micropython/extmod/modbluetooth_nimble.c

855 lines
31 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2019 Damien P. George
* Copyright (c) 2019 Jim Mussared
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/runtime.h"
#include "py/mperrno.h"
#include "py/mphal.h"
#include "systick.h"
#include "pendsv.h"
#if MICROPY_PY_BLUETOOTH && MICROPY_BLUETOOTH_NIMBLE
#ifndef MICROPY_PY_BLUETOOTH_DEFAULT_NAME
#define MICROPY_PY_BLUETOOTH_DEFAULT_NAME "PYBD"
#endif
#include "extmod/modbluetooth.h"
#include "host/ble_hs.h"
#include "host/util/util.h"
#include "nimble/ble.h"
#include "nimble/nimble_port.h"
#include "services/gap/ble_svc_gap.h"
#include "transport/uart/ble_hci_uart.h"
#define DEBUG_MALLOC_printf(...) //printf(__VA_ARGS__)
#define DEBUG_EVENT_printf(...) //printf(__VA_ARGS__)
STATIC int8_t ble_hs_err_to_errno_table[] = {
[BLE_HS_EAGAIN] = MP_EAGAIN,
[BLE_HS_EALREADY] = MP_EALREADY,
[BLE_HS_EINVAL] = MP_EINVAL,
[BLE_HS_EMSGSIZE] = MP_EIO,
[BLE_HS_ENOENT] = MP_ENOENT,
[BLE_HS_ENOMEM] = MP_ENOMEM,
[BLE_HS_ENOTCONN] = MP_ENOTCONN,
[BLE_HS_ENOTSUP] = MP_EOPNOTSUPP,
[BLE_HS_EAPP] = MP_EIO,
[BLE_HS_EBADDATA] = MP_EIO,
[BLE_HS_EOS] = MP_EIO,
[BLE_HS_ECONTROLLER] = MP_EIO,
[BLE_HS_ETIMEOUT] = MP_ETIMEDOUT,
[BLE_HS_EDONE] = MP_EIO, // TODO: Maybe should be MP_EISCONN (connect uses this for "already connected").
[BLE_HS_EBUSY] = MP_EBUSY,
[BLE_HS_EREJECT] = MP_EIO,
[BLE_HS_EUNKNOWN] = MP_EIO,
[BLE_HS_EROLE] = MP_EIO,
[BLE_HS_ETIMEOUT_HCI] = MP_EIO,
[BLE_HS_ENOMEM_EVT] = MP_EIO,
[BLE_HS_ENOADDR] = MP_EIO,
[BLE_HS_ENOTSYNCED] = MP_EIO,
[BLE_HS_EAUTHEN] = MP_EIO,
[BLE_HS_EAUTHOR] = MP_EIO,
[BLE_HS_EENCRYPT] = MP_EIO,
[BLE_HS_EENCRYPT_KEY_SZ] = MP_EIO,
[BLE_HS_ESTORE_CAP] = MP_EIO,
[BLE_HS_ESTORE_FAIL] = MP_EIO,
[BLE_HS_EPREEMPTED] = MP_EIO,
[BLE_HS_EDISABLED] = MP_EIO,
};
STATIC int ble_hs_err_to_errno(int err) {
if (0 <= err && err < MP_ARRAY_SIZE(ble_hs_err_to_errno_table)) {
return ble_hs_err_to_errno_table[err];
} else {
return MP_EIO;
}
}
// Maintain a linked list of heap memory that we've passed to Nimble,
// discoverable via the bluetooth_nimble_memory root pointer.
// MP_STATE_PORT(bluetooth_nimble_memory) is a pointer to [next, prev, data...].
// TODO: This is duplicated from mbedtls. Perhaps make this a generic feature?
void *m_malloc_bluetooth(size_t size) {
void **ptr = m_malloc0(size + 2 * sizeof(uintptr_t));
if (MP_STATE_PORT(bluetooth_nimble_memory) != NULL) {
MP_STATE_PORT(bluetooth_nimble_memory)[0] = ptr;
}
ptr[0] = NULL;
ptr[1] = MP_STATE_PORT(bluetooth_nimble_memory);
MP_STATE_PORT(bluetooth_nimble_memory) = ptr;
return &ptr[2];
}
#define m_new_bluetooth(type, num) ((type*)m_malloc_bluetooth(sizeof(type) * (num)))
void m_free_bluetooth(void *ptr_in) {
void **ptr = &((void**)ptr_in)[-2];
if (ptr[1] != NULL) {
((void**)ptr[1])[0] = ptr[0];
}
if (ptr[0] != NULL) {
((void**)ptr[0])[1] = ptr[1];
} else {
MP_STATE_PORT(bluetooth_nimble_memory) = ptr[1];
}
m_free(ptr);
}
// Check if a nimble ptr is tracked.
// If it isn't, that means that it's from a previous soft-reset cycle.
STATIC bool is_valid_nimble_malloc(void *ptr) {
DEBUG_MALLOC_printf("NIMBLE is_valid_nimble_malloc(%p)\n", ptr);
void** search = MP_STATE_PORT(bluetooth_nimble_memory);
while (search) {
if (&search[2] == ptr) {
return true;
}
search = (void**)search[1];
}
return false;
}
void *nimble_malloc(size_t size) {
DEBUG_MALLOC_printf("NIMBLE malloc(%u)\n", (uint)size);
void* ptr = m_malloc_bluetooth(size);
DEBUG_MALLOC_printf(" --> %p\n", ptr);
return ptr;
}
// Only free if it's still a valid pointer.
void nimble_free(void *ptr) {
DEBUG_MALLOC_printf("NIMBLE free(%p)\n", ptr);
if (ptr && is_valid_nimble_malloc(ptr)) {
m_free_bluetooth(ptr);
}
}
// Only realloc if it's still a valid pointer. Otherwise just malloc.
void *nimble_realloc(void *ptr, size_t size) {
// This is only used by ble_gatts.c to grow the queue of pending services to be registered.
DEBUG_MALLOC_printf("NIMBLE realloc(%p, %u)\n", ptr, (uint)size);
void *ptr2 = nimble_malloc(size);
if (ptr && is_valid_nimble_malloc(ptr)) {
// If it's a realloc and we still have the old data, then copy it.
// This will happen as we add services.
memcpy(ptr2, ptr, size);
m_free_bluetooth(ptr);
}
return ptr2;
}
STATIC ble_uuid_t* create_nimble_uuid(const mp_obj_bluetooth_uuid_t *uuid) {
if (uuid->type == MP_BLUETOOTH_UUID_TYPE_16) {
ble_uuid16_t *result = m_new(ble_uuid16_t, 1);
result->u.type = BLE_UUID_TYPE_16;
result->value = uuid->uuid._16;
return (ble_uuid_t*)result;
} else if (uuid->type == MP_BLUETOOTH_UUID_TYPE_32) {
ble_uuid32_t *result = m_new(ble_uuid32_t, 1);
result->u.type = BLE_UUID_TYPE_32;
result->value = uuid->uuid._32;
return (ble_uuid_t*)result;
} else if (uuid->type == MP_BLUETOOTH_UUID_TYPE_128) {
ble_uuid128_t *result = m_new(ble_uuid128_t, 1);
result->u.type = BLE_UUID_TYPE_128;
memcpy(result->value, uuid->uuid._128, 16);
return (ble_uuid_t*)result;
} else {
return NULL;
}
}
#if MICROPY_PY_BLUETOOTH_ENABLE_CENTRAL_MODE
STATIC mp_obj_bluetooth_uuid_t create_mp_uuid(const ble_uuid_any_t *uuid) {
mp_obj_bluetooth_uuid_t result;
switch (uuid->u.type) {
case BLE_UUID_TYPE_16:
result.type = MP_BLUETOOTH_UUID_TYPE_16;
result.uuid._16 = uuid->u16.value;
break;
case BLE_UUID_TYPE_32:
result.type = MP_BLUETOOTH_UUID_TYPE_32;
result.uuid._32 = uuid->u32.value;
break;
case BLE_UUID_TYPE_128:
result.type = MP_BLUETOOTH_UUID_TYPE_128;
memcpy(result.uuid._128, uuid->u128.value, 16);
break;
default:
assert(false);
}
return result;
}
// modbluetooth (and the layers above it) work in BE addresses, Nimble works in LE.
STATIC void reverse_addr_byte_order(uint8_t *addr_out, const uint8_t *addr_in) {
for (int i = 0; i < 6; ++i) {
addr_out[i] = addr_in[5-i];
}
}
STATIC ble_addr_t create_nimble_addr(uint8_t addr_type, const uint8_t *addr) {
ble_addr_t addr_nimble;
addr_nimble.type = addr_type;
// Incoming addr is from modbluetooth (BE), so copy and convert to LE for Nimble.
reverse_addr_byte_order(addr_nimble.val, addr);
return addr_nimble;
}
#endif // MICROPY_PY_BLUETOOTH_ENABLE_CENTRAL_MODE
STATIC mp_map_t *gatts_db = MP_OBJ_NULL;
typedef struct {
uint8_t *data;
size_t data_alloc;
size_t data_len;
} gatts_db_entry_t;
/******************************************************************************/
// RUN LOOP
enum {
BLE_STATE_OFF,
BLE_STATE_STARTING,
BLE_STATE_ACTIVE,
};
static volatile int ble_state = BLE_STATE_OFF;
extern void nimble_uart_process(void);
extern void os_eventq_run_all(void);
extern void os_callout_process(void);
// Hook for pendsv poller to run this periodically every 128ms
#define NIMBLE_TICK(tick) (((tick) & ~(SYSTICK_DISPATCH_NUM_SLOTS - 1) & 0x7f) == 0)
void nimble_poll(void) {
if (ble_state == BLE_STATE_OFF) {
return;
}
nimble_uart_process();
os_callout_process();
os_eventq_run_all();
}
void mod_bluetooth_nimble_poll_wrapper(uint32_t ticks_ms) {
if (NIMBLE_TICK(ticks_ms)) {
pendsv_schedule_dispatch(PENDSV_DISPATCH_NIMBLE, nimble_poll);
}
}
/******************************************************************************/
// BINDINGS
STATIC void reset_cb(int reason) {
(void)reason;
}
STATIC void sync_cb(void) {
ble_hs_util_ensure_addr(0); // prefer public address
ble_svc_gap_device_name_set(MICROPY_PY_BLUETOOTH_DEFAULT_NAME);
ble_state = BLE_STATE_ACTIVE;
}
STATIC void create_gatts_db_entry(uint16_t handle) {
mp_map_elem_t *elem = mp_map_lookup(gatts_db, MP_OBJ_NEW_SMALL_INT(handle), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND);
gatts_db_entry_t *entry = m_new(gatts_db_entry_t, 1);
entry->data = m_new(uint8_t, MP_BLUETOOTH_MAX_ATTR_SIZE);
entry->data_alloc = MP_BLUETOOTH_MAX_ATTR_SIZE;
entry->data_len = 0;
elem->value = MP_OBJ_FROM_PTR(entry);
}
STATIC void gatts_register_cb(struct ble_gatt_register_ctxt *ctxt, void *arg) {
switch (ctxt->op) {
case BLE_GATT_REGISTER_OP_SVC:
// Called when a service is successfully registered.
DEBUG_EVENT_printf("gatts_register_cb: svc uuid=%p handle=%d\n", &ctxt->svc.svc_def->uuid, ctxt->svc.handle);
break;
case BLE_GATT_REGISTER_OP_CHR:
// Called when a characteristic is successfully registered.
DEBUG_EVENT_printf("gatts_register_cb: chr uuid=%p def_handle=%d val_handle=%d\n", &ctxt->chr.chr_def->uuid, ctxt->chr.def_handle, ctxt->chr.val_handle);
// Note: We will get this event for the default GAP Service, meaning that we allocate storage for the
// "device name" and "appearance" characteristics, even though we never see the reads for them.
// TODO: Possibly check if the service UUID is 0x1801 and ignore?
// Allocate the gatts_db storage for this characteristic.
// Although this function is a callback, it's called synchronously from ble_hs_sched_start/ble_gatts_start, so safe to allocate.
create_gatts_db_entry(ctxt->chr.val_handle);
break;
case BLE_GATT_REGISTER_OP_DSC:
// Called when a descriptor is successfully registered.
// Note: This is event is not called for the CCCD.
DEBUG_EVENT_printf("gatts_register_cb: dsc uuid=%p handle=%d\n", &ctxt->dsc.dsc_def->uuid, ctxt->dsc.handle);
// See above, safe to alloc.
create_gatts_db_entry(ctxt->dsc.handle);
// Unlike characteristics, we have to manually provide a way to get the handle back to the register method.
*((uint16_t*)ctxt->dsc.dsc_def->arg) = ctxt->dsc.handle;
break;
default:
DEBUG_EVENT_printf("gatts_register_cb: unknown op %d\n", ctxt->op);
break;
}
}
STATIC int gap_event_cb(struct ble_gap_event *event, void *arg) {
DEBUG_EVENT_printf("gap_event_cb: type=%d\n", event->type);
struct ble_gap_conn_desc desc;
uint8_t addr[6] = {0};
switch (event->type) {
case BLE_GAP_EVENT_CONNECT:
if (event->connect.status == 0) {
// Connection established.
ble_gap_conn_find(event->connect.conn_handle, &desc);
reverse_addr_byte_order(addr, desc.peer_id_addr.val);
mp_bluetooth_gap_on_connected_disconnected(MP_BLUETOOTH_IRQ_CENTRAL_CONNECT, event->connect.conn_handle, desc.peer_id_addr.type, addr);
} else {
// Connection failed.
mp_bluetooth_gap_on_connected_disconnected(MP_BLUETOOTH_IRQ_CENTRAL_DISCONNECT, event->connect.conn_handle, 0xff, addr);
}
break;
case BLE_GAP_EVENT_DISCONNECT:
// Disconnect.
reverse_addr_byte_order(addr, event->disconnect.conn.peer_id_addr.val);
mp_bluetooth_gap_on_connected_disconnected(MP_BLUETOOTH_IRQ_CENTRAL_DISCONNECT, event->disconnect.conn.conn_handle, event->disconnect.conn.peer_id_addr.type, addr);
break;
}
return 0;
}
int mp_bluetooth_init(void) {
// Clean up if necessary.
mp_bluetooth_deinit();
MP_STATE_PORT(bluetooth_nimble_memory) = NULL;
ble_hs_cfg.reset_cb = reset_cb;
ble_hs_cfg.sync_cb = sync_cb;
ble_hs_cfg.gatts_register_cb = gatts_register_cb;
ble_hs_cfg.store_status_cb = ble_store_util_status_rr;
gatts_db = m_new_bluetooth(mp_map_t, 1);
ble_hci_uart_init();
nimble_port_init();
// By default, just register the default gap service.
ble_svc_gap_init();
ble_state = BLE_STATE_STARTING;
ble_hs_start();
// Wait for sync callback
while (ble_state != BLE_STATE_ACTIVE) {
MICROPY_EVENT_POLL_HOOK
}
return 0;
}
// Called when the host stop procedure has completed.
STATIC void ble_hs_shutdown_stop_cb(int status, void *arg) {
ble_state = BLE_STATE_OFF;
}
STATIC struct ble_hs_stop_listener ble_hs_shutdown_stop_listener;
void mp_bluetooth_deinit(void) {
if (ble_state == BLE_STATE_OFF) {
return;
}
mp_bluetooth_gap_advertise_stop();
#if MICROPY_PY_BLUETOOTH_ENABLE_CENTRAL_MODE
mp_bluetooth_gap_scan_stop();
#endif
ble_hs_stop(&ble_hs_shutdown_stop_listener, ble_hs_shutdown_stop_cb,
NULL);
while (ble_state != BLE_STATE_OFF) {
MICROPY_EVENT_POLL_HOOK
}
// TODO: This should be a port-specific hook.
#ifdef pyb_pin_BT_REG_ON
mp_hal_pin_low(pyb_pin_BT_REG_ON);
#endif
}
bool mp_bluetooth_is_enabled(void) {
return ble_state == BLE_STATE_ACTIVE;
}
void mp_bluetooth_get_device_addr(uint8_t *addr) {
mp_hal_get_mac(MP_HAL_MAC_BDADDR, addr);
}
int mp_bluetooth_gap_advertise_start(bool connectable, uint16_t interval_ms, const uint8_t *adv_data, size_t adv_data_len, const uint8_t *sr_data, size_t sr_data_len) {
int ret;
mp_bluetooth_gap_advertise_stop();
if ((adv_data != NULL) && (adv_data_len > 0)) {
ret = ble_gap_adv_set_data(adv_data, adv_data_len);
if (ret != 0) {
return ble_hs_err_to_errno(ret);
}
}
if ((sr_data != NULL) && (sr_data_len > 0)) {
ret = ble_gap_adv_rsp_set_data(sr_data, sr_data_len);
if (ret != 0) {
return ble_hs_err_to_errno(ret);
}
}
// Convert from 1ms to 0.625ms units.
interval_ms = interval_ms * 8 / 5;
if (interval_ms < 0x20 || interval_ms > 0x4000) {
return MP_EINVAL;
}
struct ble_gap_adv_params adv_params = {
.conn_mode = connectable ? BLE_GAP_CONN_MODE_UND : BLE_GAP_CONN_MODE_NON,
.disc_mode = BLE_GAP_DISC_MODE_GEN,
.itvl_min = interval_ms,
.itvl_max = interval_ms,
.channel_map = 7, // all 3 channels
};
ret = ble_gap_adv_start(BLE_OWN_ADDR_PUBLIC, NULL, BLE_HS_FOREVER, &adv_params, gap_event_cb, NULL);
if (ret != 0) {
return ble_hs_err_to_errno(ret);
}
return 0;
}
void mp_bluetooth_gap_advertise_stop(void) {
if (ble_gap_adv_active()) {
ble_gap_adv_stop();
}
}
static int characteristic_access_cb(uint16_t conn_handle, uint16_t value_handle, struct ble_gatt_access_ctxt *ctxt, void *arg) {
DEBUG_EVENT_printf("characteristic_access_cb: conn_handle=%u value_handle=%u op=%u\n", conn_handle, value_handle, ctxt->op);
mp_map_elem_t *elem;
gatts_db_entry_t *entry;
switch (ctxt->op) {
case BLE_GATT_ACCESS_OP_READ_CHR:
case BLE_GATT_ACCESS_OP_READ_DSC:
#if MICROPY_PY_BLUETOOTH_GATTS_ON_READ_CALLBACK
// Allow Python code to override (by using gatts_write), or deny (by returning false) the read.
if (!mp_bluetooth_gatts_on_read_request(conn_handle, value_handle)) {
return BLE_ATT_ERR_READ_NOT_PERMITTED;
}
#endif
elem = mp_map_lookup(gatts_db, MP_OBJ_NEW_SMALL_INT(value_handle), MP_MAP_LOOKUP);
if (!elem) {
return BLE_ATT_ERR_ATTR_NOT_FOUND;
}
entry = MP_OBJ_TO_PTR(elem->value);
os_mbuf_append(ctxt->om, entry->data, entry->data_len);
return 0;
case BLE_GATT_ACCESS_OP_WRITE_CHR:
case BLE_GATT_ACCESS_OP_WRITE_DSC:
elem = mp_map_lookup(gatts_db, MP_OBJ_NEW_SMALL_INT(value_handle), MP_MAP_LOOKUP);
if (!elem) {
return BLE_ATT_ERR_ATTR_NOT_FOUND;
}
entry = MP_OBJ_TO_PTR(elem->value);
entry->data_len = MIN(MP_BLUETOOTH_MAX_ATTR_SIZE, OS_MBUF_PKTLEN(ctxt->om));
os_mbuf_copydata(ctxt->om, 0, entry->data_len, entry->data);
mp_bluetooth_gatts_on_write(conn_handle, value_handle);
return 0;
}
return BLE_ATT_ERR_UNLIKELY;
}
int mp_bluetooth_gatts_register_service_begin(bool reset) {
int ret = ble_gatts_reset();
if (ret != 0) {
return ble_hs_err_to_errno(ret);
}
// Reset the gatt characteristic value db.
mp_map_init(gatts_db, 0);
// By default, just register the default gap service.
ble_svc_gap_init();
return 0;
}
int mp_bluetooth_gatts_register_service_end() {
int ret = ble_gatts_start();
if (ret != 0) {
return ble_hs_err_to_errno(ret);
}
return 0;
}
int mp_bluetooth_gatts_register_service(mp_obj_bluetooth_uuid_t *service_uuid, mp_obj_bluetooth_uuid_t **characteristic_uuids, uint8_t *characteristic_flags, mp_obj_bluetooth_uuid_t **descriptor_uuids, uint8_t *descriptor_flags, uint8_t *num_descriptors, uint16_t *handles, size_t num_characteristics) {
// TODO: These allocs need to last until mp_bluetooth_gatts_register_service_end.
// Using m_new_bluetooth means they get leaked, but m_new would mean that they wouldn't be findable by GC.
size_t handle_index = 0;
size_t descriptor_index = 0;
struct ble_gatt_chr_def *characteristics = m_new_bluetooth(struct ble_gatt_chr_def, num_characteristics + 1);
for (size_t i = 0; i < num_characteristics; ++i) {
characteristics[i].uuid = create_nimble_uuid(characteristic_uuids[i]);
characteristics[i].access_cb = characteristic_access_cb;
characteristics[i].arg = NULL;
characteristics[i].flags = characteristic_flags[i];
characteristics[i].min_key_size = 0;
characteristics[i].val_handle = &handles[handle_index];
++handle_index;
if (num_descriptors[i] == 0) {
characteristics[i].descriptors = NULL;
} else {
struct ble_gatt_dsc_def *descriptors = m_new_bluetooth(struct ble_gatt_dsc_def, num_descriptors[i] + 1);
for (size_t j = 0; j < num_descriptors[i]; ++j) {
descriptors[j].uuid = create_nimble_uuid(descriptor_uuids[descriptor_index]);
descriptors[j].access_cb = characteristic_access_cb;
descriptors[j].att_flags = descriptor_flags[i];
descriptors[j].min_key_size = 0;
// Unlike characteristic, Nimble doesn't provide an automatic way to remember the handle, so use the arg.
descriptors[j].arg = &handles[handle_index];
++descriptor_index;
++handle_index;
}
descriptors[num_descriptors[i]].uuid = NULL; // no more descriptors
characteristics[i].descriptors = descriptors;
}
}
characteristics[num_characteristics].uuid = NULL; // no more characteristics
struct ble_gatt_svc_def *service = m_new_bluetooth(struct ble_gatt_svc_def, 2);
service[0].type = BLE_GATT_SVC_TYPE_PRIMARY;
service[0].uuid = create_nimble_uuid(service_uuid);
service[0].includes = NULL;
service[0].characteristics = characteristics;
service[1].type = 0; // no more services
// Note: advertising must be stopped for gatts registration to work
int ret = ble_gatts_count_cfg(service);
if (ret != 0) {
return ble_hs_err_to_errno(ret);
}
ret = ble_gatts_add_svcs(service);
if (ret != 0) {
return ble_hs_err_to_errno(ret);
}
return 0;
}
int mp_bluetooth_gap_disconnect(uint16_t conn_handle) {
return ble_hs_err_to_errno(ble_gap_terminate(conn_handle, BLE_ERR_REM_USER_CONN_TERM));
}
int mp_bluetooth_gatts_read(uint16_t value_handle, uint8_t **value, size_t *value_len) {
mp_map_elem_t *elem = mp_map_lookup(gatts_db, MP_OBJ_NEW_SMALL_INT(value_handle), MP_MAP_LOOKUP);
if (!elem) {
return MP_EINVAL;
}
gatts_db_entry_t *entry = MP_OBJ_TO_PTR(elem->value);
*value = entry->data;
*value_len = entry->data_len;
return 0;
}
int mp_bluetooth_gatts_write(uint16_t value_handle, const uint8_t *value, size_t value_len) {
mp_map_elem_t *elem = mp_map_lookup(gatts_db, MP_OBJ_NEW_SMALL_INT(value_handle), MP_MAP_LOOKUP);
if (!elem) {
return MP_EINVAL;
}
gatts_db_entry_t *entry = MP_OBJ_TO_PTR(elem->value);
if (value_len > entry->data_alloc) {
entry->data = m_new(uint8_t, value_len);
entry->data_alloc = value_len;
}
memcpy(entry->data, value, value_len);
entry->data_len = value_len;
return 0;
}
// TODO: Could use ble_gatts_chr_updated to send to all subscribed centrals.
int mp_bluetooth_gatts_notify(uint16_t conn_handle, uint16_t value_handle) {
// Confusingly, notify/notify_custom/indicate are "gattc" function (even though they're used by peripherals (i.e. gatt servers)).
// See https://www.mail-archive.com/dev@mynewt.apache.org/msg01293.html
return ble_hs_err_to_errno(ble_gattc_notify(conn_handle, value_handle));
}
int mp_bluetooth_gatts_notify_send(uint16_t conn_handle, uint16_t value_handle, const uint8_t *value, size_t *value_len) {
struct os_mbuf *om = ble_hs_mbuf_from_flat(value, *value_len);
if (om == NULL) {
return -1;
}
// TODO: check that notify_custom takes ownership of om, if not os_mbuf_free_chain(om).
return ble_hs_err_to_errno(ble_gattc_notify_custom(conn_handle, value_handle, om));
}
int mp_bluetooth_gatts_indicate(uint16_t conn_handle, uint16_t value_handle) {
return ble_hs_err_to_errno(ble_gattc_indicate(conn_handle, value_handle));
}
#if MICROPY_PY_BLUETOOTH_ENABLE_CENTRAL_MODE
STATIC int gap_scan_cb(struct ble_gap_event *event, void *arg) {
DEBUG_EVENT_printf("gap_scan_cb: event=%d\n", event->type);
if (event->type == BLE_GAP_EVENT_DISC_COMPLETE) {
mp_bluetooth_gap_on_scan_complete();
return 0;
}
if (event->type != BLE_GAP_EVENT_DISC) {
return 0;
}
DEBUG_EVENT_printf(" --> type %d\n", event->disc.event_type);
if (event->disc.event_type == BLE_HCI_ADV_RPT_EVTYPE_ADV_IND || event->disc.event_type == BLE_HCI_ADV_RPT_EVTYPE_NONCONN_IND) {
bool connectable = event->disc.event_type == BLE_HCI_ADV_RPT_EVTYPE_ADV_IND;
uint8_t addr[6];
reverse_addr_byte_order(addr, event->disc.addr.val);
mp_bluetooth_gap_on_scan_result(event->disc.addr.type, addr, connectable, event->disc.rssi, event->disc.data, event->disc.length_data);
} else if (event->disc.event_type == BLE_HCI_ADV_RPT_EVTYPE_SCAN_RSP) {
// TODO
} else if (event->disc.event_type == BLE_HCI_ADV_RPT_EVTYPE_SCAN_IND) {
// TODO
}
return 0;
}
int mp_bluetooth_gap_scan_start(int32_t duration_ms) {
if (duration_ms == 0) {
duration_ms = BLE_HS_FOREVER;
}
STATIC const struct ble_gap_disc_params discover_params = {
.itvl = BLE_GAP_SCAN_SLOW_INTERVAL1,
.window = BLE_GAP_SCAN_SLOW_WINDOW1,
.filter_policy = BLE_HCI_CONN_FILT_NO_WL,
.limited = 0,
.passive = 0,
.filter_duplicates = 0,
};
int err = ble_gap_disc(BLE_OWN_ADDR_PUBLIC, duration_ms, &discover_params, gap_scan_cb, NULL);
return ble_hs_err_to_errno(err);
}
int mp_bluetooth_gap_scan_stop(void) {
int err = ble_gap_disc_cancel();
if (err == 0) {
mp_bluetooth_gap_on_scan_complete();
return 0;
}
return ble_hs_err_to_errno(err);
}
// Central role: GAP events for a connected peripheral.
STATIC int peripheral_gap_event_cb(struct ble_gap_event *event, void *arg) {
DEBUG_EVENT_printf("peripheral_gap_event_cb: event=%d\n", event->type);
struct ble_gap_conn_desc desc;
uint8_t buf[MP_BLUETOOTH_MAX_ATTR_SIZE];
size_t len;
uint8_t addr[6] = {0};
switch (event->type) {
case BLE_GAP_EVENT_CONNECT:
if (event->connect.status == 0) {
// Connection established.
ble_gap_conn_find(event->connect.conn_handle, &desc);
reverse_addr_byte_order(addr, desc.peer_id_addr.val);
mp_bluetooth_gap_on_connected_disconnected(MP_BLUETOOTH_IRQ_PERIPHERAL_CONNECT, event->connect.conn_handle, desc.peer_id_addr.type, addr);
} else {
// Connection failed.
mp_bluetooth_gap_on_connected_disconnected(MP_BLUETOOTH_IRQ_PERIPHERAL_DISCONNECT, event->connect.conn_handle, 0xff, addr);
}
break;
case BLE_GAP_EVENT_DISCONNECT:
// Disconnect.
reverse_addr_byte_order(addr, event->disconnect.conn.peer_id_addr.val);
mp_bluetooth_gap_on_connected_disconnected(MP_BLUETOOTH_IRQ_PERIPHERAL_DISCONNECT, event->disconnect.conn.conn_handle, event->disconnect.conn.peer_id_addr.type, addr);
break;
case BLE_GAP_EVENT_NOTIFY_RX:
len = MIN(MP_BLUETOOTH_MAX_ATTR_SIZE, OS_MBUF_PKTLEN(event->notify_rx.om));
os_mbuf_copydata(event->notify_rx.om, 0, len, buf);
if (event->notify_rx.indication == 0) {
mp_bluetooth_gattc_on_data_available(MP_BLUETOOTH_IRQ_GATTC_NOTIFY, event->notify_rx.conn_handle, event->notify_rx.attr_handle, buf, len);
} else {
mp_bluetooth_gattc_on_data_available(MP_BLUETOOTH_IRQ_GATTC_INDICATE, event->notify_rx.conn_handle, event->notify_rx.attr_handle, buf, len);
}
break;
case BLE_GAP_EVENT_CONN_UPDATE:
// TODO
break;
case BLE_GAP_EVENT_CONN_UPDATE_REQ:
// TODO
break;
default:
break;
}
return 0;
}
int mp_bluetooth_gap_peripheral_connect(uint8_t addr_type, const uint8_t *addr, int32_t duration_ms) {
if (ble_gap_disc_active()) {
mp_bluetooth_gap_scan_stop();
}
// TODO: This is the same as ble_gap_conn_params_dflt (i.e. passing NULL).
STATIC const struct ble_gap_conn_params params = {
.scan_itvl = 0x0010,
.scan_window = 0x0010,
.itvl_min = BLE_GAP_INITIAL_CONN_ITVL_MIN,
.itvl_max = BLE_GAP_INITIAL_CONN_ITVL_MAX,
.latency = BLE_GAP_INITIAL_CONN_LATENCY,
.supervision_timeout = BLE_GAP_INITIAL_SUPERVISION_TIMEOUT,
.min_ce_len = BLE_GAP_INITIAL_CONN_MIN_CE_LEN,
.max_ce_len = BLE_GAP_INITIAL_CONN_MAX_CE_LEN,
};
ble_addr_t addr_nimble = create_nimble_addr(addr_type, addr);
int err = ble_gap_connect(BLE_OWN_ADDR_PUBLIC, &addr_nimble, duration_ms, &params, &peripheral_gap_event_cb, NULL);
return ble_hs_err_to_errno(err);
}
STATIC int peripheral_discover_service_cb(uint16_t conn_handle, const struct ble_gatt_error *error, const struct ble_gatt_svc *service, void *arg) {
DEBUG_EVENT_printf("peripheral_discover_service_cb: conn_handle=%d status=%d start_handle=%d\n", conn_handle, error->status, service->start_handle);
// TODO: Find out what error->status == 14 means (probably "end of services").
if (error->status == 0) {
mp_obj_bluetooth_uuid_t service_uuid = create_mp_uuid(&service->uuid);
mp_bluetooth_gattc_on_primary_service_result(conn_handle, service->start_handle, service->end_handle, &service_uuid);
}
return 0;
}
int mp_bluetooth_gattc_discover_primary_services(uint16_t conn_handle) {
int err = ble_gattc_disc_all_svcs(conn_handle, &peripheral_discover_service_cb, NULL);
return ble_hs_err_to_errno(err);
}
STATIC int ble_gatt_characteristic_cb(uint16_t conn_handle, const struct ble_gatt_error *error, const struct ble_gatt_chr *characteristic, void *arg) {
if (error->status == 0) {
mp_obj_bluetooth_uuid_t characteristic_uuid = create_mp_uuid(&characteristic->uuid);
mp_bluetooth_gattc_on_characteristic_result(conn_handle, characteristic->def_handle, characteristic->val_handle, characteristic->properties, &characteristic_uuid);
}
return 0;
}
int mp_bluetooth_gattc_discover_characteristics(uint16_t conn_handle, uint16_t start_handle, uint16_t end_handle) {
int err = ble_gattc_disc_all_chrs(conn_handle, start_handle, end_handle, &ble_gatt_characteristic_cb, NULL);
return ble_hs_err_to_errno(err);
}
STATIC int ble_gatt_descriptor_cb(uint16_t conn_handle, const struct ble_gatt_error *error, uint16_t characteristic_val_handle, const struct ble_gatt_dsc *descriptor, void *arg) {
if (error->status == 0) {
mp_obj_bluetooth_uuid_t descriptor_uuid = create_mp_uuid(&descriptor->uuid);
mp_bluetooth_gattc_on_descriptor_result(conn_handle, descriptor->handle, &descriptor_uuid);
}
return 0;
}
int mp_bluetooth_gattc_discover_descriptors(uint16_t conn_handle, uint16_t start_handle, uint16_t end_handle) {
int err = ble_gattc_disc_all_dscs(conn_handle, start_handle, end_handle, &ble_gatt_descriptor_cb, NULL);
return ble_hs_err_to_errno(err);
}
STATIC int ble_gatt_attr_read_cb(uint16_t conn_handle, const struct ble_gatt_error *error, struct ble_gatt_attr *attr, void *arg) {
// TODO: Maybe send NULL if error->status non-zero.
if (error->status == 0) {
uint8_t buf[MP_BLUETOOTH_MAX_ATTR_SIZE];
size_t len = MIN(MP_BLUETOOTH_MAX_ATTR_SIZE, OS_MBUF_PKTLEN(attr->om));
os_mbuf_copydata(attr->om, 0, len, buf);
mp_bluetooth_gattc_on_data_available(MP_BLUETOOTH_IRQ_GATTC_READ_RESULT, conn_handle, attr->handle, buf, len);
}
return 0;
}
// Initiate read of a value from the remote peripheral.
int mp_bluetooth_gattc_read(uint16_t conn_handle, uint16_t value_handle) {
int err = ble_gattc_read(conn_handle, value_handle, &ble_gatt_attr_read_cb, NULL);
return ble_hs_err_to_errno(err);
}
STATIC int ble_gatt_attr_write_cb(uint16_t conn_handle, const struct ble_gatt_error *error, struct ble_gatt_attr *attr, void *arg) {
mp_bluetooth_gattc_on_write_status(conn_handle, attr->handle, error->status);
return 0;
}
// Write the value to the remote peripheral.
int mp_bluetooth_gattc_write(uint16_t conn_handle, uint16_t value_handle, const uint8_t *value, size_t *value_len) {
int err = ble_gattc_write_flat(conn_handle, value_handle, value, *value_len, &ble_gatt_attr_write_cb, NULL);
return ble_hs_err_to_errno(err);
}
#endif // MICROPY_PY_BLUETOOTH_ENABLE_CENTRAL_MODE
#endif // MICROPY_PY_BLUETOOTH && MICROPY_BLUETOOTH_NIMBLE