((uintptr_t *)text)[addr >> 1];
} else {
// Point to somewhere in rodata
addr_to_adjust = &((uintptr_t *)ri->rodata)[addr >> 1];
}
}
op >>= 1;
uintptr_t dest;
size_t n = 1;
if (op <= 5) {
if (op & 1) {
// Read in number of adjustments to make
n = read_uint(ri->reader);
}
op >>= 1;
if (op == 0) {
// Destination is text
dest = reloc_text;
} else if (op == 1) {
// Destination is rodata
dest = (uintptr_t)ri->rodata;
} else {
// Destination is bss
dest = (uintptr_t)ri->bss;
}
} else if (op == 6) {
// Destination is qstr_table
dest = (uintptr_t)ri->context->constants.qstr_table;
} else if (op == 7) {
// Destination is obj_table
dest = (uintptr_t)ri->context->constants.obj_table;
} else if (op == 8) {
// Destination is mp_fun_table itself
dest = (uintptr_t)&mp_fun_table;
} else {
// Destination is an entry in mp_fun_table
dest = ((uintptr_t *)&mp_fun_table)[op - 9];
}
while (n--) {
*addr_to_adjust++ += dest;
}
}
}
#endif
STATIC int read_byte(mp_reader_t *reader) {
return reader->readbyte(reader->data);
}
STATIC void read_bytes(mp_reader_t *reader, byte *buf, size_t len) {
while (len-- > 0) {
*buf++ = reader->readbyte(reader->data);
}
}
STATIC size_t read_uint(mp_reader_t *reader) {
size_t unum = 0;
for (;;) {
byte b = reader->readbyte(reader->data);
unum = (unum << 7) | (b & 0x7f);
if ((b & 0x80) == 0) {
break;
}
}
return unum;
}
STATIC qstr load_qstr(mp_reader_t *reader) {
size_t len = read_uint(reader);
if (len & 1) {
// static qstr
return len >> 1;
}
len >>= 1;
char *str = m_new(char, len);
read_bytes(reader, (byte *)str, len);
read_byte(reader); // read and discard null terminator
qstr qst = qstr_from_strn(str, len);
m_del(char, str, len);
return qst;
}
STATIC mp_obj_t load_obj(mp_reader_t *reader) {
byte obj_type = read_byte(reader);
#if MICROPY_EMIT_MACHINE_CODE
if (obj_type == MP_PERSISTENT_OBJ_FUN_TABLE) {
return MP_OBJ_FROM_PTR(&mp_fun_table);
} else
#endif
if (obj_type == MP_PERSISTENT_OBJ_NONE) {
return mp_const_none;
} else if (obj_type == MP_PERSISTENT_OBJ_FALSE) {
return mp_const_false;
} else if (obj_type == MP_PERSISTENT_OBJ_TRUE) {
return mp_const_true;
} else if (obj_type == MP_PERSISTENT_OBJ_ELLIPSIS) {
return MP_OBJ_FROM_PTR(&mp_const_ellipsis_obj);
} else {
size_t len = read_uint(reader);
if (len == 0 && obj_type == MP_PERSISTENT_OBJ_BYTES) {
read_byte(reader); // skip null terminator
return mp_const_empty_bytes;
} else if (obj_type == MP_PERSISTENT_OBJ_TUPLE) {
mp_obj_tuple_t *tuple = MP_OBJ_TO_PTR(mp_obj_new_tuple(len, NULL));
for (size_t i = 0; i < len; ++i) {
tuple->items[i] = load_obj(reader);
}
return MP_OBJ_FROM_PTR(tuple);
}
vstr_t vstr;
vstr_init_len(&vstr, len);
read_bytes(reader, (byte *)vstr.buf, len);
if (obj_type == MP_PERSISTENT_OBJ_STR || obj_type == MP_PERSISTENT_OBJ_BYTES) {
read_byte(reader); // skip null terminator
return mp_obj_new_str_from_vstr(obj_type == MP_PERSISTENT_OBJ_STR ? &mp_type_str : &mp_type_bytes, &vstr);
} else if (obj_type == MP_PERSISTENT_OBJ_INT) {
return mp_parse_num_integer(vstr.buf, vstr.len, 10, NULL);
} else {
assert(obj_type == MP_PERSISTENT_OBJ_FLOAT || obj_type == MP_PERSISTENT_OBJ_COMPLEX);
return mp_parse_num_float(vstr.buf, vstr.len, obj_type == MP_PERSISTENT_OBJ_COMPLEX, NULL);
}
}
}
STATIC mp_raw_code_t *load_raw_code(mp_reader_t *reader, mp_module_context_t *context) {
// Load function kind and data length
size_t kind_len = read_uint(reader);
int kind = (kind_len & 3) + MP_CODE_BYTECODE;
bool has_children = !!(kind_len & 4);
size_t fun_data_len = kind_len >> 3;
#if !MICROPY_EMIT_MACHINE_CODE
if (kind != MP_CODE_BYTECODE) {
mp_raise_ValueError(MP_ERROR_TEXT("incompatible .mpy file"));
}
#endif
uint8_t *fun_data = NULL;
#if MICROPY_EMIT_MACHINE_CODE
size_t prelude_offset = 0;
mp_uint_t native_scope_flags = 0;
mp_uint_t native_n_pos_args = 0;
mp_uint_t native_type_sig = 0;
#endif
if (kind == MP_CODE_BYTECODE) {
// Allocate memory for the bytecode
fun_data = m_new(uint8_t, fun_data_len);
// Load bytecode
read_bytes(reader, fun_data, fun_data_len);
#if MICROPY_EMIT_MACHINE_CODE
} else {
// Allocate memory for native data and load it
size_t fun_alloc;
MP_PLAT_ALLOC_EXEC(fun_data_len, (void **)&fun_data, &fun_alloc);
read_bytes(reader, fun_data, fun_data_len);
if (kind == MP_CODE_NATIVE_PY) {
// Read prelude offset within fun_data, and extract scope flags.
prelude_offset = read_uint(reader);
const byte *ip = fun_data + prelude_offset;
MP_BC_PRELUDE_SIG_DECODE(ip);
native_scope_flags = scope_flags;
} else {
// Load basic scope info for viper and asm.
native_scope_flags = read_uint(reader);
if (kind == MP_CODE_NATIVE_ASM) {
native_n_pos_args = read_uint(reader);
native_type_sig = read_uint(reader);
}
}
#endif
}
size_t n_children = 0;
mp_raw_code_t **children = NULL;
#if MICROPY_EMIT_MACHINE_CODE
// Load optional BSS/rodata for viper.
uint8_t *rodata = NULL;
uint8_t *bss = NULL;
if (kind == MP_CODE_NATIVE_VIPER) {
size_t rodata_size = 0;
if (native_scope_flags & MP_SCOPE_FLAG_VIPERRODATA) {
rodata_size = read_uint(reader);
}
size_t bss_size = 0;
if (native_scope_flags & MP_SCOPE_FLAG_VIPERBSS) {
bss_size = read_uint(reader);
}
if (rodata_size + bss_size != 0) {
bss_size = (uintptr_t)MP_ALIGN(bss_size, sizeof(uintptr_t));
uint8_t *data = m_new0(uint8_t, bss_size + rodata_size);
bss = data;
rodata = bss + bss_size;
if (native_scope_flags & MP_SCOPE_FLAG_VIPERRODATA) {
read_bytes(reader, rodata, rodata_size);
}
// Viper code with BSS/rodata should not have any children.
// Reuse the children pointer to reference the BSS/rodata
// memory so that it is not reclaimed by the GC.
assert(!has_children);
children = (void *)data;
}
}
#endif
// Load children if any.
if (has_children) {
n_children = read_uint(reader);
children = m_new(mp_raw_code_t *, n_children + (kind == MP_CODE_NATIVE_PY));
for (size_t i = 0; i < n_children; ++i) {
children[i] = load_raw_code(reader, context);
}
}
// Create raw_code and return it
mp_raw_code_t *rc = mp_emit_glue_new_raw_code();
if (kind == MP_CODE_BYTECODE) {
const byte *ip = fun_data;
MP_BC_PRELUDE_SIG_DECODE(ip);
// Assign bytecode to raw code object
mp_emit_glue_assign_bytecode(rc, fun_data,
#if MICROPY_PERSISTENT_CODE_SAVE || MICROPY_DEBUG_PRINTERS
fun_data_len,
#endif
children,
#if MICROPY_PERSISTENT_CODE_SAVE
n_children,
#endif
scope_flags);
#if MICROPY_EMIT_MACHINE_CODE
} else {
const uint8_t *prelude_ptr;
#if MICROPY_EMIT_NATIVE_PRELUDE_SEPARATE_FROM_MACHINE_CODE
if (kind == MP_CODE_NATIVE_PY) {
// Executable code cannot be accessed byte-wise on this architecture, so copy
// the prelude to a separate memory region that is byte-wise readable.
void *buf = fun_data + prelude_offset;
size_t n = fun_data_len - prelude_offset;
prelude_ptr = memcpy(m_new(uint8_t, n), buf, n);
}
#endif
// Relocate and commit code to executable address space
reloc_info_t ri = {reader, context, rodata, bss};
#if defined(MP_PLAT_COMMIT_EXEC)
void *opt_ri = (native_scope_flags & MP_SCOPE_FLAG_VIPERRELOC) ? &ri : NULL;
fun_data = MP_PLAT_COMMIT_EXEC(fun_data, fun_data_len, opt_ri);
#else
if (native_scope_flags & MP_SCOPE_FLAG_VIPERRELOC) {
#if MICROPY_PERSISTENT_CODE_TRACK_RELOC_CODE
// If native code needs relocations then it's not guaranteed that a pointer to
// the head of `buf` (containing the machine code) will be retained for the GC
// to trace. This is because native functions can start inside `buf` and so
// it's possible that the only GC-reachable pointers are pointers inside `buf`.
// So put this `buf` on a list of reachable root pointers.
if (MP_STATE_PORT(track_reloc_code_list) == MP_OBJ_NULL) {
MP_STATE_PORT(track_reloc_code_list) = mp_obj_new_list(0, NULL);
}
mp_obj_list_append(MP_STATE_PORT(track_reloc_code_list), MP_OBJ_FROM_PTR(fun_data));
#endif
// Do the relocations.
mp_native_relocate(&ri, fun_data, (uintptr_t)fun_data);
}
#endif
if (kind == MP_CODE_NATIVE_PY) {
#if !MICROPY_EMIT_NATIVE_PRELUDE_SEPARATE_FROM_MACHINE_CODE
prelude_ptr = fun_data + prelude_offset;
#endif
if (n_children == 0) {
children = (void *)prelude_ptr;
} else {
children[n_children] = (void *)prelude_ptr;
}
}
// Assign native code to raw code object
mp_emit_glue_assign_native(rc, kind,
fun_data, fun_data_len,
children,
#if MICROPY_PERSISTENT_CODE_SAVE
n_children,
prelude_offset,
#endif
native_scope_flags, native_n_pos_args, native_type_sig
);
#endif
}
return rc;
}
mp_compiled_module_t mp_raw_code_load(mp_reader_t *reader, mp_module_context_t *context) {
byte header[4];
read_bytes(reader, header, sizeof(header));
if (header[0] != 'M'
|| header[1] != MPY_VERSION
|| MPY_FEATURE_DECODE_FLAGS(header[2]) != MPY_FEATURE_FLAGS
|| header[3] > MP_SMALL_INT_BITS) {
mp_raise_ValueError(MP_ERROR_TEXT("incompatible .mpy file"));
}
if (MPY_FEATURE_DECODE_ARCH(header[2]) != MP_NATIVE_ARCH_NONE) {
byte arch = MPY_FEATURE_DECODE_ARCH(header[2]);
if (!MPY_FEATURE_ARCH_TEST(arch)) {
mp_raise_ValueError(MP_ERROR_TEXT("incompatible .mpy arch"));
}
}
size_t n_qstr = read_uint(reader);
size_t n_obj = read_uint(reader);
mp_module_context_alloc_tables(context, n_qstr, n_obj);
// Load qstrs.
for (size_t i = 0; i < n_qstr; ++i) {
context->constants.qstr_table[i] = load_qstr(reader);
}
// Load constant objects.
for (size_t i = 0; i < n_obj; ++i) {
context->constants.obj_table[i] = load_obj(reader);
}
// Load top-level module.
mp_compiled_module_t cm2;
cm2.rc = load_raw_code(reader, context);
cm2.context = context;
#if MICROPY_PERSISTENT_CODE_SAVE
cm2.has_native = MPY_FEATURE_DECODE_ARCH(header[2]) != MP_NATIVE_ARCH_NONE;
cm2.n_qstr = n_qstr;
cm2.n_obj = n_obj;
#endif
reader->close(reader->data);
return cm2;
}
mp_compiled_module_t mp_raw_code_load_mem(const byte *buf, size_t len, mp_module_context_t *context) {
mp_reader_t reader;
mp_reader_new_mem(&reader, buf, len, 0);
return mp_raw_code_load(&reader, context);
}
#if MICROPY_HAS_FILE_READER
mp_compiled_module_t mp_raw_code_load_file(const char *filename, mp_module_context_t *context) {
mp_reader_t reader;
mp_reader_new_file(&reader, filename);
return mp_raw_code_load(&reader, context);
}
#endif // MICROPY_HAS_FILE_READER
#endif // MICROPY_PERSISTENT_CODE_LOAD
#if MICROPY_PERSISTENT_CODE_SAVE
#include "py/objstr.h"
STATIC void mp_print_bytes(mp_print_t *print, const byte *data, size_t len) {
print->print_strn(print->data, (const char *)data, len);
}
#define BYTES_FOR_INT ((MP_BYTES_PER_OBJ_WORD * 8 + 6) / 7)
STATIC void mp_print_uint(mp_print_t *print, size_t n) {
byte buf[BYTES_FOR_INT];
byte *p = buf + sizeof(buf);
*--p = n & 0x7f;
n >>= 7;
for (; n != 0; n >>= 7) {
*--p = 0x80 | (n & 0x7f);
}
print->print_strn(print->data, (char *)p, buf + sizeof(buf) - p);
}
STATIC void save_qstr(mp_print_t *print, qstr qst) {
if (qst <= QSTR_LAST_STATIC) {
// encode static qstr
mp_print_uint(print, qst << 1 | 1);
return;
}
size_t len;
const byte *str = qstr_data(qst, &len);
mp_print_uint(print, len << 1);
mp_print_bytes(print, str, len + 1); // +1 to store null terminator
}
STATIC void save_obj(mp_print_t *print, mp_obj_t o) {
#if MICROPY_EMIT_MACHINE_CODE
if (o == MP_OBJ_FROM_PTR(&mp_fun_table)) {
byte obj_type = MP_PERSISTENT_OBJ_FUN_TABLE;
mp_print_bytes(print, &obj_type, 1);
} else
#endif
if (mp_obj_is_str_or_bytes(o)) {
byte obj_type;
if (mp_obj_is_str(o)) {
obj_type = MP_PERSISTENT_OBJ_STR;
} else {
obj_type = MP_PERSISTENT_OBJ_BYTES;
}
size_t len;
const char *str = mp_obj_str_get_data(o, &len);
mp_print_bytes(print, &obj_type, 1);
mp_print_uint(print, len);
mp_print_bytes(print, (const byte *)str, len + 1); // +1 to store null terminator
} else if (o == mp_const_none) {
byte obj_type = MP_PERSISTENT_OBJ_NONE;
mp_print_bytes(print, &obj_type, 1);
} else if (o == mp_const_false) {
byte obj_type = MP_PERSISTENT_OBJ_FALSE;
mp_print_bytes(print, &obj_type, 1);
} else if (o == mp_const_true) {
byte obj_type = MP_PERSISTENT_OBJ_TRUE;
mp_print_bytes(print, &obj_type, 1);
} else if (MP_OBJ_TO_PTR(o) == &mp_const_ellipsis_obj) {
byte obj_type = MP_PERSISTENT_OBJ_ELLIPSIS;
mp_print_bytes(print, &obj_type, 1);
} else if (mp_obj_is_type(o, &mp_type_tuple)) {
size_t len;
mp_obj_t *items;
mp_obj_tuple_get(o, &len, &items);
byte obj_type = MP_PERSISTENT_OBJ_TUPLE;
mp_print_bytes(print, &obj_type, 1);
mp_print_uint(print, len);
for (size_t i = 0; i < len; ++i) {
save_obj(print, items[i]);
}
} else {
// we save numbers using a simplistic text representation
// TODO could be improved
byte obj_type;
if (mp_obj_is_int(o)) {
obj_type = MP_PERSISTENT_OBJ_INT;
#if MICROPY_PY_BUILTINS_COMPLEX
} else if (mp_obj_is_type(o, &mp_type_complex)) {
obj_type = MP_PERSISTENT_OBJ_COMPLEX;
#endif
} else {
assert(mp_obj_is_float(o));
obj_type = MP_PERSISTENT_OBJ_FLOAT;
}
vstr_t vstr;
mp_print_t pr;
vstr_init_print(&vstr, 10, &pr);
mp_obj_print_helper(&pr, o, PRINT_REPR);
mp_print_bytes(print, &obj_type, 1);
mp_print_uint(print, vstr.len);
mp_print_bytes(print, (const byte *)vstr.buf, vstr.len);
vstr_clear(&vstr);
}
}
STATIC void save_raw_code(mp_print_t *print, const mp_raw_code_t *rc) {
// Save function kind and data length
mp_print_uint(print, (rc->fun_data_len << 3) | ((rc->n_children != 0) << 2) | (rc->kind - MP_CODE_BYTECODE));
// Save function code.
mp_print_bytes(print, rc->fun_data, rc->fun_data_len);
#if MICROPY_EMIT_MACHINE_CODE
if (rc->kind == MP_CODE_NATIVE_PY) {
// Save prelude size
mp_print_uint(print, rc->prelude_offset);
} else if (rc->kind == MP_CODE_NATIVE_VIPER || rc->kind == MP_CODE_NATIVE_ASM) {
// Save basic scope info for viper and asm
mp_print_uint(print, rc->scope_flags & MP_SCOPE_FLAG_ALL_SIG);
if (rc->kind == MP_CODE_NATIVE_ASM) {
mp_print_uint(print, rc->n_pos_args);
mp_print_uint(print, rc->type_sig);
}
}
#endif
if (rc->n_children) {
mp_print_uint(print, rc->n_children);
for (size_t i = 0; i < rc->n_children; ++i) {
save_raw_code(print, rc->children[i]);
}
}
}
void mp_raw_code_save(mp_compiled_module_t *cm, mp_print_t *print) {
// header contains:
// byte 'M'
// byte version
// byte feature flags
// byte number of bits in a small int
byte header[4] = {
'M',
MPY_VERSION,
MPY_FEATURE_ENCODE_FLAGS(MPY_FEATURE_FLAGS_DYNAMIC),
#if MICROPY_DYNAMIC_COMPILER
mp_dynamic_compiler.small_int_bits,
#else
MP_SMALL_INT_BITS,
#endif
};
if (cm->has_native) {
header[2] |= MPY_FEATURE_ENCODE_ARCH(MPY_FEATURE_ARCH_DYNAMIC);
}
mp_print_bytes(print, header, sizeof(header));
// Number of entries in constant table.
mp_print_uint(print, cm->n_qstr);
mp_print_uint(print, cm->n_obj);
// Save qstrs.
for (size_t i = 0; i < cm->n_qstr; ++i) {
save_qstr(print, cm->context->constants.qstr_table[i]);
}
// Save constant objects.
for (size_t i = 0; i < cm->n_obj; ++i) {
save_obj(print, (mp_obj_t)cm->context->constants.obj_table[i]);
}
// Save outer raw code, which will save all its child raw codes.
save_raw_code(print, cm->rc);
}
#if MICROPY_PERSISTENT_CODE_SAVE_FILE
#include <unistd.h>
#include <sys/stat.h>
#include <fcntl.h>
STATIC void fd_print_strn(void *env, const char *str, size_t len) {
int fd = (intptr_t)env;
MP_THREAD_GIL_EXIT();
ssize_t ret = write(fd, str, len);
MP_THREAD_GIL_ENTER();
(void)ret;
}
void mp_raw_code_save_file(mp_compiled_module_t *cm, const char *filename) {
MP_THREAD_GIL_EXIT();
int fd = open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0644);
MP_THREAD_GIL_ENTER();
mp_print_t fd_print = {(void *)(intptr_t)fd, fd_print_strn};
mp_raw_code_save(cm, &fd_print);
MP_THREAD_GIL_EXIT();
close(fd);
MP_THREAD_GIL_ENTER();
}
#endif // MICROPY_PERSISTENT_CODE_SAVE_FILE
#endif // MICROPY_PERSISTENT_CODE_SAVE