micropython/ports/stm32/pyb_can.c
Jim Mussared 94beeabd2e py/obj: Convert make_new into a mp_obj_type_t slot.
Instead of being an explicit field, it's now a slot like all the other
methods.

This is a marginal code size improvement because most types have a make_new
(100/138 on PYBV11), however it improves consistency in how types are
declared, removing the special case for make_new.

Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
2022-09-19 19:06:15 +10:00

1088 lines
43 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2014-2018 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <string.h>
#include "py/objarray.h"
#include "py/runtime.h"
#include "py/gc.h"
#include "py/binary.h"
#include "py/stream.h"
#include "py/mperrno.h"
#include "py/mphal.h"
#include "bufhelper.h"
#include "can.h"
#include "irq.h"
#if MICROPY_HW_ENABLE_CAN
#if MICROPY_HW_ENABLE_FDCAN
#define CAN_MAX_DATA_FRAME (64)
#define CAN_FIFO0 FDCAN_RX_FIFO0
#define CAN_FIFO1 FDCAN_RX_FIFO1
#define CAN_FILTER_FIFO0 (0)
// Default timings; 125Kbps
#if defined(STM32G4)
// assuming 24MHz clock
#define CAN_DEFAULT_PRESCALER (16)
#else
// assuming 48MHz clock
#define CAN_DEFAULT_PRESCALER (32)
#endif
#define CAN_DEFAULT_SJW (1)
#define CAN_DEFAULT_BS1 (8)
#define CAN_DEFAULT_BS2 (3)
#define CAN_MAXIMUM_NBRP (512)
#define CAN_MAXIMUM_NBS1 (256)
#define CAN_MAXIMUM_NBS2 (128)
// Minimum Nominal time segment for FDCAN is 2.
#define CAN_MINIMUM_TSEG (2)
#define CAN_MAXIMUM_DBRP (32)
#define CAN_MAXIMUM_DBS1 (32)
#define CAN_MAXIMUM_DBS2 (16)
#define CAN_MODE_NORMAL FDCAN_MODE_NORMAL
#define CAN_MODE_LOOPBACK FDCAN_MODE_EXTERNAL_LOOPBACK
#define CAN_MODE_SILENT FDCAN_MODE_BUS_MONITORING
#define CAN_MODE_SILENT_LOOPBACK FDCAN_MODE_INTERNAL_LOOPBACK
#define CAN1_RX0_IRQn FDCAN1_IT0_IRQn
#define CAN1_RX1_IRQn FDCAN1_IT1_IRQn
#if defined(CAN2)
#define CAN2_RX0_IRQn FDCAN2_IT0_IRQn
#define CAN2_RX1_IRQn FDCAN2_IT1_IRQn
#endif
#define CAN_IT_FIFO0_FULL FDCAN_IT_RX_FIFO0_FULL
#define CAN_IT_FIFO1_FULL FDCAN_IT_RX_FIFO1_FULL
#define CAN_IT_FIFO0_OVRF FDCAN_IT_RX_FIFO0_MESSAGE_LOST
#define CAN_IT_FIFO1_OVRF FDCAN_IT_RX_FIFO1_MESSAGE_LOST
#define CAN_IT_FIFO0_PENDING FDCAN_IT_RX_FIFO0_NEW_MESSAGE
#define CAN_IT_FIFO1_PENDING FDCAN_IT_RX_FIFO1_NEW_MESSAGE
#define CAN_FLAG_FIFO0_FULL FDCAN_FLAG_RX_FIFO0_FULL
#define CAN_FLAG_FIFO1_FULL FDCAN_FLAG_RX_FIFO1_FULL
#define CAN_FLAG_FIFO0_OVRF FDCAN_FLAG_RX_FIFO0_MESSAGE_LOST
#define CAN_FLAG_FIFO1_OVRF FDCAN_FLAG_RX_FIFO1_MESSAGE_LOST
#define __HAL_CAN_ENABLE_IT __HAL_FDCAN_ENABLE_IT
#define __HAL_CAN_DISABLE_IT __HAL_FDCAN_DISABLE_IT
#define __HAL_CAN_CLEAR_FLAG __HAL_FDCAN_CLEAR_FLAG
#define __HAL_CAN_MSG_PENDING HAL_FDCAN_GetRxFifoFillLevel
extern const uint8_t DLCtoBytes[16];
#else
#define CAN_MAX_FILTER (28)
#define CAN_MAX_DATA_FRAME (8)
#define CAN_DEFAULT_PRESCALER (100)
#define CAN_DEFAULT_SJW (1)
#define CAN_DEFAULT_BS1 (6)
#define CAN_DEFAULT_BS2 (8)
#define CAN_MAXIMUM_NBRP (1024)
#define CAN_MAXIMUM_NBS1 (16)
#define CAN_MAXIMUM_NBS2 (8)
#define CAN_MINIMUM_TSEG (1)
#define CAN_IT_FIFO0_FULL CAN_IT_FF0
#define CAN_IT_FIFO1_FULL CAN_IT_FF1
#define CAN_IT_FIFO0_OVRF CAN_IT_FOV0
#define CAN_IT_FIFO1_OVRF CAN_IT_FOV1
#define CAN_IT_FIFO0_PENDING CAN_IT_FMP0
#define CAN_IT_FIFO1_PENDING CAN_IT_FMP1
#define CAN_FLAG_FIFO0_FULL CAN_FLAG_FF0
#define CAN_FLAG_FIFO1_FULL CAN_FLAG_FF1
#define CAN_FLAG_FIFO0_OVRF CAN_FLAG_FOV0
#define CAN_FLAG_FIFO1_OVRF CAN_FLAG_FOV1
STATIC uint8_t can2_start_bank = 14;
#endif
STATIC void pyb_can_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
pyb_can_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (!self->is_enabled) {
mp_printf(print, "CAN(%u)", self->can_id);
} else {
qstr mode;
switch (self->can.Init.Mode) {
case CAN_MODE_NORMAL:
mode = MP_QSTR_NORMAL;
break;
case CAN_MODE_LOOPBACK:
mode = MP_QSTR_LOOPBACK;
break;
case CAN_MODE_SILENT:
mode = MP_QSTR_SILENT;
break;
case CAN_MODE_SILENT_LOOPBACK:
default:
mode = MP_QSTR_SILENT_LOOPBACK;
break;
}
mp_printf(print, "CAN(%u, CAN.%q, auto_restart=%q)",
self->can_id,
mode,
#if MICROPY_HW_ENABLE_FDCAN
(self->can.Instance->CCCR & FDCAN_CCCR_DAR) ? MP_QSTR_True : MP_QSTR_False
#else
(self->can.Instance->MCR & CAN_MCR_ABOM) ? MP_QSTR_True : MP_QSTR_False
#endif
);
}
}
STATIC uint32_t pyb_can_get_source_freq() {
uint32_t can_kern_clk = 0;
// Find CAN kernel clock
#if defined(STM32H7)
switch (__HAL_RCC_GET_FDCAN_SOURCE()) {
case RCC_FDCANCLKSOURCE_HSE:
can_kern_clk = HSE_VALUE;
break;
case RCC_FDCANCLKSOURCE_PLL: {
PLL1_ClocksTypeDef pll1_clocks;
HAL_RCCEx_GetPLL1ClockFreq(&pll1_clocks);
can_kern_clk = pll1_clocks.PLL1_Q_Frequency;
break;
}
case RCC_FDCANCLKSOURCE_PLL2: {
PLL2_ClocksTypeDef pll2_clocks;
HAL_RCCEx_GetPLL2ClockFreq(&pll2_clocks);
can_kern_clk = pll2_clocks.PLL2_Q_Frequency;
break;
}
}
#else // F4 and F7 and assume other MCUs too.
// CAN1/CAN2/CAN3 on APB1 use GetPCLK1Freq, alternatively use the following:
// can_kern_clk = ((HSE_VALUE / osc_config.PLL.PLLM ) * osc_config.PLL.PLLN) /
// (osc_config.PLL.PLLQ * clk_init.AHBCLKDivider * clk_init.APB1CLKDivider);
can_kern_clk = HAL_RCC_GetPCLK1Freq();
#endif
return can_kern_clk;
}
STATIC void pyb_can_get_bit_timing(mp_uint_t baudrate, mp_uint_t sample_point,
uint32_t max_brp, uint32_t max_bs1, uint32_t max_bs2, uint32_t min_tseg,
mp_int_t *bs1_out, mp_int_t *bs2_out, mp_int_t *prescaler_out) {
uint32_t can_kern_clk = pyb_can_get_source_freq();
// Calculate CAN bit timing.
for (uint32_t brp = 1; brp < max_brp; brp++) {
for (uint32_t bs1 = min_tseg; bs1 < max_bs1; bs1++) {
for (uint32_t bs2 = min_tseg; bs2 < max_bs2; bs2++) {
if ((baudrate == (can_kern_clk / (brp * (1 + bs1 + bs2)))) &&
((sample_point * 10) == (((1 + bs1) * 1000) / (1 + bs1 + bs2)))) {
*bs1_out = bs1;
*bs2_out = bs2;
*prescaler_out = brp;
return;
}
}
}
}
mp_raise_msg(&mp_type_ValueError, MP_ERROR_TEXT("couldn't match baudrate and sample point"));
}
// init(mode, prescaler=100, *, sjw=1, bs1=6, bs2=8)
STATIC mp_obj_t pyb_can_init_helper(pyb_can_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_mode, ARG_prescaler, ARG_sjw, ARG_bs1, ARG_bs2, ARG_auto_restart, ARG_baudrate, ARG_sample_point,
ARG_num_filter_banks, ARG_brs_prescaler, ARG_brs_sjw, ARG_brs_bs1, ARG_brs_bs2, ARG_brs_baudrate, ARG_brs_sample_point };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_mode, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = CAN_MODE_NORMAL} },
{ MP_QSTR_prescaler, MP_ARG_INT, {.u_int = CAN_DEFAULT_PRESCALER} },
{ MP_QSTR_sjw, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = CAN_DEFAULT_SJW} },
{ MP_QSTR_bs1, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = CAN_DEFAULT_BS1} },
{ MP_QSTR_bs2, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = CAN_DEFAULT_BS2} },
{ MP_QSTR_auto_restart, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
{ MP_QSTR_baudrate, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_sample_point, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 75} }, // 75% sampling point
{ MP_QSTR_num_filter_banks, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 14} },
#if MICROPY_HW_ENABLE_FDCAN
{ MP_QSTR_brs_prescaler, MP_ARG_INT, {.u_int = CAN_DEFAULT_PRESCALER} },
{ MP_QSTR_brs_sjw, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = CAN_DEFAULT_SJW} },
{ MP_QSTR_brs_bs1, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = CAN_DEFAULT_BS1} },
{ MP_QSTR_brs_bs2, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = CAN_DEFAULT_BS2} },
{ MP_QSTR_brs_baudrate, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_brs_sample_point, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }
#endif
};
// parse args
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// set the CAN configuration values
memset(&self->can, 0, sizeof(self->can));
// Calculate CAN nominal bit timing from baudrate if provided
if (args[ARG_baudrate].u_int != 0) {
pyb_can_get_bit_timing(args[ARG_baudrate].u_int, args[ARG_sample_point].u_int,
CAN_MAXIMUM_NBRP, CAN_MAXIMUM_NBS1, CAN_MAXIMUM_NBS2, CAN_MINIMUM_TSEG,
&args[ARG_bs1].u_int, &args[ARG_bs2].u_int, &args[ARG_prescaler].u_int);
}
#if MICROPY_HW_ENABLE_FDCAN
// If no sample point is provided for data bit timing, use the nominal sample point.
if (args[ARG_brs_sample_point].u_int == 0) {
args[ARG_brs_sample_point].u_int = args[ARG_sample_point].u_int;
}
// Calculate CAN data bit timing from baudrate if provided
if (args[ARG_brs_baudrate].u_int != 0) {
pyb_can_get_bit_timing(args[ARG_brs_baudrate].u_int, args[ARG_brs_sample_point].u_int,
CAN_MAXIMUM_DBRP, CAN_MAXIMUM_DBS1, CAN_MAXIMUM_DBS2, 1,
&args[ARG_brs_bs1].u_int, &args[ARG_brs_bs2].u_int, &args[ARG_brs_prescaler].u_int);
}
// Set BRS bit timings.
self->can.Init.DataPrescaler = args[ARG_brs_prescaler].u_int;
self->can.Init.DataSyncJumpWidth = args[ARG_brs_sjw].u_int;
self->can.Init.DataTimeSeg1 = args[ARG_bs1].u_int; // DataTimeSeg1 = Propagation_segment + Phase_segment_1
self->can.Init.DataTimeSeg2 = args[ARG_bs2].u_int;
#else
// Init filter banks for classic CAN.
can2_start_bank = args[ARG_num_filter_banks].u_int;
for (int f = 0; f < CAN_MAX_FILTER; f++) {
can_clearfilter(self, f, can2_start_bank);
}
#endif
if (!can_init(self, args[ARG_mode].u_int, args[ARG_prescaler].u_int, args[ARG_sjw].u_int,
args[ARG_bs1].u_int, args[ARG_bs2].u_int, args[ARG_auto_restart].u_bool)) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("CAN(%d) init failure"), self->can_id);
}
return mp_const_none;
}
// CAN(bus, ...)
STATIC mp_obj_t pyb_can_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
// work out port
mp_uint_t can_idx;
if (mp_obj_is_str(args[0])) {
const char *port = mp_obj_str_get_str(args[0]);
if (0) {
#ifdef MICROPY_HW_CAN1_NAME
} else if (strcmp(port, MICROPY_HW_CAN1_NAME) == 0) {
can_idx = PYB_CAN_1;
#endif
#ifdef MICROPY_HW_CAN2_NAME
} else if (strcmp(port, MICROPY_HW_CAN2_NAME) == 0) {
can_idx = PYB_CAN_2;
#endif
#ifdef MICROPY_HW_CAN3_NAME
} else if (strcmp(port, MICROPY_HW_CAN3_NAME) == 0) {
can_idx = PYB_CAN_3;
#endif
} else {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("CAN(%s) doesn't exist"), port);
}
} else {
can_idx = mp_obj_get_int(args[0]);
}
if (can_idx < 1 || can_idx > MP_ARRAY_SIZE(MP_STATE_PORT(pyb_can_obj_all))) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("CAN(%d) doesn't exist"), can_idx);
}
// check if the CAN is reserved for system use or not
if (MICROPY_HW_CAN_IS_RESERVED(can_idx)) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("CAN(%d) is reserved"), can_idx);
}
pyb_can_obj_t *self;
if (MP_STATE_PORT(pyb_can_obj_all)[can_idx - 1] == NULL) {
self = mp_obj_malloc(pyb_can_obj_t, &pyb_can_type);
self->can_id = can_idx;
self->is_enabled = false;
MP_STATE_PORT(pyb_can_obj_all)[can_idx - 1] = self;
} else {
self = MP_STATE_PORT(pyb_can_obj_all)[can_idx - 1];
}
if (!self->is_enabled || n_args > 1) {
if (self->is_enabled) {
// The caller is requesting a reconfiguration of the hardware
// this can only be done if the hardware is in init mode
can_deinit(self);
}
self->rxcallback0 = mp_const_none;
self->rxcallback1 = mp_const_none;
self->rx_state0 = RX_STATE_FIFO_EMPTY;
self->rx_state1 = RX_STATE_FIFO_EMPTY;
if (n_args > 1 || n_kw > 0) {
// start the peripheral
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
pyb_can_init_helper(self, n_args - 1, args + 1, &kw_args);
}
}
return MP_OBJ_FROM_PTR(self);
}
STATIC mp_obj_t pyb_can_init(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
return pyb_can_init_helper(MP_OBJ_TO_PTR(args[0]), n_args - 1, args + 1, kw_args);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_can_init_obj, 1, pyb_can_init);
// deinit()
STATIC mp_obj_t pyb_can_deinit(mp_obj_t self_in) {
pyb_can_obj_t *self = MP_OBJ_TO_PTR(self_in);
can_deinit(self);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_can_deinit_obj, pyb_can_deinit);
// Force a software restart of the controller, to allow transmission after a bus error
STATIC mp_obj_t pyb_can_restart(mp_obj_t self_in) {
pyb_can_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (!self->is_enabled) {
mp_raise_ValueError(NULL);
}
CAN_TypeDef *can = self->can.Instance;
#if MICROPY_HW_ENABLE_FDCAN
can->CCCR |= FDCAN_CCCR_INIT;
while ((can->CCCR & FDCAN_CCCR_INIT) == 0) {
}
can->CCCR |= FDCAN_CCCR_CCE;
while ((can->CCCR & FDCAN_CCCR_CCE) == 0) {
}
can->CCCR &= ~FDCAN_CCCR_INIT;
while ((can->CCCR & FDCAN_CCCR_INIT)) {
}
#else
can->MCR |= CAN_MCR_INRQ;
while ((can->MSR & CAN_MSR_INAK) == 0) {
}
can->MCR &= ~CAN_MCR_INRQ;
while ((can->MSR & CAN_MSR_INAK)) {
}
#endif
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_can_restart_obj, pyb_can_restart);
// Get the state of the controller
STATIC mp_obj_t pyb_can_state(mp_obj_t self_in) {
pyb_can_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_int_t state = CAN_STATE_STOPPED;
if (self->is_enabled) {
CAN_TypeDef *can = self->can.Instance;
#if MICROPY_HW_ENABLE_FDCAN
uint32_t psr = can->PSR;
if (psr & FDCAN_PSR_BO) {
state = CAN_STATE_BUS_OFF;
} else if (psr & FDCAN_PSR_EP) {
state = CAN_STATE_ERROR_PASSIVE;
} else if (psr & FDCAN_PSR_EW) {
state = CAN_STATE_ERROR_WARNING;
} else {
state = CAN_STATE_ERROR_ACTIVE;
}
#else
if (can->ESR & CAN_ESR_BOFF) {
state = CAN_STATE_BUS_OFF;
} else if (can->ESR & CAN_ESR_EPVF) {
state = CAN_STATE_ERROR_PASSIVE;
} else if (can->ESR & CAN_ESR_EWGF) {
state = CAN_STATE_ERROR_WARNING;
} else {
state = CAN_STATE_ERROR_ACTIVE;
}
#endif
}
return MP_OBJ_NEW_SMALL_INT(state);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_can_state_obj, pyb_can_state);
// Get info about error states and TX/RX buffers
STATIC mp_obj_t pyb_can_info(size_t n_args, const mp_obj_t *args) {
pyb_can_obj_t *self = MP_OBJ_TO_PTR(args[0]);
mp_obj_list_t *list;
if (n_args == 1) {
list = MP_OBJ_TO_PTR(mp_obj_new_list(8, NULL));
} else {
if (!mp_obj_is_type(args[1], &mp_type_list)) {
mp_raise_TypeError(NULL);
}
list = MP_OBJ_TO_PTR(args[1]);
if (list->len < 8) {
mp_raise_ValueError(NULL);
}
}
#if MICROPY_HW_ENABLE_FDCAN
FDCAN_GlobalTypeDef *can = self->can.Instance;
uint32_t esr = can->ECR;
list->items[0] = MP_OBJ_NEW_SMALL_INT((esr & FDCAN_ECR_TEC_Msk) >> FDCAN_ECR_TEC_Pos);
list->items[1] = MP_OBJ_NEW_SMALL_INT((esr & FDCAN_ECR_REC_Msk) >> FDCAN_ECR_REC_Pos);
list->items[2] = MP_OBJ_NEW_SMALL_INT(self->num_error_warning);
list->items[3] = MP_OBJ_NEW_SMALL_INT(self->num_error_passive);
list->items[4] = MP_OBJ_NEW_SMALL_INT(self->num_bus_off);
uint32_t TXEFS = can->TXEFS;
list->items[5] = MP_OBJ_NEW_SMALL_INT(TXEFS & 0x7);
list->items[6] = MP_OBJ_NEW_SMALL_INT((can->RXF0S & FDCAN_RXF0S_F0FL_Msk) >> FDCAN_RXF0S_F0FL_Pos);
list->items[7] = MP_OBJ_NEW_SMALL_INT((can->RXF1S & FDCAN_RXF1S_F1FL_Msk) >> FDCAN_RXF1S_F1FL_Pos);
#else
CAN_TypeDef *can = self->can.Instance;
uint32_t esr = can->ESR;
list->items[0] = MP_OBJ_NEW_SMALL_INT(esr >> CAN_ESR_TEC_Pos & 0xff);
list->items[1] = MP_OBJ_NEW_SMALL_INT(esr >> CAN_ESR_REC_Pos & 0xff);
list->items[2] = MP_OBJ_NEW_SMALL_INT(self->num_error_warning);
list->items[3] = MP_OBJ_NEW_SMALL_INT(self->num_error_passive);
list->items[4] = MP_OBJ_NEW_SMALL_INT(self->num_bus_off);
int n_tx_pending = 0x01121223 >> ((can->TSR >> CAN_TSR_TME_Pos & 7) << 2) & 0xf;
list->items[5] = MP_OBJ_NEW_SMALL_INT(n_tx_pending);
list->items[6] = MP_OBJ_NEW_SMALL_INT(can->RF0R >> CAN_RF0R_FMP0_Pos & 3);
list->items[7] = MP_OBJ_NEW_SMALL_INT(can->RF1R >> CAN_RF1R_FMP1_Pos & 3);
#endif
return MP_OBJ_FROM_PTR(list);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_can_info_obj, 1, 2, pyb_can_info);
// any(fifo) - return `True` if any message waiting on the FIFO, else `False`
STATIC mp_obj_t pyb_can_any(mp_obj_t self_in, mp_obj_t fifo_in) {
pyb_can_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_int_t fifo = mp_obj_get_int(fifo_in);
if (fifo == 0) {
if (__HAL_CAN_MSG_PENDING(&self->can, CAN_FIFO0) != 0) {
return mp_const_true;
}
} else {
if (__HAL_CAN_MSG_PENDING(&self->can, CAN_FIFO1) != 0) {
return mp_const_true;
}
}
return mp_const_false;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_can_any_obj, pyb_can_any);
// send(send, addr, *, timeout=5000)
STATIC mp_obj_t pyb_can_send(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_data, ARG_id, ARG_timeout, ARG_rtr, ARG_extframe, ARG_fdf, ARG_brs };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_data, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_id, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_rtr, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
{ MP_QSTR_extframe, MP_ARG_BOOL, {.u_bool = false} },
#if MICROPY_HW_ENABLE_FDCAN
{ MP_QSTR_fdf, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
{ MP_QSTR_brs, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
#endif
};
// parse args
pyb_can_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// get the buffer to send from
mp_buffer_info_t bufinfo;
uint8_t data[1];
pyb_buf_get_for_send(args[ARG_data].u_obj, &bufinfo, data);
if (bufinfo.len > CAN_MAX_DATA_FRAME) {
mp_raise_ValueError(MP_ERROR_TEXT("CAN data field too long"));
}
// send the data
CanTxMsgTypeDef tx_msg;
#if MICROPY_HW_ENABLE_FDCAN
uint8_t tx_data[CAN_MAX_DATA_FRAME];
memset(tx_data, 0, sizeof(tx_data));
tx_msg.MessageMarker = 0;
tx_msg.ErrorStateIndicator = FDCAN_ESI_ACTIVE;
tx_msg.TxEventFifoControl = FDCAN_NO_TX_EVENTS;
if (args[ARG_extframe].u_bool == true) {
tx_msg.Identifier = args[ARG_id].u_int & 0x1FFFFFFF;
tx_msg.IdType = FDCAN_EXTENDED_ID;
} else {
tx_msg.Identifier = args[ARG_id].u_int & 0x7FF;
tx_msg.IdType = FDCAN_STANDARD_ID;
}
if (args[ARG_rtr].u_bool == false) {
tx_msg.TxFrameType = FDCAN_DATA_FRAME;
} else {
tx_msg.TxFrameType = FDCAN_REMOTE_FRAME;
}
if (args[ARG_fdf].u_bool == false) {
tx_msg.FDFormat = FDCAN_CLASSIC_CAN;
} else {
tx_msg.FDFormat = FDCAN_FD_CAN;
}
if (args[ARG_brs].u_bool == false) {
tx_msg.BitRateSwitch = FDCAN_BRS_OFF;
} else {
tx_msg.BitRateSwitch = FDCAN_BRS_ON;
}
// Roundup DataLength to next DLC size and encode to DLC.
for (mp_uint_t i = 0; i < MP_ARRAY_SIZE(DLCtoBytes); i++) {
if (bufinfo.len <= DLCtoBytes[i]) {
tx_msg.DataLength = (i << 16);
break;
}
}
#else
tx_msg.DLC = bufinfo.len;
uint8_t *tx_data = tx_msg.Data; // Data is uint32_t but holds only 1 byte
if (args[ARG_extframe].u_bool == true) {
tx_msg.ExtId = args[ARG_id].u_int & 0x1FFFFFFF;
tx_msg.IDE = CAN_ID_EXT;
} else {
tx_msg.StdId = args[ARG_id].u_int & 0x7FF;
tx_msg.IDE = CAN_ID_STD;
}
if (args[ARG_rtr].u_bool == false) {
tx_msg.RTR = CAN_RTR_DATA;
} else {
tx_msg.RTR = CAN_RTR_REMOTE;
}
#endif
for (mp_uint_t i = 0; i < bufinfo.len; i++) {
tx_data[i] = ((byte *)bufinfo.buf)[i];
}
HAL_StatusTypeDef status;
#if MICROPY_HW_ENABLE_FDCAN
uint32_t timeout_ms = args[ARG_timeout].u_int;
uint32_t start = HAL_GetTick();
while (HAL_FDCAN_GetTxFifoFreeLevel(&self->can) == 0) {
if (timeout_ms == 0) {
mp_raise_OSError(MP_ETIMEDOUT);
}
// Check for the Timeout
if (timeout_ms != HAL_MAX_DELAY) {
if (HAL_GetTick() - start >= timeout_ms) {
mp_raise_OSError(MP_ETIMEDOUT);
}
}
MICROPY_EVENT_POLL_HOOK
}
status = HAL_FDCAN_AddMessageToTxFifoQ(&self->can, &tx_msg, tx_data);
#else
self->can.pTxMsg = &tx_msg;
status = CAN_Transmit(&self->can, args[ARG_timeout].u_int);
#endif
if (status != HAL_OK) {
mp_hal_raise(status);
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_can_send_obj, 1, pyb_can_send);
// recv(fifo, list=None, *, timeout=5000)
STATIC mp_obj_t pyb_can_recv(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_fifo, ARG_list, ARG_timeout };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_fifo, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_list, MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
};
// parse args
pyb_can_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// receive the data
CanRxMsgTypeDef rx_msg;
#if MICROPY_HW_ENABLE_FDCAN
uint8_t rx_data[CAN_MAX_DATA_FRAME];
#else
uint8_t *rx_data = rx_msg.Data;
#endif
mp_uint_t fifo = args[ARG_fifo].u_int;
if (fifo == 0) {
fifo = CAN_FIFO0;
} else if (fifo == 1) {
fifo = CAN_FIFO1;
} else {
mp_raise_TypeError(NULL);
}
int ret = can_receive(&self->can, fifo, &rx_msg, rx_data, args[ARG_timeout].u_int);
if (ret < 0) {
mp_raise_OSError(-ret);
}
#if MICROPY_HW_ENABLE_FDCAN
uint32_t rx_dlc = rx_msg.DataLength;
#else
uint32_t rx_dlc = rx_msg.DLC;
#endif
// Manage the rx state machine
if ((fifo == CAN_FIFO0 && self->rxcallback0 != mp_const_none) ||
(fifo == CAN_FIFO1 && self->rxcallback1 != mp_const_none)) {
byte *state = (fifo == CAN_FIFO0) ? &self->rx_state0 : &self->rx_state1;
switch (*state) {
case RX_STATE_FIFO_EMPTY:
break;
case RX_STATE_MESSAGE_PENDING:
if (__HAL_CAN_MSG_PENDING(&self->can, fifo) == 0) {
// Fifo is empty
__HAL_CAN_ENABLE_IT(&self->can, (fifo == CAN_FIFO0) ? CAN_IT_FIFO0_PENDING : CAN_IT_FIFO1_PENDING);
*state = RX_STATE_FIFO_EMPTY;
}
break;
case RX_STATE_FIFO_FULL:
__HAL_CAN_ENABLE_IT(&self->can, (fifo == CAN_FIFO0) ? CAN_IT_FIFO0_FULL : CAN_IT_FIFO1_FULL);
*state = RX_STATE_MESSAGE_PENDING;
break;
case RX_STATE_FIFO_OVERFLOW:
__HAL_CAN_ENABLE_IT(&self->can, (fifo == CAN_FIFO0) ? CAN_IT_FIFO0_OVRF : CAN_IT_FIFO1_OVRF);
__HAL_CAN_ENABLE_IT(&self->can, (fifo == CAN_FIFO0) ? CAN_IT_FIFO0_FULL : CAN_IT_FIFO1_FULL);
*state = RX_STATE_MESSAGE_PENDING;
break;
}
}
// Create the tuple, or get the list, that will hold the return values
// Also populate the fifth element, either a new bytes or reuse existing memoryview
mp_obj_t ret_obj = args[ARG_list].u_obj;
mp_obj_t *items;
if (ret_obj == mp_const_none) {
ret_obj = mp_obj_new_tuple(5, NULL);
items = ((mp_obj_tuple_t *)MP_OBJ_TO_PTR(ret_obj))->items;
items[4] = mp_obj_new_bytes(rx_data, rx_dlc);
} else {
// User should provide a list of length at least 5 to hold the values
if (!mp_obj_is_type(ret_obj, &mp_type_list)) {
mp_raise_TypeError(NULL);
}
mp_obj_list_t *list = MP_OBJ_TO_PTR(ret_obj);
if (list->len < 5) {
mp_raise_ValueError(NULL);
}
items = list->items;
// Fifth element must be a memoryview which we assume points to a
// byte-like array which is large enough, and then we resize it inplace
if (!mp_obj_is_type(items[4], &mp_type_memoryview)) {
mp_raise_TypeError(NULL);
}
mp_obj_array_t *mv = MP_OBJ_TO_PTR(items[4]);
if (!(mv->typecode == (MP_OBJ_ARRAY_TYPECODE_FLAG_RW | BYTEARRAY_TYPECODE)
|| (mv->typecode | 0x20) == (MP_OBJ_ARRAY_TYPECODE_FLAG_RW | 'b'))) {
mp_raise_ValueError(NULL);
}
mv->len = rx_dlc;
memcpy(mv->items, rx_data, rx_dlc);
}
// Populate the first 4 values of the tuple/list
#if MICROPY_HW_ENABLE_FDCAN
items[0] = MP_OBJ_NEW_SMALL_INT(rx_msg.Identifier);
items[1] = mp_obj_new_bool(rx_msg.IdType == FDCAN_EXTENDED_ID);
items[2] = rx_msg.RxFrameType == FDCAN_REMOTE_FRAME ? mp_const_true : mp_const_false;
items[3] = MP_OBJ_NEW_SMALL_INT(rx_msg.FilterIndex);
#else
items[0] = MP_OBJ_NEW_SMALL_INT((rx_msg.IDE == CAN_ID_STD ? rx_msg.StdId : rx_msg.ExtId));
items[1] = mp_obj_new_bool(rx_msg.IDE == CAN_ID_EXT);
items[2] = rx_msg.RTR == CAN_RTR_REMOTE ? mp_const_true : mp_const_false;
items[3] = MP_OBJ_NEW_SMALL_INT(rx_msg.FMI);
#endif
// Return the result
return ret_obj;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_can_recv_obj, 1, pyb_can_recv);
STATIC mp_obj_t pyb_can_clearfilter(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_extframe };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_extframe, MP_ARG_BOOL, {.u_bool = false} },
};
// parse args
pyb_can_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
mp_int_t f = mp_obj_get_int(pos_args[1]);
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 2, pos_args + 2, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
#if MICROPY_HW_ENABLE_FDCAN
can_clearfilter(self, f, args[ARG_extframe].u_bool);
#else
if (self->can_id == 2) {
f += can2_start_bank;
}
can_clearfilter(self, f, can2_start_bank);
#endif
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_can_clearfilter_obj, 2, pyb_can_clearfilter);
// setfilter(bank, mode, fifo, params, *, rtr)
#define EXTENDED_ID_TO_16BIT_FILTER(id) (((id & 0xC00000) >> 13) | ((id & 0x38000) >> 15)) | 8
STATIC mp_obj_t pyb_can_setfilter(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_bank, ARG_mode, ARG_fifo, ARG_params, ARG_rtr, ARG_extframe };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_bank, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_mode, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_fifo, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = CAN_FILTER_FIFO0} },
{ MP_QSTR_params, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_rtr, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_extframe, MP_ARG_BOOL, {.u_bool = false} },
};
// parse args
pyb_can_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
#if MICROPY_HW_ENABLE_FDCAN
FDCAN_FilterTypeDef filter = {0};
if (args[ARG_extframe].u_bool == true) {
filter.IdType = FDCAN_EXTENDED_ID;
} else {
filter.IdType = FDCAN_STANDARD_ID;
}
filter.FilterIndex = args[ARG_bank].u_int;
// Check filter index.
if ((filter.IdType == FDCAN_STANDARD_ID && filter.FilterIndex >= self->can.Init.StdFiltersNbr) ||
(filter.IdType == FDCAN_EXTENDED_ID && filter.FilterIndex >= self->can.Init.ExtFiltersNbr)) {
goto error;
}
// Check filter mode
if (((args[ARG_mode].u_int != FDCAN_FILTER_RANGE) &&
(args[ARG_mode].u_int != FDCAN_FILTER_DUAL) &&
(args[ARG_mode].u_int != FDCAN_FILTER_MASK))) {
goto error;
}
// Check FIFO index.
if (args[ARG_fifo].u_int == 0) {
filter.FilterConfig = FDCAN_FILTER_TO_RXFIFO0;
} else if (args[ARG_fifo].u_int == 1) {
filter.FilterConfig = FDCAN_FILTER_TO_RXFIFO1;
} else {
goto error;
}
size_t len;
mp_obj_t *params;
mp_obj_get_array(args[ARG_params].u_obj, &len, &params);
if (len != 2) { // Check params len
goto error;
}
filter.FilterID1 = mp_obj_get_int(params[0]);
filter.FilterID2 = mp_obj_get_int(params[1]);
filter.FilterType = args[ARG_mode].u_int;
HAL_FDCAN_ConfigFilter(&self->can, &filter);
#else
size_t len;
size_t rtr_len;
mp_uint_t rtr_masks[4] = {0, 0, 0, 0};
mp_obj_t *rtr_flags;
mp_obj_t *params;
mp_obj_get_array(args[ARG_params].u_obj, &len, &params);
if (args[ARG_rtr].u_obj != MP_OBJ_NULL) {
mp_obj_get_array(args[ARG_rtr].u_obj, &rtr_len, &rtr_flags);
}
CAN_FilterConfTypeDef filter;
if (args[ARG_mode].u_int == MASK16 || args[ARG_mode].u_int == LIST16) {
if (len != 4) {
goto error;
}
filter.FilterScale = CAN_FILTERSCALE_16BIT;
if (args[ARG_extframe].u_bool == true) {
if (args[ARG_rtr].u_obj != MP_OBJ_NULL) {
if (args[ARG_mode].u_int == MASK16) {
rtr_masks[0] = mp_obj_get_int(rtr_flags[0]) ? 0x02 : 0;
rtr_masks[1] = 0x02;
rtr_masks[2] = mp_obj_get_int(rtr_flags[1]) ? 0x02 : 0;
rtr_masks[3] = 0x02;
} else { // LIST16
rtr_masks[0] = mp_obj_get_int(rtr_flags[0]) ? 0x02 : 0;
rtr_masks[1] = mp_obj_get_int(rtr_flags[1]) ? 0x02 : 0;
rtr_masks[2] = mp_obj_get_int(rtr_flags[2]) ? 0x02 : 0;
rtr_masks[3] = mp_obj_get_int(rtr_flags[3]) ? 0x02 : 0;
}
}
filter.FilterIdLow = EXTENDED_ID_TO_16BIT_FILTER(mp_obj_get_int(params[0])) | rtr_masks[0]; // id1
filter.FilterMaskIdLow = EXTENDED_ID_TO_16BIT_FILTER(mp_obj_get_int(params[1])) | rtr_masks[1]; // mask1
filter.FilterIdHigh = EXTENDED_ID_TO_16BIT_FILTER(mp_obj_get_int(params[2])) | rtr_masks[2]; // id2
filter.FilterMaskIdHigh = EXTENDED_ID_TO_16BIT_FILTER(mp_obj_get_int(params[3])) | rtr_masks[3]; // mask2
} else { // Basic frames
if (args[ARG_rtr].u_obj != MP_OBJ_NULL) {
if (args[ARG_mode].u_int == MASK16) {
rtr_masks[0] = mp_obj_get_int(rtr_flags[0]) ? 0x10 : 0;
rtr_masks[1] = 0x10;
rtr_masks[2] = mp_obj_get_int(rtr_flags[1]) ? 0x10 : 0;
rtr_masks[3] = 0x10;
} else { // LIST16
rtr_masks[0] = mp_obj_get_int(rtr_flags[0]) ? 0x10 : 0;
rtr_masks[1] = mp_obj_get_int(rtr_flags[1]) ? 0x10 : 0;
rtr_masks[2] = mp_obj_get_int(rtr_flags[2]) ? 0x10 : 0;
rtr_masks[3] = mp_obj_get_int(rtr_flags[3]) ? 0x10 : 0;
}
}
filter.FilterIdLow = (mp_obj_get_int(params[0]) << 5) | rtr_masks[0]; // id1
filter.FilterMaskIdLow = (mp_obj_get_int(params[1]) << 5) | rtr_masks[1]; // mask1
filter.FilterIdHigh = (mp_obj_get_int(params[2]) << 5) | rtr_masks[2]; // id2
filter.FilterMaskIdHigh = (mp_obj_get_int(params[3]) << 5) | rtr_masks[3]; // mask2
}
if (args[ARG_mode].u_int == MASK16) {
filter.FilterMode = CAN_FILTERMODE_IDMASK;
}
if (args[ARG_mode].u_int == LIST16) {
filter.FilterMode = CAN_FILTERMODE_IDLIST;
}
} else if (args[ARG_mode].u_int == MASK32 || args[ARG_mode].u_int == LIST32) {
if (len != 2) {
goto error;
}
filter.FilterScale = CAN_FILTERSCALE_32BIT;
if (args[ARG_rtr].u_obj != MP_OBJ_NULL) {
if (args[ARG_mode].u_int == MASK32) {
rtr_masks[0] = mp_obj_get_int(rtr_flags[0]) ? 0x02 : 0;
rtr_masks[1] = 0x02;
} else { // LIST32
rtr_masks[0] = mp_obj_get_int(rtr_flags[0]) ? 0x02 : 0;
rtr_masks[1] = mp_obj_get_int(rtr_flags[1]) ? 0x02 : 0;
}
}
filter.FilterIdHigh = (mp_obj_get_int(params[0]) & 0x1FFFE000) >> 13;
filter.FilterIdLow = (((mp_obj_get_int(params[0]) & 0x00001FFF) << 3) | 4) | rtr_masks[0];
filter.FilterMaskIdHigh = (mp_obj_get_int(params[1]) & 0x1FFFE000) >> 13;
filter.FilterMaskIdLow = (((mp_obj_get_int(params[1]) & 0x00001FFF) << 3) | 4) | rtr_masks[1];
if (args[ARG_mode].u_int == MASK32) {
filter.FilterMode = CAN_FILTERMODE_IDMASK;
}
if (args[ARG_mode].u_int == LIST32) {
filter.FilterMode = CAN_FILTERMODE_IDLIST;
}
} else {
goto error;
}
filter.FilterFIFOAssignment = args[ARG_fifo].u_int;
filter.FilterNumber = args[ARG_bank].u_int;
if (self->can_id == 1) {
if (filter.FilterNumber >= can2_start_bank) {
goto error;
}
} else if (self->can_id == 2) {
filter.FilterNumber = filter.FilterNumber + can2_start_bank;
if (filter.FilterNumber > 27) {
goto error;
}
} else {
if (filter.FilterNumber > 13) { // CAN3 is independant and has its own 14 filters.
goto error;
}
}
filter.FilterActivation = ENABLE;
filter.BankNumber = can2_start_bank;
HAL_CAN_ConfigFilter(&self->can, &filter);
#endif
return mp_const_none;
error:
mp_raise_ValueError(MP_ERROR_TEXT("CAN filter parameter error"));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_can_setfilter_obj, 1, pyb_can_setfilter);
STATIC mp_obj_t pyb_can_rxcallback(mp_obj_t self_in, mp_obj_t fifo_in, mp_obj_t callback_in) {
pyb_can_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_int_t fifo = mp_obj_get_int(fifo_in);
mp_obj_t *callback;
callback = (fifo == 0) ? &self->rxcallback0 : &self->rxcallback1;
if (callback_in == mp_const_none) {
__HAL_CAN_DISABLE_IT(&self->can, (fifo == 0) ? CAN_IT_FIFO0_PENDING : CAN_IT_FIFO1_PENDING);
__HAL_CAN_DISABLE_IT(&self->can, (fifo == 0) ? CAN_IT_FIFO0_FULL : CAN_IT_FIFO1_FULL);
__HAL_CAN_DISABLE_IT(&self->can, (fifo == 0) ? CAN_IT_FIFO0_OVRF : CAN_IT_FIFO1_OVRF);
__HAL_CAN_CLEAR_FLAG(&self->can, (fifo == CAN_FIFO0) ? CAN_FLAG_FIFO0_FULL : CAN_FLAG_FIFO1_FULL);
__HAL_CAN_CLEAR_FLAG(&self->can, (fifo == CAN_FIFO0) ? CAN_FLAG_FIFO0_OVRF : CAN_FLAG_FIFO1_OVRF);
*callback = mp_const_none;
} else if (*callback != mp_const_none) {
// Rx call backs has already been initialized
// only the callback function should be changed
*callback = callback_in;
} else if (mp_obj_is_callable(callback_in)) {
*callback = callback_in;
uint32_t irq = 0;
if (self->can_id == PYB_CAN_1) {
irq = (fifo == 0) ? CAN1_RX0_IRQn : CAN1_RX1_IRQn;
#if defined(CAN2)
} else if (self->can_id == PYB_CAN_2) {
irq = (fifo == 0) ? CAN2_RX0_IRQn : CAN2_RX1_IRQn;
#endif
#if defined(CAN3)
} else {
irq = (fifo == 0) ? CAN3_RX0_IRQn : CAN3_RX1_IRQn;
#endif
}
NVIC_SetPriority(irq, IRQ_PRI_CAN);
HAL_NVIC_EnableIRQ(irq);
__HAL_CAN_ENABLE_IT(&self->can, (fifo == 0) ? CAN_IT_FIFO0_PENDING : CAN_IT_FIFO1_PENDING);
__HAL_CAN_ENABLE_IT(&self->can, (fifo == 0) ? CAN_IT_FIFO0_FULL : CAN_IT_FIFO1_FULL);
__HAL_CAN_ENABLE_IT(&self->can, (fifo == 0) ? CAN_IT_FIFO0_OVRF : CAN_IT_FIFO1_OVRF);
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_can_rxcallback_obj, pyb_can_rxcallback);
STATIC const mp_rom_map_elem_t pyb_can_locals_dict_table[] = {
// instance methods
{ MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&pyb_can_init_obj) },
{ MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&pyb_can_deinit_obj) },
{ MP_ROM_QSTR(MP_QSTR_restart), MP_ROM_PTR(&pyb_can_restart_obj) },
{ MP_ROM_QSTR(MP_QSTR_state), MP_ROM_PTR(&pyb_can_state_obj) },
{ MP_ROM_QSTR(MP_QSTR_info), MP_ROM_PTR(&pyb_can_info_obj) },
{ MP_ROM_QSTR(MP_QSTR_any), MP_ROM_PTR(&pyb_can_any_obj) },
{ MP_ROM_QSTR(MP_QSTR_send), MP_ROM_PTR(&pyb_can_send_obj) },
{ MP_ROM_QSTR(MP_QSTR_recv), MP_ROM_PTR(&pyb_can_recv_obj) },
{ MP_ROM_QSTR(MP_QSTR_setfilter), MP_ROM_PTR(&pyb_can_setfilter_obj) },
{ MP_ROM_QSTR(MP_QSTR_clearfilter), MP_ROM_PTR(&pyb_can_clearfilter_obj) },
{ MP_ROM_QSTR(MP_QSTR_rxcallback), MP_ROM_PTR(&pyb_can_rxcallback_obj) },
#if MICROPY_HW_ENABLE_FDCAN
{ MP_ROM_QSTR(MP_QSTR_NORMAL), MP_ROM_INT(CAN_MODE_NORMAL) },
{ MP_ROM_QSTR(MP_QSTR_LOOPBACK), MP_ROM_INT(CAN_MODE_LOOPBACK) },
{ MP_ROM_QSTR(MP_QSTR_SILENT), MP_ROM_INT(CAN_MODE_SILENT) },
{ MP_ROM_QSTR(MP_QSTR_SILENT_LOOPBACK), MP_ROM_INT(CAN_MODE_SILENT_LOOPBACK) },
{ MP_ROM_QSTR(MP_QSTR_RANGE), MP_ROM_INT(FDCAN_FILTER_RANGE) },
{ MP_ROM_QSTR(MP_QSTR_DUAL), MP_ROM_INT(FDCAN_FILTER_DUAL) },
{ MP_ROM_QSTR(MP_QSTR_MASK), MP_ROM_INT(FDCAN_FILTER_MASK) },
#else
// class constants
// Note: we use the ST constants >> 4 so they fit in a small-int. The
// right-shift is undone when the constants are used in the init function.
{ MP_ROM_QSTR(MP_QSTR_NORMAL), MP_ROM_INT(CAN_MODE_NORMAL >> 4) },
{ MP_ROM_QSTR(MP_QSTR_LOOPBACK), MP_ROM_INT(CAN_MODE_LOOPBACK >> 4) },
{ MP_ROM_QSTR(MP_QSTR_SILENT), MP_ROM_INT(CAN_MODE_SILENT >> 4) },
{ MP_ROM_QSTR(MP_QSTR_SILENT_LOOPBACK), MP_ROM_INT(CAN_MODE_SILENT_LOOPBACK >> 4) },
{ MP_ROM_QSTR(MP_QSTR_MASK16), MP_ROM_INT(MASK16) },
{ MP_ROM_QSTR(MP_QSTR_LIST16), MP_ROM_INT(LIST16) },
{ MP_ROM_QSTR(MP_QSTR_MASK32), MP_ROM_INT(MASK32) },
{ MP_ROM_QSTR(MP_QSTR_LIST32), MP_ROM_INT(LIST32) },
#endif
// values for CAN.state()
{ MP_ROM_QSTR(MP_QSTR_STOPPED), MP_ROM_INT(CAN_STATE_STOPPED) },
{ MP_ROM_QSTR(MP_QSTR_ERROR_ACTIVE), MP_ROM_INT(CAN_STATE_ERROR_ACTIVE) },
{ MP_ROM_QSTR(MP_QSTR_ERROR_WARNING), MP_ROM_INT(CAN_STATE_ERROR_WARNING) },
{ MP_ROM_QSTR(MP_QSTR_ERROR_PASSIVE), MP_ROM_INT(CAN_STATE_ERROR_PASSIVE) },
{ MP_ROM_QSTR(MP_QSTR_BUS_OFF), MP_ROM_INT(CAN_STATE_BUS_OFF) },
};
STATIC MP_DEFINE_CONST_DICT(pyb_can_locals_dict, pyb_can_locals_dict_table);
STATIC mp_uint_t can_ioctl(mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) {
pyb_can_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_uint_t ret;
if (request == MP_STREAM_POLL) {
uintptr_t flags = arg;
ret = 0;
if ((flags & MP_STREAM_POLL_RD)
&& ((__HAL_CAN_MSG_PENDING(&self->can, CAN_FIFO0) != 0)
|| (__HAL_CAN_MSG_PENDING(&self->can, CAN_FIFO1) != 0))) {
ret |= MP_STREAM_POLL_RD;
}
#if MICROPY_HW_ENABLE_FDCAN
if ((flags & MP_STREAM_POLL_WR) && (self->can.Instance->IR & FDCAN_IR_TFE))
#else
if ((flags & MP_STREAM_POLL_WR) && (self->can.Instance->TSR & CAN_TSR_TME))
#endif
{
ret |= MP_STREAM_POLL_WR;
}
} else {
*errcode = MP_EINVAL;
ret = -1;
}
return ret;
}
void pyb_can_handle_callback(pyb_can_obj_t *self, uint fifo_id, mp_obj_t callback, mp_obj_t irq_reason) {
if (callback != mp_const_none) {
mp_sched_lock();
gc_lock();
nlr_buf_t nlr;
if (nlr_push(&nlr) == 0) {
mp_call_function_2(callback, MP_OBJ_FROM_PTR(self), irq_reason);
nlr_pop();
} else {
// Uncaught exception; disable the callback so it doesn't run again.
pyb_can_rxcallback(MP_OBJ_FROM_PTR(self), MP_OBJ_NEW_SMALL_INT(fifo_id), mp_const_none);
mp_printf(MICROPY_ERROR_PRINTER, "uncaught exception in CAN(%u) rx interrupt handler\n", self->can_id);
mp_obj_print_exception(&mp_plat_print, MP_OBJ_FROM_PTR(nlr.ret_val));
}
gc_unlock();
mp_sched_unlock();
}
}
STATIC const mp_stream_p_t can_stream_p = {
// .read = can_read, // is read sensible for CAN?
// .write = can_write, // is write sensible for CAN?
.ioctl = can_ioctl,
.is_text = false,
};
MP_DEFINE_CONST_OBJ_TYPE(
pyb_can_type,
MP_QSTR_CAN,
MP_TYPE_FLAG_NONE,
make_new, pyb_can_make_new,
print, pyb_can_print,
protocol, &can_stream_p,
locals_dict, &pyb_can_locals_dict
);
MP_REGISTER_ROOT_POINTER(struct _pyb_can_obj_t *pyb_can_obj_all[MICROPY_HW_MAX_CAN]);
#endif // MICROPY_HW_ENABLE_CAN