micropython/py/emitnative.c
Jim Mussared 9714a0ead5 py/emitnative: Fix STORE_ATTR viper code-gen when value is not a pyobj.
There was a missing call to MP_F_CONVERT_NATIVE_TO_OBJ.

Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
2022-07-12 17:18:27 +10:00

2992 lines
124 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
// Essentially normal Python has 1 type: Python objects
// Viper has more than 1 type, and is just a more complicated (a superset of) Python.
// If you declare everything in Viper as a Python object (ie omit type decls) then
// it should in principle be exactly the same as Python native.
// Having types means having more opcodes, like binary_op_nat_nat, binary_op_nat_obj etc.
// In practice we won't have a VM but rather do this in asm which is actually very minimal.
// Because it breaks strict Python equivalence it should be a completely separate
// decorator. It breaks equivalence because overflow on integers wraps around.
// It shouldn't break equivalence if you don't use the new types, but since the
// type decls might be used in normal Python for other reasons, it's probably safest,
// cleanest and clearest to make it a separate decorator.
// Actually, it does break equivalence because integers default to native integers,
// not Python objects.
// for x in l[0:8]: can be compiled into a native loop if l has pointer type
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include "py/emit.h"
#include "py/nativeglue.h"
#include "py/objfun.h"
#include "py/objstr.h"
#if MICROPY_DEBUG_VERBOSE // print debugging info
#define DEBUG_PRINT (1)
#define DEBUG_printf DEBUG_printf
#else // don't print debugging info
#define DEBUG_printf(...) (void)0
#endif
// wrapper around everything in this file
#if N_X64 || N_X86 || N_THUMB || N_ARM || N_XTENSA || N_XTENSAWIN
// C stack layout for native functions:
// 0: nlr_buf_t [optional]
// return_value [optional word]
// exc_handler_unwind [optional word]
// emit->code_state_start: mp_code_state_native_t
// emit->stack_start: Python object stack | emit->n_state
// locals (reversed, L0 at end) |
//
// C stack layout for native generator functions:
// 0=emit->stack_start: nlr_buf_t
// return_value
// exc_handler_unwind [optional word]
//
// Then REG_GENERATOR_STATE points to:
// 0=emit->code_state_start: mp_code_state_native_t
// emit->stack_start: Python object stack | emit->n_state
// locals (reversed, L0 at end) |
//
// C stack layout for viper functions:
// 0: nlr_buf_t [optional]
// return_value [optional word]
// exc_handler_unwind [optional word]
// emit->code_state_start: fun_obj, old_globals [optional]
// emit->stack_start: Python object stack | emit->n_state
// locals (reversed, L0 at end) |
// (L0-L2 may be in regs instead)
// Native emitter needs to know the following sizes and offsets of C structs (on the target):
#if MICROPY_DYNAMIC_COMPILER
#define SIZEOF_NLR_BUF (2 + mp_dynamic_compiler.nlr_buf_num_regs + 1) // the +1 is conservative in case MICROPY_ENABLE_PYSTACK enabled
#else
#define SIZEOF_NLR_BUF (sizeof(nlr_buf_t) / sizeof(uintptr_t))
#endif
#define SIZEOF_CODE_STATE (sizeof(mp_code_state_native_t) / sizeof(uintptr_t))
#define OFFSETOF_CODE_STATE_STATE (offsetof(mp_code_state_native_t, state) / sizeof(uintptr_t))
#define OFFSETOF_CODE_STATE_FUN_BC (offsetof(mp_code_state_native_t, fun_bc) / sizeof(uintptr_t))
#define OFFSETOF_CODE_STATE_IP (offsetof(mp_code_state_native_t, ip) / sizeof(uintptr_t))
#define OFFSETOF_CODE_STATE_SP (offsetof(mp_code_state_native_t, sp) / sizeof(uintptr_t))
#define OFFSETOF_CODE_STATE_N_STATE (offsetof(mp_code_state_native_t, n_state) / sizeof(uintptr_t))
#define OFFSETOF_OBJ_FUN_BC_CONTEXT (offsetof(mp_obj_fun_bc_t, context) / sizeof(uintptr_t))
#define OFFSETOF_OBJ_FUN_BC_CHILD_TABLE (offsetof(mp_obj_fun_bc_t, child_table) / sizeof(uintptr_t))
#define OFFSETOF_OBJ_FUN_BC_BYTECODE (offsetof(mp_obj_fun_bc_t, bytecode) / sizeof(uintptr_t))
#define OFFSETOF_MODULE_CONTEXT_QSTR_TABLE (offsetof(mp_module_context_t, constants.qstr_table) / sizeof(uintptr_t))
#define OFFSETOF_MODULE_CONTEXT_OBJ_TABLE (offsetof(mp_module_context_t, constants.obj_table) / sizeof(uintptr_t))
#define OFFSETOF_MODULE_CONTEXT_GLOBALS (offsetof(mp_module_context_t, module.globals) / sizeof(uintptr_t))
// If not already defined, set parent args to same as child call registers
#ifndef REG_PARENT_RET
#define REG_PARENT_RET REG_RET
#define REG_PARENT_ARG_1 REG_ARG_1
#define REG_PARENT_ARG_2 REG_ARG_2
#define REG_PARENT_ARG_3 REG_ARG_3
#define REG_PARENT_ARG_4 REG_ARG_4
#endif
// Word index of nlr_buf_t.ret_val
#define NLR_BUF_IDX_RET_VAL (1)
// Whether the viper function needs access to fun_obj
#define NEED_FUN_OBJ(emit) ((emit)->scope->exc_stack_size > 0 \
|| ((emit)->scope->scope_flags & (MP_SCOPE_FLAG_REFGLOBALS | MP_SCOPE_FLAG_HASCONSTS)))
// Whether the native/viper function needs to be wrapped in an exception handler
#define NEED_GLOBAL_EXC_HANDLER(emit) ((emit)->scope->exc_stack_size > 0 \
|| ((emit)->scope->scope_flags & (MP_SCOPE_FLAG_GENERATOR | MP_SCOPE_FLAG_REFGLOBALS)))
// Whether a slot is needed to store LOCAL_IDX_EXC_HANDLER_UNWIND
#define NEED_EXC_HANDLER_UNWIND(emit) ((emit)->scope->exc_stack_size > 0)
// Whether registers can be used to store locals (only true if there are no
// exception handlers, because otherwise an nlr_jump will restore registers to
// their state at the start of the function and updates to locals will be lost)
#define CAN_USE_REGS_FOR_LOCALS(emit) ((emit)->scope->exc_stack_size == 0 && !(emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR))
// Indices within the local C stack for various variables
#define LOCAL_IDX_EXC_VAL(emit) (NLR_BUF_IDX_RET_VAL)
#define LOCAL_IDX_EXC_HANDLER_PC(emit) (NLR_BUF_IDX_LOCAL_1)
#define LOCAL_IDX_EXC_HANDLER_UNWIND(emit) (SIZEOF_NLR_BUF + 1) // this needs a dedicated variable outside nlr_buf_t
#define LOCAL_IDX_RET_VAL(emit) (SIZEOF_NLR_BUF) // needed when NEED_GLOBAL_EXC_HANDLER is true
#define LOCAL_IDX_FUN_OBJ(emit) ((emit)->code_state_start + OFFSETOF_CODE_STATE_FUN_BC)
#define LOCAL_IDX_OLD_GLOBALS(emit) ((emit)->code_state_start + OFFSETOF_CODE_STATE_IP)
#define LOCAL_IDX_GEN_PC(emit) ((emit)->code_state_start + OFFSETOF_CODE_STATE_IP)
#define LOCAL_IDX_LOCAL_VAR(emit, local_num) ((emit)->stack_start + (emit)->n_state - 1 - (local_num))
#if MICROPY_PERSISTENT_CODE_SAVE
// When building with the ability to save native code to .mpy files:
// - Qstrs are indirect via qstr_table, and REG_LOCAL_3 always points to qstr_table.
// - In a generator no registers are used to store locals, and REG_LOCAL_2 points to the generator state.
// - At most 2 registers hold local variables (see CAN_USE_REGS_FOR_LOCALS for when this is possible).
#define REG_GENERATOR_STATE (REG_LOCAL_2)
#define REG_QSTR_TABLE (REG_LOCAL_3)
#define MAX_REGS_FOR_LOCAL_VARS (2)
STATIC const uint8_t reg_local_table[MAX_REGS_FOR_LOCAL_VARS] = {REG_LOCAL_1, REG_LOCAL_2};
#else
// When building without the ability to save native code to .mpy files:
// - Qstrs values are written directly into the machine code.
// - In a generator no registers are used to store locals, and REG_LOCAL_3 points to the generator state.
// - At most 3 registers hold local variables (see CAN_USE_REGS_FOR_LOCALS for when this is possible).
#define REG_GENERATOR_STATE (REG_LOCAL_3)
#define MAX_REGS_FOR_LOCAL_VARS (3)
STATIC const uint8_t reg_local_table[MAX_REGS_FOR_LOCAL_VARS] = {REG_LOCAL_1, REG_LOCAL_2, REG_LOCAL_3};
#endif
#define REG_LOCAL_LAST (reg_local_table[MAX_REGS_FOR_LOCAL_VARS - 1])
#define EMIT_NATIVE_VIPER_TYPE_ERROR(emit, ...) do { \
*emit->error_slot = mp_obj_new_exception_msg_varg(&mp_type_ViperTypeError, __VA_ARGS__); \
} while (0)
typedef enum {
STACK_VALUE,
STACK_REG,
STACK_IMM,
} stack_info_kind_t;
// these enums must be distinct and the bottom 4 bits
// must correspond to the correct MP_NATIVE_TYPE_xxx value
typedef enum {
VTYPE_PYOBJ = 0x00 | MP_NATIVE_TYPE_OBJ,
VTYPE_BOOL = 0x00 | MP_NATIVE_TYPE_BOOL,
VTYPE_INT = 0x00 | MP_NATIVE_TYPE_INT,
VTYPE_UINT = 0x00 | MP_NATIVE_TYPE_UINT,
VTYPE_PTR = 0x00 | MP_NATIVE_TYPE_PTR,
VTYPE_PTR8 = 0x00 | MP_NATIVE_TYPE_PTR8,
VTYPE_PTR16 = 0x00 | MP_NATIVE_TYPE_PTR16,
VTYPE_PTR32 = 0x00 | MP_NATIVE_TYPE_PTR32,
VTYPE_PTR_NONE = 0x50 | MP_NATIVE_TYPE_PTR,
VTYPE_UNBOUND = 0x60 | MP_NATIVE_TYPE_OBJ,
VTYPE_BUILTIN_CAST = 0x70 | MP_NATIVE_TYPE_OBJ,
} vtype_kind_t;
STATIC qstr vtype_to_qstr(vtype_kind_t vtype) {
switch (vtype) {
case VTYPE_PYOBJ:
return MP_QSTR_object;
case VTYPE_BOOL:
return MP_QSTR_bool;
case VTYPE_INT:
return MP_QSTR_int;
case VTYPE_UINT:
return MP_QSTR_uint;
case VTYPE_PTR:
return MP_QSTR_ptr;
case VTYPE_PTR8:
return MP_QSTR_ptr8;
case VTYPE_PTR16:
return MP_QSTR_ptr16;
case VTYPE_PTR32:
return MP_QSTR_ptr32;
case VTYPE_PTR_NONE:
default:
return MP_QSTR_None;
}
}
typedef struct _stack_info_t {
vtype_kind_t vtype;
stack_info_kind_t kind;
union {
int u_reg;
mp_int_t u_imm;
} data;
} stack_info_t;
#define UNWIND_LABEL_UNUSED (0x7fff)
#define UNWIND_LABEL_DO_FINAL_UNWIND (0x7ffe)
typedef struct _exc_stack_entry_t {
uint16_t label : 15;
uint16_t is_finally : 1;
uint16_t unwind_label : 15;
uint16_t is_active : 1;
} exc_stack_entry_t;
struct _emit_t {
mp_emit_common_t *emit_common;
mp_obj_t *error_slot;
uint *label_slot;
uint exit_label;
int pass;
bool do_viper_types;
bool prelude_offset_uses_u16_encoding;
mp_uint_t local_vtype_alloc;
vtype_kind_t *local_vtype;
mp_uint_t stack_info_alloc;
stack_info_t *stack_info;
vtype_kind_t saved_stack_vtype;
size_t exc_stack_alloc;
size_t exc_stack_size;
exc_stack_entry_t *exc_stack;
int prelude_offset;
int prelude_ptr_index;
int start_offset;
int n_state;
uint16_t code_state_start;
uint16_t stack_start;
int stack_size;
uint16_t n_info;
uint16_t n_cell;
scope_t *scope;
ASM_T *as;
};
STATIC void emit_load_reg_with_object(emit_t *emit, int reg, mp_obj_t obj);
STATIC void emit_native_global_exc_entry(emit_t *emit);
STATIC void emit_native_global_exc_exit(emit_t *emit);
STATIC void emit_native_load_const_obj(emit_t *emit, mp_obj_t obj);
emit_t *EXPORT_FUN(new)(mp_emit_common_t * emit_common, mp_obj_t *error_slot, uint *label_slot, mp_uint_t max_num_labels) {
emit_t *emit = m_new0(emit_t, 1);
emit->emit_common = emit_common;
emit->error_slot = error_slot;
emit->label_slot = label_slot;
emit->stack_info_alloc = 8;
emit->stack_info = m_new(stack_info_t, emit->stack_info_alloc);
emit->exc_stack_alloc = 8;
emit->exc_stack = m_new(exc_stack_entry_t, emit->exc_stack_alloc);
emit->as = m_new0(ASM_T, 1);
mp_asm_base_init(&emit->as->base, max_num_labels);
return emit;
}
void EXPORT_FUN(free)(emit_t * emit) {
mp_asm_base_deinit(&emit->as->base, false);
m_del_obj(ASM_T, emit->as);
m_del(exc_stack_entry_t, emit->exc_stack, emit->exc_stack_alloc);
m_del(vtype_kind_t, emit->local_vtype, emit->local_vtype_alloc);
m_del(stack_info_t, emit->stack_info, emit->stack_info_alloc);
m_del_obj(emit_t, emit);
}
STATIC void emit_call_with_imm_arg(emit_t *emit, mp_fun_kind_t fun_kind, mp_int_t arg_val, int arg_reg);
STATIC void emit_native_mov_reg_const(emit_t *emit, int reg_dest, int const_val) {
ASM_LOAD_REG_REG_OFFSET(emit->as, reg_dest, REG_FUN_TABLE, const_val);
}
STATIC void emit_native_mov_state_reg(emit_t *emit, int local_num, int reg_src) {
if (emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) {
ASM_STORE_REG_REG_OFFSET(emit->as, reg_src, REG_GENERATOR_STATE, local_num);
} else {
ASM_MOV_LOCAL_REG(emit->as, local_num, reg_src);
}
}
STATIC void emit_native_mov_reg_state(emit_t *emit, int reg_dest, int local_num) {
if (emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) {
ASM_LOAD_REG_REG_OFFSET(emit->as, reg_dest, REG_GENERATOR_STATE, local_num);
} else {
ASM_MOV_REG_LOCAL(emit->as, reg_dest, local_num);
}
}
STATIC void emit_native_mov_reg_state_addr(emit_t *emit, int reg_dest, int local_num) {
if (emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) {
ASM_MOV_REG_IMM(emit->as, reg_dest, local_num * ASM_WORD_SIZE);
ASM_ADD_REG_REG(emit->as, reg_dest, REG_GENERATOR_STATE);
} else {
ASM_MOV_REG_LOCAL_ADDR(emit->as, reg_dest, local_num);
}
}
STATIC void emit_native_mov_reg_qstr(emit_t *emit, int arg_reg, qstr qst) {
#if MICROPY_PERSISTENT_CODE_SAVE
ASM_LOAD16_REG_REG_OFFSET(emit->as, arg_reg, REG_QSTR_TABLE, mp_emit_common_use_qstr(emit->emit_common, qst));
#else
ASM_MOV_REG_IMM(emit->as, arg_reg, qst);
#endif
}
STATIC void emit_native_mov_reg_qstr_obj(emit_t *emit, int reg_dest, qstr qst) {
#if MICROPY_PERSISTENT_CODE_SAVE
emit_load_reg_with_object(emit, reg_dest, MP_OBJ_NEW_QSTR(qst));
#else
ASM_MOV_REG_IMM(emit->as, reg_dest, (mp_uint_t)MP_OBJ_NEW_QSTR(qst));
#endif
}
#define emit_native_mov_state_imm_via(emit, local_num, imm, reg_temp) \
do { \
ASM_MOV_REG_IMM((emit)->as, (reg_temp), (imm)); \
emit_native_mov_state_reg((emit), (local_num), (reg_temp)); \
} while (false)
STATIC void emit_native_start_pass(emit_t *emit, pass_kind_t pass, scope_t *scope) {
DEBUG_printf("start_pass(pass=%u, scope=%p)\n", pass, scope);
emit->pass = pass;
emit->do_viper_types = scope->emit_options == MP_EMIT_OPT_VIPER;
emit->stack_size = 0;
emit->scope = scope;
// allocate memory for keeping track of the types of locals
if (emit->local_vtype_alloc < scope->num_locals) {
emit->local_vtype = m_renew(vtype_kind_t, emit->local_vtype, emit->local_vtype_alloc, scope->num_locals);
emit->local_vtype_alloc = scope->num_locals;
}
// set default type for arguments
mp_uint_t num_args = emit->scope->num_pos_args + emit->scope->num_kwonly_args;
if (scope->scope_flags & MP_SCOPE_FLAG_VARARGS) {
num_args += 1;
}
if (scope->scope_flags & MP_SCOPE_FLAG_VARKEYWORDS) {
num_args += 1;
}
for (mp_uint_t i = 0; i < num_args; i++) {
emit->local_vtype[i] = VTYPE_PYOBJ;
}
// Set viper type for arguments
if (emit->do_viper_types) {
for (int i = 0; i < emit->scope->id_info_len; ++i) {
id_info_t *id = &emit->scope->id_info[i];
if (id->flags & ID_FLAG_IS_PARAM) {
assert(id->local_num < emit->local_vtype_alloc);
emit->local_vtype[id->local_num] = id->flags >> ID_FLAG_VIPER_TYPE_POS;
}
}
}
// local variables begin unbound, and have unknown type
for (mp_uint_t i = num_args; i < emit->local_vtype_alloc; i++) {
emit->local_vtype[i] = VTYPE_UNBOUND;
}
// values on stack begin unbound
for (mp_uint_t i = 0; i < emit->stack_info_alloc; i++) {
emit->stack_info[i].kind = STACK_VALUE;
emit->stack_info[i].vtype = VTYPE_UNBOUND;
}
mp_asm_base_start_pass(&emit->as->base, pass == MP_PASS_EMIT ? MP_ASM_PASS_EMIT : MP_ASM_PASS_COMPUTE);
// generate code for entry to function
// Work out start of code state (mp_code_state_native_t or reduced version for viper)
emit->code_state_start = 0;
if (NEED_GLOBAL_EXC_HANDLER(emit)) {
emit->code_state_start = SIZEOF_NLR_BUF; // for nlr_buf_t
emit->code_state_start += 1; // for return_value
if (NEED_EXC_HANDLER_UNWIND(emit)) {
emit->code_state_start += 1;
}
}
size_t fun_table_off = mp_emit_common_use_const_obj(emit->emit_common, MP_OBJ_FROM_PTR(&mp_fun_table));
if (emit->do_viper_types) {
// Work out size of state (locals plus stack)
// n_state counts all stack and locals, even those in registers
emit->n_state = scope->num_locals + scope->stack_size;
int num_locals_in_regs = 0;
if (CAN_USE_REGS_FOR_LOCALS(emit)) {
num_locals_in_regs = scope->num_locals;
if (num_locals_in_regs > MAX_REGS_FOR_LOCAL_VARS) {
num_locals_in_regs = MAX_REGS_FOR_LOCAL_VARS;
}
// Need a spot for REG_LOCAL_LAST (see below)
if (scope->num_pos_args >= MAX_REGS_FOR_LOCAL_VARS + 1) {
--num_locals_in_regs;
}
}
// Work out where the locals and Python stack start within the C stack
if (NEED_GLOBAL_EXC_HANDLER(emit)) {
// Reserve 2 words for function object and old globals
emit->stack_start = emit->code_state_start + 2;
} else if (scope->scope_flags & MP_SCOPE_FLAG_HASCONSTS) {
// Reserve 1 word for function object, to access const table
emit->stack_start = emit->code_state_start + 1;
} else {
emit->stack_start = emit->code_state_start + 0;
}
// Entry to function
ASM_ENTRY(emit->as, emit->stack_start + emit->n_state - num_locals_in_regs);
#if N_X86
asm_x86_mov_arg_to_r32(emit->as, 0, REG_PARENT_ARG_1);
#endif
// Load REG_FUN_TABLE with a pointer to mp_fun_table, found in the const_table
ASM_LOAD_REG_REG_OFFSET(emit->as, REG_FUN_TABLE, REG_PARENT_ARG_1, OFFSETOF_OBJ_FUN_BC_CONTEXT);
#if MICROPY_PERSISTENT_CODE_SAVE
ASM_LOAD_REG_REG_OFFSET(emit->as, REG_QSTR_TABLE, REG_FUN_TABLE, OFFSETOF_MODULE_CONTEXT_QSTR_TABLE);
#endif
ASM_LOAD_REG_REG_OFFSET(emit->as, REG_FUN_TABLE, REG_FUN_TABLE, OFFSETOF_MODULE_CONTEXT_OBJ_TABLE);
ASM_LOAD_REG_REG_OFFSET(emit->as, REG_FUN_TABLE, REG_FUN_TABLE, fun_table_off);
// Store function object (passed as first arg) to stack if needed
if (NEED_FUN_OBJ(emit)) {
ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_FUN_OBJ(emit), REG_PARENT_ARG_1);
}
// Put n_args in REG_ARG_1, n_kw in REG_ARG_2, args array in REG_LOCAL_LAST
#if N_X86
asm_x86_mov_arg_to_r32(emit->as, 1, REG_ARG_1);
asm_x86_mov_arg_to_r32(emit->as, 2, REG_ARG_2);
asm_x86_mov_arg_to_r32(emit->as, 3, REG_LOCAL_LAST);
#else
ASM_MOV_REG_REG(emit->as, REG_ARG_1, REG_PARENT_ARG_2);
ASM_MOV_REG_REG(emit->as, REG_ARG_2, REG_PARENT_ARG_3);
ASM_MOV_REG_REG(emit->as, REG_LOCAL_LAST, REG_PARENT_ARG_4);
#endif
// Check number of args matches this function, and call mp_arg_check_num_sig if not
ASM_JUMP_IF_REG_NONZERO(emit->as, REG_ARG_2, *emit->label_slot + 4, true);
ASM_MOV_REG_IMM(emit->as, REG_ARG_3, scope->num_pos_args);
ASM_JUMP_IF_REG_EQ(emit->as, REG_ARG_1, REG_ARG_3, *emit->label_slot + 5);
mp_asm_base_label_assign(&emit->as->base, *emit->label_slot + 4);
ASM_MOV_REG_IMM(emit->as, REG_ARG_3, MP_OBJ_FUN_MAKE_SIG(scope->num_pos_args, scope->num_pos_args, false));
ASM_CALL_IND(emit->as, MP_F_ARG_CHECK_NUM_SIG);
mp_asm_base_label_assign(&emit->as->base, *emit->label_slot + 5);
// Store arguments into locals (reg or stack), converting to native if needed
for (int i = 0; i < emit->scope->num_pos_args; i++) {
int r = REG_ARG_1;
ASM_LOAD_REG_REG_OFFSET(emit->as, REG_ARG_1, REG_LOCAL_LAST, i);
if (emit->local_vtype[i] != VTYPE_PYOBJ) {
emit_call_with_imm_arg(emit, MP_F_CONVERT_OBJ_TO_NATIVE, emit->local_vtype[i], REG_ARG_2);
r = REG_RET;
}
// REG_LOCAL_LAST points to the args array so be sure not to overwrite it if it's still needed
if (i < MAX_REGS_FOR_LOCAL_VARS && CAN_USE_REGS_FOR_LOCALS(emit) && (i != MAX_REGS_FOR_LOCAL_VARS - 1 || emit->scope->num_pos_args == MAX_REGS_FOR_LOCAL_VARS)) {
ASM_MOV_REG_REG(emit->as, reg_local_table[i], r);
} else {
emit_native_mov_state_reg(emit, LOCAL_IDX_LOCAL_VAR(emit, i), r);
}
}
// Get local from the stack back into REG_LOCAL_LAST if this reg couldn't be written to above
if (emit->scope->num_pos_args >= MAX_REGS_FOR_LOCAL_VARS + 1 && CAN_USE_REGS_FOR_LOCALS(emit)) {
ASM_MOV_REG_LOCAL(emit->as, REG_LOCAL_LAST, LOCAL_IDX_LOCAL_VAR(emit, MAX_REGS_FOR_LOCAL_VARS - 1));
}
emit_native_global_exc_entry(emit);
} else {
// work out size of state (locals plus stack)
emit->n_state = scope->num_locals + scope->stack_size;
if (emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) {
mp_asm_base_data(&emit->as->base, ASM_WORD_SIZE, (uintptr_t)emit->prelude_ptr_index);
mp_asm_base_data(&emit->as->base, ASM_WORD_SIZE, (uintptr_t)emit->start_offset);
ASM_ENTRY(emit->as, emit->code_state_start);
// Reset the state size for the state pointed to by REG_GENERATOR_STATE
emit->code_state_start = 0;
emit->stack_start = SIZEOF_CODE_STATE;
// Put address of code_state into REG_GENERATOR_STATE
#if N_X86
asm_x86_mov_arg_to_r32(emit->as, 0, REG_GENERATOR_STATE);
#else
ASM_MOV_REG_REG(emit->as, REG_GENERATOR_STATE, REG_PARENT_ARG_1);
#endif
// Put throw value into LOCAL_IDX_EXC_VAL slot, for yield/yield-from
#if N_X86
asm_x86_mov_arg_to_r32(emit->as, 1, REG_PARENT_ARG_2);
#endif
ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_VAL(emit), REG_PARENT_ARG_2);
// Load REG_FUN_TABLE with a pointer to mp_fun_table, found in the const_table
ASM_LOAD_REG_REG_OFFSET(emit->as, REG_TEMP0, REG_GENERATOR_STATE, LOCAL_IDX_FUN_OBJ(emit));
ASM_LOAD_REG_REG_OFFSET(emit->as, REG_TEMP0, REG_TEMP0, OFFSETOF_OBJ_FUN_BC_CONTEXT);
#if MICROPY_PERSISTENT_CODE_SAVE
ASM_LOAD_REG_REG_OFFSET(emit->as, REG_QSTR_TABLE, REG_TEMP0, OFFSETOF_MODULE_CONTEXT_QSTR_TABLE);
#endif
ASM_LOAD_REG_REG_OFFSET(emit->as, REG_TEMP0, REG_TEMP0, OFFSETOF_MODULE_CONTEXT_OBJ_TABLE);
ASM_LOAD_REG_REG_OFFSET(emit->as, REG_FUN_TABLE, REG_TEMP0, fun_table_off);
} else {
// The locals and stack start after the code_state structure
emit->stack_start = emit->code_state_start + SIZEOF_CODE_STATE;
// Allocate space on C-stack for code_state structure, which includes state
ASM_ENTRY(emit->as, emit->stack_start + emit->n_state);
// Prepare incoming arguments for call to mp_setup_code_state
#if N_X86
asm_x86_mov_arg_to_r32(emit->as, 0, REG_PARENT_ARG_1);
asm_x86_mov_arg_to_r32(emit->as, 1, REG_PARENT_ARG_2);
asm_x86_mov_arg_to_r32(emit->as, 2, REG_PARENT_ARG_3);
asm_x86_mov_arg_to_r32(emit->as, 3, REG_PARENT_ARG_4);
#endif
// Load REG_FUN_TABLE with a pointer to mp_fun_table, found in the const_table
ASM_LOAD_REG_REG_OFFSET(emit->as, REG_FUN_TABLE, REG_PARENT_ARG_1, OFFSETOF_OBJ_FUN_BC_CONTEXT);
#if MICROPY_PERSISTENT_CODE_SAVE
ASM_LOAD_REG_REG_OFFSET(emit->as, REG_QSTR_TABLE, REG_FUN_TABLE, OFFSETOF_MODULE_CONTEXT_QSTR_TABLE);
#endif
ASM_LOAD_REG_REG_OFFSET(emit->as, REG_FUN_TABLE, REG_FUN_TABLE, OFFSETOF_MODULE_CONTEXT_OBJ_TABLE);
ASM_LOAD_REG_REG_OFFSET(emit->as, REG_FUN_TABLE, REG_FUN_TABLE, fun_table_off);
// Set code_state.fun_bc
ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_FUN_OBJ(emit), REG_PARENT_ARG_1);
// Set code_state.ip, a pointer to the beginning of the prelude. This pointer is found
// either directly in mp_obj_fun_bc_t.child_table (if there are no children), or in
// mp_obj_fun_bc_t.child_table[num_children] (if num_children > 0).
ASM_LOAD_REG_REG_OFFSET(emit->as, REG_PARENT_ARG_1, REG_PARENT_ARG_1, OFFSETOF_OBJ_FUN_BC_CHILD_TABLE);
if (emit->prelude_ptr_index != 0) {
ASM_LOAD_REG_REG_OFFSET(emit->as, REG_PARENT_ARG_1, REG_PARENT_ARG_1, emit->prelude_ptr_index);
}
emit_native_mov_state_reg(emit, emit->code_state_start + OFFSETOF_CODE_STATE_IP, REG_PARENT_ARG_1);
// Set code_state.n_state (only works on little endian targets due to n_state being uint16_t)
emit_native_mov_state_imm_via(emit, emit->code_state_start + OFFSETOF_CODE_STATE_N_STATE, emit->n_state, REG_ARG_1);
// Put address of code_state into first arg
ASM_MOV_REG_LOCAL_ADDR(emit->as, REG_ARG_1, emit->code_state_start);
// Copy next 3 args if needed
#if REG_ARG_2 != REG_PARENT_ARG_2
ASM_MOV_REG_REG(emit->as, REG_ARG_2, REG_PARENT_ARG_2);
#endif
#if REG_ARG_3 != REG_PARENT_ARG_3
ASM_MOV_REG_REG(emit->as, REG_ARG_3, REG_PARENT_ARG_3);
#endif
#if REG_ARG_4 != REG_PARENT_ARG_4
ASM_MOV_REG_REG(emit->as, REG_ARG_4, REG_PARENT_ARG_4);
#endif
// Call mp_setup_code_state to prepare code_state structure
#if N_THUMB
asm_thumb_bl_ind(emit->as, MP_F_SETUP_CODE_STATE, ASM_THUMB_REG_R4);
#elif N_ARM
asm_arm_bl_ind(emit->as, MP_F_SETUP_CODE_STATE, ASM_ARM_REG_R4);
#else
ASM_CALL_IND(emit->as, MP_F_SETUP_CODE_STATE);
#endif
}
emit_native_global_exc_entry(emit);
// cache some locals in registers, but only if no exception handlers
if (CAN_USE_REGS_FOR_LOCALS(emit)) {
for (int i = 0; i < MAX_REGS_FOR_LOCAL_VARS && i < scope->num_locals; ++i) {
ASM_MOV_REG_LOCAL(emit->as, reg_local_table[i], LOCAL_IDX_LOCAL_VAR(emit, i));
}
}
// set the type of closed over variables
for (mp_uint_t i = 0; i < scope->id_info_len; i++) {
id_info_t *id = &scope->id_info[i];
if (id->kind == ID_INFO_KIND_CELL) {
emit->local_vtype[id->local_num] = VTYPE_PYOBJ;
}
}
}
}
static inline void emit_native_write_code_info_byte(emit_t *emit, byte val) {
mp_asm_base_data(&emit->as->base, 1, val);
}
static inline void emit_native_write_code_info_qstr(emit_t *emit, qstr qst) {
mp_encode_uint(&emit->as->base, mp_asm_base_get_cur_to_write_bytes, mp_emit_common_use_qstr(emit->emit_common, qst));
}
STATIC bool emit_native_end_pass(emit_t *emit) {
emit_native_global_exc_exit(emit);
if (!emit->do_viper_types) {
emit->prelude_offset = mp_asm_base_get_code_pos(&emit->as->base);
emit->prelude_ptr_index = emit->emit_common->ct_cur_child;
size_t n_state = emit->n_state;
size_t n_exc_stack = 0; // exc-stack not needed for native code
MP_BC_PRELUDE_SIG_ENCODE(n_state, n_exc_stack, emit->scope, emit_native_write_code_info_byte, emit);
size_t n_info = emit->n_info;
size_t n_cell = emit->n_cell;
MP_BC_PRELUDE_SIZE_ENCODE(n_info, n_cell, emit_native_write_code_info_byte, emit);
// bytecode prelude: source info (function and argument qstrs)
size_t info_start = mp_asm_base_get_code_pos(&emit->as->base);
emit_native_write_code_info_qstr(emit, emit->scope->simple_name);
for (int i = 0; i < emit->scope->num_pos_args + emit->scope->num_kwonly_args; i++) {
qstr qst = MP_QSTR__star_;
for (int j = 0; j < emit->scope->id_info_len; ++j) {
id_info_t *id = &emit->scope->id_info[j];
if ((id->flags & ID_FLAG_IS_PARAM) && id->local_num == i) {
qst = id->qst;
break;
}
}
emit_native_write_code_info_qstr(emit, qst);
}
emit->n_info = mp_asm_base_get_code_pos(&emit->as->base) - info_start;
// bytecode prelude: initialise closed over variables
size_t cell_start = mp_asm_base_get_code_pos(&emit->as->base);
for (int i = 0; i < emit->scope->id_info_len; i++) {
id_info_t *id = &emit->scope->id_info[i];
if (id->kind == ID_INFO_KIND_CELL) {
assert(id->local_num <= 255);
mp_asm_base_data(&emit->as->base, 1, id->local_num); // write the local which should be converted to a cell
}
}
emit->n_cell = mp_asm_base_get_code_pos(&emit->as->base) - cell_start;
}
ASM_END_PASS(emit->as);
// check stack is back to zero size
assert(emit->stack_size == 0);
assert(emit->exc_stack_size == 0);
if (emit->pass == MP_PASS_EMIT) {
void *f = mp_asm_base_get_code(&emit->as->base);
mp_uint_t f_len = mp_asm_base_get_code_size(&emit->as->base);
mp_raw_code_t **children = emit->emit_common->children;
if (!emit->do_viper_types) {
#if MICROPY_EMIT_NATIVE_PRELUDE_SEPARATE_FROM_MACHINE_CODE
// Executable code cannot be accessed byte-wise on this architecture, so copy
// the prelude to a separate memory region that is byte-wise readable.
void *buf = emit->as->base.code_base + emit->prelude_offset;
size_t n = emit->as->base.code_offset - emit->prelude_offset;
const uint8_t *prelude_ptr = memcpy(m_new(uint8_t, n), buf, n);
#else
// Point to the prelude directly, at the end of the machine code data.
const uint8_t *prelude_ptr = (const uint8_t *)f + emit->prelude_offset;
#endif
// Store the pointer to the prelude using the child_table.
assert(emit->prelude_ptr_index == emit->emit_common->ct_cur_child);
if (emit->prelude_ptr_index == 0) {
children = (void *)prelude_ptr;
} else {
children = m_renew(mp_raw_code_t *, children, emit->prelude_ptr_index, emit->prelude_ptr_index + 1);
children[emit->prelude_ptr_index] = (void *)prelude_ptr;
}
}
mp_emit_glue_assign_native(emit->scope->raw_code,
emit->do_viper_types ? MP_CODE_NATIVE_VIPER : MP_CODE_NATIVE_PY,
f, f_len,
children,
#if MICROPY_PERSISTENT_CODE_SAVE
emit->emit_common->ct_cur_child,
emit->prelude_offset,
#endif
emit->scope->scope_flags, 0, 0);
}
return true;
}
STATIC void ensure_extra_stack(emit_t *emit, size_t delta) {
if (emit->stack_size + delta > emit->stack_info_alloc) {
size_t new_alloc = (emit->stack_size + delta + 8) & ~3;
emit->stack_info = m_renew(stack_info_t, emit->stack_info, emit->stack_info_alloc, new_alloc);
emit->stack_info_alloc = new_alloc;
}
}
STATIC void adjust_stack(emit_t *emit, mp_int_t stack_size_delta) {
assert((mp_int_t)emit->stack_size + stack_size_delta >= 0);
assert((mp_int_t)emit->stack_size + stack_size_delta <= (mp_int_t)emit->stack_info_alloc);
emit->stack_size += stack_size_delta;
if (emit->pass > MP_PASS_SCOPE && emit->stack_size > emit->scope->stack_size) {
emit->scope->stack_size = emit->stack_size;
}
#ifdef DEBUG_PRINT
DEBUG_printf(" adjust_stack; stack_size=%d+%d; stack now:", emit->stack_size - stack_size_delta, stack_size_delta);
for (int i = 0; i < emit->stack_size; i++) {
stack_info_t *si = &emit->stack_info[i];
DEBUG_printf(" (v=%d k=%d %d)", si->vtype, si->kind, si->data.u_reg);
}
DEBUG_printf("\n");
#endif
}
STATIC void emit_native_adjust_stack_size(emit_t *emit, mp_int_t delta) {
DEBUG_printf("adjust_stack_size(" INT_FMT ")\n", delta);
if (delta > 0) {
ensure_extra_stack(emit, delta);
}
// If we are adjusting the stack in a positive direction (pushing) then we
// need to fill in values for the stack kind and vtype of the newly-pushed
// entries. These should be set to "value" (ie not reg or imm) because we
// should only need to adjust the stack due to a jump to this part in the
// code (and hence we have settled the stack before the jump).
for (mp_int_t i = 0; i < delta; i++) {
stack_info_t *si = &emit->stack_info[emit->stack_size + i];
si->kind = STACK_VALUE;
// TODO we don't know the vtype to use here. At the moment this is a
// hack to get the case of multi comparison working.
if (delta == 1) {
si->vtype = emit->saved_stack_vtype;
} else {
si->vtype = VTYPE_PYOBJ;
}
}
adjust_stack(emit, delta);
}
STATIC void emit_native_set_source_line(emit_t *emit, mp_uint_t source_line) {
(void)emit;
(void)source_line;
}
// this must be called at start of emit functions
STATIC void emit_native_pre(emit_t *emit) {
(void)emit;
}
// depth==0 is top, depth==1 is before top, etc
STATIC stack_info_t *peek_stack(emit_t *emit, mp_uint_t depth) {
return &emit->stack_info[emit->stack_size - 1 - depth];
}
// depth==0 is top, depth==1 is before top, etc
STATIC vtype_kind_t peek_vtype(emit_t *emit, mp_uint_t depth) {
if (emit->do_viper_types) {
return peek_stack(emit, depth)->vtype;
} else {
// Type is always PYOBJ even if the intermediate stored value is not
return VTYPE_PYOBJ;
}
}
// pos=1 is TOS, pos=2 is next, etc
// use pos=0 for no skipping
STATIC void need_reg_single(emit_t *emit, int reg_needed, int skip_stack_pos) {
skip_stack_pos = emit->stack_size - skip_stack_pos;
for (int i = 0; i < emit->stack_size; i++) {
if (i != skip_stack_pos) {
stack_info_t *si = &emit->stack_info[i];
if (si->kind == STACK_REG && si->data.u_reg == reg_needed) {
si->kind = STACK_VALUE;
emit_native_mov_state_reg(emit, emit->stack_start + i, si->data.u_reg);
}
}
}
}
// Ensures all unsettled registers that hold Python values are copied to the
// concrete Python stack. All registers are then free to use.
STATIC void need_reg_all(emit_t *emit) {
for (int i = 0; i < emit->stack_size; i++) {
stack_info_t *si = &emit->stack_info[i];
if (si->kind == STACK_REG) {
DEBUG_printf(" reg(%u) to local(%u)\n", si->data.u_reg, emit->stack_start + i);
si->kind = STACK_VALUE;
emit_native_mov_state_reg(emit, emit->stack_start + i, si->data.u_reg);
}
}
}
STATIC vtype_kind_t load_reg_stack_imm(emit_t *emit, int reg_dest, const stack_info_t *si, bool convert_to_pyobj) {
if (!convert_to_pyobj && emit->do_viper_types) {
ASM_MOV_REG_IMM(emit->as, reg_dest, si->data.u_imm);
return si->vtype;
} else {
if (si->vtype == VTYPE_PYOBJ) {
ASM_MOV_REG_IMM(emit->as, reg_dest, si->data.u_imm);
} else if (si->vtype == VTYPE_BOOL) {
emit_native_mov_reg_const(emit, reg_dest, MP_F_CONST_FALSE_OBJ + si->data.u_imm);
} else if (si->vtype == VTYPE_INT || si->vtype == VTYPE_UINT) {
ASM_MOV_REG_IMM(emit->as, reg_dest, (uintptr_t)MP_OBJ_NEW_SMALL_INT(si->data.u_imm));
} else if (si->vtype == VTYPE_PTR_NONE) {
emit_native_mov_reg_const(emit, reg_dest, MP_F_CONST_NONE_OBJ);
} else {
mp_raise_NotImplementedError(MP_ERROR_TEXT("conversion to object"));
}
return VTYPE_PYOBJ;
}
}
// Copies all unsettled registers and immediates that are Python values into the
// concrete Python stack. This ensures the concrete Python stack holds valid
// values for the current stack_size.
// This function may clobber REG_TEMP1.
STATIC void need_stack_settled(emit_t *emit) {
DEBUG_printf(" need_stack_settled; stack_size=%d\n", emit->stack_size);
need_reg_all(emit);
for (int i = 0; i < emit->stack_size; i++) {
stack_info_t *si = &emit->stack_info[i];
if (si->kind == STACK_IMM) {
DEBUG_printf(" imm(" INT_FMT ") to local(%u)\n", si->data.u_imm, emit->stack_start + i);
si->kind = STACK_VALUE;
// using REG_TEMP1 to avoid clobbering REG_TEMP0 (aka REG_RET)
si->vtype = load_reg_stack_imm(emit, REG_TEMP1, si, false);
emit_native_mov_state_reg(emit, emit->stack_start + i, REG_TEMP1);
}
}
}
// pos=1 is TOS, pos=2 is next, etc
STATIC void emit_access_stack(emit_t *emit, int pos, vtype_kind_t *vtype, int reg_dest) {
need_reg_single(emit, reg_dest, pos);
stack_info_t *si = &emit->stack_info[emit->stack_size - pos];
*vtype = si->vtype;
switch (si->kind) {
case STACK_VALUE:
emit_native_mov_reg_state(emit, reg_dest, emit->stack_start + emit->stack_size - pos);
break;
case STACK_REG:
if (si->data.u_reg != reg_dest) {
ASM_MOV_REG_REG(emit->as, reg_dest, si->data.u_reg);
}
break;
case STACK_IMM:
*vtype = load_reg_stack_imm(emit, reg_dest, si, false);
break;
}
}
// does an efficient X=pop(); discard(); push(X)
// needs a (non-temp) register in case the poped element was stored in the stack
STATIC void emit_fold_stack_top(emit_t *emit, int reg_dest) {
stack_info_t *si = &emit->stack_info[emit->stack_size - 2];
si[0] = si[1];
if (si->kind == STACK_VALUE) {
// if folded element was on the stack we need to put it in a register
emit_native_mov_reg_state(emit, reg_dest, emit->stack_start + emit->stack_size - 1);
si->kind = STACK_REG;
si->data.u_reg = reg_dest;
}
adjust_stack(emit, -1);
}
// If stacked value is in a register and the register is not r1 or r2, then
// *reg_dest is set to that register. Otherwise the value is put in *reg_dest.
STATIC void emit_pre_pop_reg_flexible(emit_t *emit, vtype_kind_t *vtype, int *reg_dest, int not_r1, int not_r2) {
stack_info_t *si = peek_stack(emit, 0);
if (si->kind == STACK_REG && si->data.u_reg != not_r1 && si->data.u_reg != not_r2) {
*vtype = si->vtype;
*reg_dest = si->data.u_reg;
need_reg_single(emit, *reg_dest, 1);
} else {
emit_access_stack(emit, 1, vtype, *reg_dest);
}
adjust_stack(emit, -1);
}
STATIC void emit_pre_pop_discard(emit_t *emit) {
adjust_stack(emit, -1);
}
STATIC void emit_pre_pop_reg(emit_t *emit, vtype_kind_t *vtype, int reg_dest) {
emit_access_stack(emit, 1, vtype, reg_dest);
adjust_stack(emit, -1);
}
STATIC void emit_pre_pop_reg_reg(emit_t *emit, vtype_kind_t *vtypea, int rega, vtype_kind_t *vtypeb, int regb) {
emit_pre_pop_reg(emit, vtypea, rega);
emit_pre_pop_reg(emit, vtypeb, regb);
}
STATIC void emit_pre_pop_reg_reg_reg(emit_t *emit, vtype_kind_t *vtypea, int rega, vtype_kind_t *vtypeb, int regb, vtype_kind_t *vtypec, int regc) {
emit_pre_pop_reg(emit, vtypea, rega);
emit_pre_pop_reg(emit, vtypeb, regb);
emit_pre_pop_reg(emit, vtypec, regc);
}
STATIC void emit_post(emit_t *emit) {
(void)emit;
}
STATIC void emit_post_top_set_vtype(emit_t *emit, vtype_kind_t new_vtype) {
stack_info_t *si = &emit->stack_info[emit->stack_size - 1];
si->vtype = new_vtype;
}
STATIC void emit_post_push_reg(emit_t *emit, vtype_kind_t vtype, int reg) {
ensure_extra_stack(emit, 1);
stack_info_t *si = &emit->stack_info[emit->stack_size];
si->vtype = vtype;
si->kind = STACK_REG;
si->data.u_reg = reg;
adjust_stack(emit, 1);
}
STATIC void emit_post_push_imm(emit_t *emit, vtype_kind_t vtype, mp_int_t imm) {
ensure_extra_stack(emit, 1);
stack_info_t *si = &emit->stack_info[emit->stack_size];
si->vtype = vtype;
si->kind = STACK_IMM;
si->data.u_imm = imm;
adjust_stack(emit, 1);
}
STATIC void emit_post_push_reg_reg(emit_t *emit, vtype_kind_t vtypea, int rega, vtype_kind_t vtypeb, int regb) {
emit_post_push_reg(emit, vtypea, rega);
emit_post_push_reg(emit, vtypeb, regb);
}
STATIC void emit_post_push_reg_reg_reg(emit_t *emit, vtype_kind_t vtypea, int rega, vtype_kind_t vtypeb, int regb, vtype_kind_t vtypec, int regc) {
emit_post_push_reg(emit, vtypea, rega);
emit_post_push_reg(emit, vtypeb, regb);
emit_post_push_reg(emit, vtypec, regc);
}
STATIC void emit_post_push_reg_reg_reg_reg(emit_t *emit, vtype_kind_t vtypea, int rega, vtype_kind_t vtypeb, int regb, vtype_kind_t vtypec, int regc, vtype_kind_t vtyped, int regd) {
emit_post_push_reg(emit, vtypea, rega);
emit_post_push_reg(emit, vtypeb, regb);
emit_post_push_reg(emit, vtypec, regc);
emit_post_push_reg(emit, vtyped, regd);
}
STATIC void emit_call(emit_t *emit, mp_fun_kind_t fun_kind) {
need_reg_all(emit);
ASM_CALL_IND(emit->as, fun_kind);
}
STATIC void emit_call_with_imm_arg(emit_t *emit, mp_fun_kind_t fun_kind, mp_int_t arg_val, int arg_reg) {
need_reg_all(emit);
ASM_MOV_REG_IMM(emit->as, arg_reg, arg_val);
ASM_CALL_IND(emit->as, fun_kind);
}
STATIC void emit_call_with_2_imm_args(emit_t *emit, mp_fun_kind_t fun_kind, mp_int_t arg_val1, int arg_reg1, mp_int_t arg_val2, int arg_reg2) {
need_reg_all(emit);
ASM_MOV_REG_IMM(emit->as, arg_reg1, arg_val1);
ASM_MOV_REG_IMM(emit->as, arg_reg2, arg_val2);
ASM_CALL_IND(emit->as, fun_kind);
}
STATIC void emit_call_with_qstr_arg(emit_t *emit, mp_fun_kind_t fun_kind, qstr qst, int arg_reg) {
need_reg_all(emit);
emit_native_mov_reg_qstr(emit, arg_reg, qst);
ASM_CALL_IND(emit->as, fun_kind);
}
// vtype of all n_pop objects is VTYPE_PYOBJ
// Will convert any items that are not VTYPE_PYOBJ to this type and put them back on the stack.
// If any conversions of non-immediate values are needed, then it uses REG_ARG_1, REG_ARG_2 and REG_RET.
// Otherwise, it does not use any temporary registers (but may use reg_dest before loading it with stack pointer).
STATIC void emit_get_stack_pointer_to_reg_for_pop(emit_t *emit, mp_uint_t reg_dest, mp_uint_t n_pop) {
need_reg_all(emit);
// First, store any immediate values to their respective place on the stack.
for (mp_uint_t i = 0; i < n_pop; i++) {
stack_info_t *si = &emit->stack_info[emit->stack_size - 1 - i];
// must push any imm's to stack
// must convert them to VTYPE_PYOBJ for viper code
if (si->kind == STACK_IMM) {
si->kind = STACK_VALUE;
si->vtype = load_reg_stack_imm(emit, reg_dest, si, true);
emit_native_mov_state_reg(emit, emit->stack_start + emit->stack_size - 1 - i, reg_dest);
}
// verify that this value is on the stack
assert(si->kind == STACK_VALUE);
}
// Second, convert any non-VTYPE_PYOBJ to that type.
for (mp_uint_t i = 0; i < n_pop; i++) {
stack_info_t *si = &emit->stack_info[emit->stack_size - 1 - i];
if (si->vtype != VTYPE_PYOBJ) {
mp_uint_t local_num = emit->stack_start + emit->stack_size - 1 - i;
emit_native_mov_reg_state(emit, REG_ARG_1, local_num);
emit_call_with_imm_arg(emit, MP_F_CONVERT_NATIVE_TO_OBJ, si->vtype, REG_ARG_2); // arg2 = type
emit_native_mov_state_reg(emit, local_num, REG_RET);
si->vtype = VTYPE_PYOBJ;
DEBUG_printf(" convert_native_to_obj(local_num=" UINT_FMT ")\n", local_num);
}
}
// Adujust the stack for a pop of n_pop items, and load the stack pointer into reg_dest.
adjust_stack(emit, -n_pop);
emit_native_mov_reg_state_addr(emit, reg_dest, emit->stack_start + emit->stack_size);
}
// vtype of all n_push objects is VTYPE_PYOBJ
STATIC void emit_get_stack_pointer_to_reg_for_push(emit_t *emit, mp_uint_t reg_dest, mp_uint_t n_push) {
need_reg_all(emit);
ensure_extra_stack(emit, n_push);
for (mp_uint_t i = 0; i < n_push; i++) {
emit->stack_info[emit->stack_size + i].kind = STACK_VALUE;
emit->stack_info[emit->stack_size + i].vtype = VTYPE_PYOBJ;
}
emit_native_mov_reg_state_addr(emit, reg_dest, emit->stack_start + emit->stack_size);
adjust_stack(emit, n_push);
}
STATIC void emit_native_push_exc_stack(emit_t *emit, uint label, bool is_finally) {
if (emit->exc_stack_size + 1 > emit->exc_stack_alloc) {
size_t new_alloc = emit->exc_stack_alloc + 4;
emit->exc_stack = m_renew(exc_stack_entry_t, emit->exc_stack, emit->exc_stack_alloc, new_alloc);
emit->exc_stack_alloc = new_alloc;
}
exc_stack_entry_t *e = &emit->exc_stack[emit->exc_stack_size++];
e->label = label;
e->is_finally = is_finally;
e->unwind_label = UNWIND_LABEL_UNUSED;
e->is_active = true;
ASM_MOV_REG_PCREL(emit->as, REG_RET, label);
ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_HANDLER_PC(emit), REG_RET);
}
STATIC void emit_native_leave_exc_stack(emit_t *emit, bool start_of_handler) {
assert(emit->exc_stack_size > 0);
// Get current exception handler and deactivate it
exc_stack_entry_t *e = &emit->exc_stack[emit->exc_stack_size - 1];
e->is_active = false;
// Find next innermost active exception handler, to restore as current handler
for (--e; e >= emit->exc_stack && !e->is_active; --e) {
}
// Update the PC of the new exception handler
if (e < emit->exc_stack) {
// No active handler, clear handler PC to zero
if (start_of_handler) {
// Optimisation: PC is already cleared by global exc handler
return;
}
ASM_XOR_REG_REG(emit->as, REG_RET, REG_RET);
} else {
// Found new active handler, get its PC
ASM_MOV_REG_PCREL(emit->as, REG_RET, e->label);
}
ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_HANDLER_PC(emit), REG_RET);
}
STATIC exc_stack_entry_t *emit_native_pop_exc_stack(emit_t *emit) {
assert(emit->exc_stack_size > 0);
exc_stack_entry_t *e = &emit->exc_stack[--emit->exc_stack_size];
assert(e->is_active == false);
return e;
}
STATIC void emit_load_reg_with_object(emit_t *emit, int reg, mp_obj_t obj) {
emit->scope->scope_flags |= MP_SCOPE_FLAG_HASCONSTS;
size_t table_off = mp_emit_common_use_const_obj(emit->emit_common, obj);
emit_native_mov_reg_state(emit, REG_TEMP0, LOCAL_IDX_FUN_OBJ(emit));
ASM_LOAD_REG_REG_OFFSET(emit->as, REG_TEMP0, REG_TEMP0, OFFSETOF_OBJ_FUN_BC_CONTEXT);
ASM_LOAD_REG_REG_OFFSET(emit->as, REG_TEMP0, REG_TEMP0, OFFSETOF_MODULE_CONTEXT_OBJ_TABLE);
ASM_LOAD_REG_REG_OFFSET(emit->as, reg, REG_TEMP0, table_off);
}
STATIC void emit_load_reg_with_child(emit_t *emit, int reg, mp_raw_code_t *rc) {
size_t table_off = mp_emit_common_alloc_const_child(emit->emit_common, rc);
emit_native_mov_reg_state(emit, REG_TEMP0, LOCAL_IDX_FUN_OBJ(emit));
ASM_LOAD_REG_REG_OFFSET(emit->as, REG_TEMP0, REG_TEMP0, OFFSETOF_OBJ_FUN_BC_CHILD_TABLE);
ASM_LOAD_REG_REG_OFFSET(emit->as, reg, REG_TEMP0, table_off);
}
STATIC void emit_native_label_assign(emit_t *emit, mp_uint_t l) {
DEBUG_printf("label_assign(" UINT_FMT ")\n", l);
bool is_finally = false;
if (emit->exc_stack_size > 0) {
exc_stack_entry_t *e = &emit->exc_stack[emit->exc_stack_size - 1];
is_finally = e->is_finally && e->label == l;
}
if (is_finally) {
// Label is at start of finally handler: store TOS into exception slot
vtype_kind_t vtype;
emit_pre_pop_reg(emit, &vtype, REG_TEMP0);
ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_VAL(emit), REG_TEMP0);
}
emit_native_pre(emit);
// need to commit stack because we can jump here from elsewhere
need_stack_settled(emit);
mp_asm_base_label_assign(&emit->as->base, l);
emit_post(emit);
if (is_finally) {
// Label is at start of finally handler: pop exception stack
emit_native_leave_exc_stack(emit, false);
}
}
STATIC void emit_native_global_exc_entry(emit_t *emit) {
// Note: 4 labels are reserved for this function, starting at *emit->label_slot
emit->exit_label = *emit->label_slot;
if (NEED_GLOBAL_EXC_HANDLER(emit)) {
mp_uint_t nlr_label = *emit->label_slot + 1;
mp_uint_t start_label = *emit->label_slot + 2;
mp_uint_t global_except_label = *emit->label_slot + 3;
if (!(emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR)) {
// Set new globals
emit_native_mov_reg_state(emit, REG_ARG_1, LOCAL_IDX_FUN_OBJ(emit));
ASM_LOAD_REG_REG_OFFSET(emit->as, REG_ARG_1, REG_ARG_1, OFFSETOF_OBJ_FUN_BC_CONTEXT);
ASM_LOAD_REG_REG_OFFSET(emit->as, REG_ARG_1, REG_ARG_1, OFFSETOF_MODULE_CONTEXT_GLOBALS);
emit_call(emit, MP_F_NATIVE_SWAP_GLOBALS);
// Save old globals (or NULL if globals didn't change)
emit_native_mov_state_reg(emit, LOCAL_IDX_OLD_GLOBALS(emit), REG_RET);
}
if (emit->scope->exc_stack_size == 0) {
if (!(emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR)) {
// Optimisation: if globals didn't change don't push the nlr context
ASM_JUMP_IF_REG_ZERO(emit->as, REG_RET, start_label, false);
}
// Wrap everything in an nlr context
ASM_MOV_REG_LOCAL_ADDR(emit->as, REG_ARG_1, 0);
emit_call(emit, MP_F_NLR_PUSH);
#if N_NLR_SETJMP
ASM_MOV_REG_LOCAL_ADDR(emit->as, REG_ARG_1, 2);
emit_call(emit, MP_F_SETJMP);
#endif
ASM_JUMP_IF_REG_ZERO(emit->as, REG_RET, start_label, true);
} else {
// Clear the unwind state
ASM_XOR_REG_REG(emit->as, REG_TEMP0, REG_TEMP0);
ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_HANDLER_UNWIND(emit), REG_TEMP0);
// Put PC of start code block into REG_LOCAL_1
ASM_MOV_REG_PCREL(emit->as, REG_LOCAL_1, start_label);
// Wrap everything in an nlr context
emit_native_label_assign(emit, nlr_label);
ASM_MOV_REG_LOCAL_ADDR(emit->as, REG_ARG_1, 0);
emit_call(emit, MP_F_NLR_PUSH);
#if N_NLR_SETJMP
ASM_MOV_REG_LOCAL_ADDR(emit->as, REG_ARG_1, 2);
emit_call(emit, MP_F_SETJMP);
#endif
ASM_JUMP_IF_REG_NONZERO(emit->as, REG_RET, global_except_label, true);
// Clear PC of current code block, and jump there to resume execution
ASM_XOR_REG_REG(emit->as, REG_TEMP0, REG_TEMP0);
ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_HANDLER_PC(emit), REG_TEMP0);
ASM_JUMP_REG(emit->as, REG_LOCAL_1);
// Global exception handler: check for valid exception handler
emit_native_label_assign(emit, global_except_label);
ASM_MOV_REG_LOCAL(emit->as, REG_LOCAL_1, LOCAL_IDX_EXC_HANDLER_PC(emit));
ASM_JUMP_IF_REG_NONZERO(emit->as, REG_LOCAL_1, nlr_label, false);
}
if (!(emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR)) {
// Restore old globals
emit_native_mov_reg_state(emit, REG_ARG_1, LOCAL_IDX_OLD_GLOBALS(emit));
emit_call(emit, MP_F_NATIVE_SWAP_GLOBALS);
}
if (emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) {
// Store return value in state[0]
ASM_MOV_REG_LOCAL(emit->as, REG_TEMP0, LOCAL_IDX_EXC_VAL(emit));
ASM_STORE_REG_REG_OFFSET(emit->as, REG_TEMP0, REG_GENERATOR_STATE, OFFSETOF_CODE_STATE_STATE);
// Load return kind
ASM_MOV_REG_IMM(emit->as, REG_PARENT_RET, MP_VM_RETURN_EXCEPTION);
ASM_EXIT(emit->as);
} else {
// Re-raise exception out to caller
ASM_MOV_REG_LOCAL(emit->as, REG_ARG_1, LOCAL_IDX_EXC_VAL(emit));
emit_call(emit, MP_F_NATIVE_RAISE);
}
// Label for start of function
emit_native_label_assign(emit, start_label);
if (emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) {
emit_native_mov_reg_state(emit, REG_TEMP0, LOCAL_IDX_GEN_PC(emit));
ASM_JUMP_REG(emit->as, REG_TEMP0);
emit->start_offset = mp_asm_base_get_code_pos(&emit->as->base);
// This is the first entry of the generator
// Check LOCAL_IDX_EXC_VAL for any injected value
ASM_MOV_REG_LOCAL(emit->as, REG_ARG_1, LOCAL_IDX_EXC_VAL(emit));
emit_call(emit, MP_F_NATIVE_RAISE);
}
}
}
STATIC void emit_native_global_exc_exit(emit_t *emit) {
// Label for end of function
emit_native_label_assign(emit, emit->exit_label);
if (NEED_GLOBAL_EXC_HANDLER(emit)) {
// Get old globals
if (!(emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR)) {
emit_native_mov_reg_state(emit, REG_ARG_1, LOCAL_IDX_OLD_GLOBALS(emit));
if (emit->scope->exc_stack_size == 0) {
// Optimisation: if globals didn't change then don't restore them and don't do nlr_pop
ASM_JUMP_IF_REG_ZERO(emit->as, REG_ARG_1, emit->exit_label + 1, false);
}
// Restore old globals
emit_call(emit, MP_F_NATIVE_SWAP_GLOBALS);
}
// Pop the nlr context
emit_call(emit, MP_F_NLR_POP);
if (!(emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR)) {
if (emit->scope->exc_stack_size == 0) {
// Destination label for above optimisation
emit_native_label_assign(emit, emit->exit_label + 1);
}
}
// Load return value
ASM_MOV_REG_LOCAL(emit->as, REG_PARENT_RET, LOCAL_IDX_RET_VAL(emit));
}
ASM_EXIT(emit->as);
}
STATIC void emit_native_import_name(emit_t *emit, qstr qst) {
DEBUG_printf("import_name %s\n", qstr_str(qst));
// get arguments from stack: arg2 = fromlist, arg3 = level
// If using viper types these arguments must be converted to proper objects, and
// to accomplish this viper types are turned off for the emit_pre_pop_reg_reg call.
bool orig_do_viper_types = emit->do_viper_types;
emit->do_viper_types = false;
vtype_kind_t vtype_fromlist;
vtype_kind_t vtype_level;
emit_pre_pop_reg_reg(emit, &vtype_fromlist, REG_ARG_2, &vtype_level, REG_ARG_3);
assert(vtype_fromlist == VTYPE_PYOBJ);
assert(vtype_level == VTYPE_PYOBJ);
emit->do_viper_types = orig_do_viper_types;
emit_call_with_qstr_arg(emit, MP_F_IMPORT_NAME, qst, REG_ARG_1); // arg1 = import name
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}
STATIC void emit_native_import_from(emit_t *emit, qstr qst) {
DEBUG_printf("import_from %s\n", qstr_str(qst));
emit_native_pre(emit);
vtype_kind_t vtype_module;
emit_access_stack(emit, 1, &vtype_module, REG_ARG_1); // arg1 = module
assert(vtype_module == VTYPE_PYOBJ);
emit_call_with_qstr_arg(emit, MP_F_IMPORT_FROM, qst, REG_ARG_2); // arg2 = import name
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}
STATIC void emit_native_import_star(emit_t *emit) {
DEBUG_printf("import_star\n");
vtype_kind_t vtype_module;
emit_pre_pop_reg(emit, &vtype_module, REG_ARG_1); // arg1 = module
assert(vtype_module == VTYPE_PYOBJ);
emit_call(emit, MP_F_IMPORT_ALL);
emit_post(emit);
}
STATIC void emit_native_import(emit_t *emit, qstr qst, int kind) {
if (kind == MP_EMIT_IMPORT_NAME) {
emit_native_import_name(emit, qst);
} else if (kind == MP_EMIT_IMPORT_FROM) {
emit_native_import_from(emit, qst);
} else {
emit_native_import_star(emit);
}
}
STATIC void emit_native_load_const_tok(emit_t *emit, mp_token_kind_t tok) {
DEBUG_printf("load_const_tok(tok=%u)\n", tok);
if (tok == MP_TOKEN_ELLIPSIS) {
emit_native_load_const_obj(emit, MP_OBJ_FROM_PTR(&mp_const_ellipsis_obj));
} else {
emit_native_pre(emit);
if (tok == MP_TOKEN_KW_NONE) {
emit_post_push_imm(emit, VTYPE_PTR_NONE, 0);
} else {
emit_post_push_imm(emit, VTYPE_BOOL, tok == MP_TOKEN_KW_FALSE ? 0 : 1);
}
}
}
STATIC void emit_native_load_const_small_int(emit_t *emit, mp_int_t arg) {
DEBUG_printf("load_const_small_int(int=" INT_FMT ")\n", arg);
emit_native_pre(emit);
emit_post_push_imm(emit, VTYPE_INT, arg);
}
STATIC void emit_native_load_const_str(emit_t *emit, qstr qst) {
emit_native_pre(emit);
// TODO: Eventually we want to be able to work with raw pointers in viper to
// do native array access. For now we just load them as any other object.
/*
if (emit->do_viper_types) {
// load a pointer to the asciiz string?
emit_post_push_imm(emit, VTYPE_PTR, (mp_uint_t)qstr_str(qst));
} else
*/
{
need_reg_single(emit, REG_TEMP0, 0);
emit_native_mov_reg_qstr_obj(emit, REG_TEMP0, qst);
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_TEMP0);
}
}
STATIC void emit_native_load_const_obj(emit_t *emit, mp_obj_t obj) {
emit_native_pre(emit);
need_reg_single(emit, REG_RET, 0);
emit_load_reg_with_object(emit, REG_RET, obj);
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}
STATIC void emit_native_load_null(emit_t *emit) {
emit_native_pre(emit);
emit_post_push_imm(emit, VTYPE_PYOBJ, 0);
}
STATIC void emit_native_load_fast(emit_t *emit, qstr qst, mp_uint_t local_num) {
DEBUG_printf("load_fast(%s, " UINT_FMT ")\n", qstr_str(qst), local_num);
vtype_kind_t vtype = emit->local_vtype[local_num];
if (vtype == VTYPE_UNBOUND) {
EMIT_NATIVE_VIPER_TYPE_ERROR(emit, MP_ERROR_TEXT("local '%q' used before type known"), qst);
}
emit_native_pre(emit);
if (local_num < MAX_REGS_FOR_LOCAL_VARS && CAN_USE_REGS_FOR_LOCALS(emit)) {
emit_post_push_reg(emit, vtype, reg_local_table[local_num]);
} else {
need_reg_single(emit, REG_TEMP0, 0);
emit_native_mov_reg_state(emit, REG_TEMP0, LOCAL_IDX_LOCAL_VAR(emit, local_num));
emit_post_push_reg(emit, vtype, REG_TEMP0);
}
}
STATIC void emit_native_load_deref(emit_t *emit, qstr qst, mp_uint_t local_num) {
DEBUG_printf("load_deref(%s, " UINT_FMT ")\n", qstr_str(qst), local_num);
need_reg_single(emit, REG_RET, 0);
emit_native_load_fast(emit, qst, local_num);
vtype_kind_t vtype;
int reg_base = REG_RET;
emit_pre_pop_reg_flexible(emit, &vtype, &reg_base, -1, -1);
ASM_LOAD_REG_REG_OFFSET(emit->as, REG_RET, reg_base, 1);
// closed over vars are always Python objects
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}
STATIC void emit_native_load_local(emit_t *emit, qstr qst, mp_uint_t local_num, int kind) {
if (kind == MP_EMIT_IDOP_LOCAL_FAST) {
emit_native_load_fast(emit, qst, local_num);
} else {
emit_native_load_deref(emit, qst, local_num);
}
}
STATIC void emit_native_load_global(emit_t *emit, qstr qst, int kind) {
MP_STATIC_ASSERT(MP_F_LOAD_NAME + MP_EMIT_IDOP_GLOBAL_NAME == MP_F_LOAD_NAME);
MP_STATIC_ASSERT(MP_F_LOAD_NAME + MP_EMIT_IDOP_GLOBAL_GLOBAL == MP_F_LOAD_GLOBAL);
emit_native_pre(emit);
if (kind == MP_EMIT_IDOP_GLOBAL_NAME) {
DEBUG_printf("load_name(%s)\n", qstr_str(qst));
} else {
DEBUG_printf("load_global(%s)\n", qstr_str(qst));
if (emit->do_viper_types) {
// check for builtin casting operators
int native_type = mp_native_type_from_qstr(qst);
if (native_type >= MP_NATIVE_TYPE_BOOL) {
emit_post_push_imm(emit, VTYPE_BUILTIN_CAST, native_type);
return;
}
}
}
emit_call_with_qstr_arg(emit, MP_F_LOAD_NAME + kind, qst, REG_ARG_1);
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}
STATIC void emit_native_load_attr(emit_t *emit, qstr qst) {
// depends on type of subject:
// - integer, function, pointer to integers: error
// - pointer to structure: get member, quite easy
// - Python object: call mp_load_attr, and needs to be typed to convert result
vtype_kind_t vtype_base;
emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = base
assert(vtype_base == VTYPE_PYOBJ);
emit_call_with_qstr_arg(emit, MP_F_LOAD_ATTR, qst, REG_ARG_2); // arg2 = attribute name
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}
STATIC void emit_native_load_method(emit_t *emit, qstr qst, bool is_super) {
if (is_super) {
emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_2, 3); // arg2 = dest ptr
emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_2, 2); // arg2 = dest ptr
emit_call_with_qstr_arg(emit, MP_F_LOAD_SUPER_METHOD, qst, REG_ARG_1); // arg1 = method name
} else {
vtype_kind_t vtype_base;
emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = base
assert(vtype_base == VTYPE_PYOBJ);
emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_3, 2); // arg3 = dest ptr
emit_call_with_qstr_arg(emit, MP_F_LOAD_METHOD, qst, REG_ARG_2); // arg2 = method name
}
}
STATIC void emit_native_load_build_class(emit_t *emit) {
emit_native_pre(emit);
emit_call(emit, MP_F_LOAD_BUILD_CLASS);
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}
STATIC void emit_native_load_subscr(emit_t *emit) {
DEBUG_printf("load_subscr\n");
// need to compile: base[index]
// pop: index, base
// optimise case where index is an immediate
vtype_kind_t vtype_base = peek_vtype(emit, 1);
if (vtype_base == VTYPE_PYOBJ) {
// standard Python subscr
// TODO factor this implicit cast code with other uses of it
vtype_kind_t vtype_index = peek_vtype(emit, 0);
if (vtype_index == VTYPE_PYOBJ) {
emit_pre_pop_reg(emit, &vtype_index, REG_ARG_2);
} else {
emit_pre_pop_reg(emit, &vtype_index, REG_ARG_1);
emit_call_with_imm_arg(emit, MP_F_CONVERT_NATIVE_TO_OBJ, vtype_index, REG_ARG_2); // arg2 = type
ASM_MOV_REG_REG(emit->as, REG_ARG_2, REG_RET);
}
emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1);
emit_call_with_imm_arg(emit, MP_F_OBJ_SUBSCR, (mp_uint_t)MP_OBJ_SENTINEL, REG_ARG_3);
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
} else {
// viper load
// TODO The different machine architectures have very different
// capabilities and requirements for loads, so probably best to
// write a completely separate load-optimiser for each one.
stack_info_t *top = peek_stack(emit, 0);
if (top->vtype == VTYPE_INT && top->kind == STACK_IMM) {
// index is an immediate
mp_int_t index_value = top->data.u_imm;
emit_pre_pop_discard(emit); // discard index
int reg_base = REG_ARG_1;
int reg_index = REG_ARG_2;
emit_pre_pop_reg_flexible(emit, &vtype_base, &reg_base, reg_index, reg_index);
need_reg_single(emit, REG_RET, 0);
switch (vtype_base) {
case VTYPE_PTR8: {
// pointer to 8-bit memory
// TODO optimise to use thumb ldrb r1, [r2, r3]
if (index_value != 0) {
// index is non-zero
#if N_THUMB
if (index_value > 0 && index_value < 32) {
asm_thumb_ldrb_rlo_rlo_i5(emit->as, REG_RET, reg_base, index_value);
break;
}
#endif
ASM_MOV_REG_IMM(emit->as, reg_index, index_value);
ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add index to base
reg_base = reg_index;
}
ASM_LOAD8_REG_REG(emit->as, REG_RET, reg_base); // load from (base+index)
break;
}
case VTYPE_PTR16: {
// pointer to 16-bit memory
if (index_value != 0) {
// index is a non-zero immediate
#if N_THUMB
if (index_value > 0 && index_value < 32) {
asm_thumb_ldrh_rlo_rlo_i5(emit->as, REG_RET, reg_base, index_value);
break;
}
#endif
ASM_MOV_REG_IMM(emit->as, reg_index, index_value << 1);
ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add 2*index to base
reg_base = reg_index;
}
ASM_LOAD16_REG_REG(emit->as, REG_RET, reg_base); // load from (base+2*index)
break;
}
case VTYPE_PTR32: {
// pointer to 32-bit memory
if (index_value != 0) {
// index is a non-zero immediate
#if N_THUMB
if (index_value > 0 && index_value < 32) {
asm_thumb_ldr_rlo_rlo_i5(emit->as, REG_RET, reg_base, index_value);
break;
}
#endif
ASM_MOV_REG_IMM(emit->as, reg_index, index_value << 2);
ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add 4*index to base
reg_base = reg_index;
}
ASM_LOAD32_REG_REG(emit->as, REG_RET, reg_base); // load from (base+4*index)
break;
}
default:
EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
MP_ERROR_TEXT("can't load from '%q'"), vtype_to_qstr(vtype_base));
}
} else {
// index is not an immediate
vtype_kind_t vtype_index;
int reg_index = REG_ARG_2;
emit_pre_pop_reg_flexible(emit, &vtype_index, &reg_index, REG_ARG_1, REG_ARG_1);
emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1);
need_reg_single(emit, REG_RET, 0);
if (vtype_index != VTYPE_INT && vtype_index != VTYPE_UINT) {
EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
MP_ERROR_TEXT("can't load with '%q' index"), vtype_to_qstr(vtype_index));
}
switch (vtype_base) {
case VTYPE_PTR8: {
// pointer to 8-bit memory
// TODO optimise to use thumb ldrb r1, [r2, r3]
ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
ASM_LOAD8_REG_REG(emit->as, REG_RET, REG_ARG_1); // store value to (base+index)
break;
}
case VTYPE_PTR16: {
// pointer to 16-bit memory
ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
ASM_LOAD16_REG_REG(emit->as, REG_RET, REG_ARG_1); // load from (base+2*index)
break;
}
case VTYPE_PTR32: {
// pointer to word-size memory
ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
ASM_LOAD32_REG_REG(emit->as, REG_RET, REG_ARG_1); // load from (base+4*index)
break;
}
default:
EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
MP_ERROR_TEXT("can't load from '%q'"), vtype_to_qstr(vtype_base));
}
}
emit_post_push_reg(emit, VTYPE_INT, REG_RET);
}
}
STATIC void emit_native_store_fast(emit_t *emit, qstr qst, mp_uint_t local_num) {
vtype_kind_t vtype;
if (local_num < MAX_REGS_FOR_LOCAL_VARS && CAN_USE_REGS_FOR_LOCALS(emit)) {
emit_pre_pop_reg(emit, &vtype, reg_local_table[local_num]);
} else {
emit_pre_pop_reg(emit, &vtype, REG_TEMP0);
emit_native_mov_state_reg(emit, LOCAL_IDX_LOCAL_VAR(emit, local_num), REG_TEMP0);
}
emit_post(emit);
// check types
if (emit->local_vtype[local_num] == VTYPE_UNBOUND) {
// first time this local is assigned, so give it a type of the object stored in it
emit->local_vtype[local_num] = vtype;
} else if (emit->local_vtype[local_num] != vtype) {
// type of local is not the same as object stored in it
EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
MP_ERROR_TEXT("local '%q' has type '%q' but source is '%q'"),
qst, vtype_to_qstr(emit->local_vtype[local_num]), vtype_to_qstr(vtype));
}
}
STATIC void emit_native_store_deref(emit_t *emit, qstr qst, mp_uint_t local_num) {
DEBUG_printf("store_deref(%s, " UINT_FMT ")\n", qstr_str(qst), local_num);
need_reg_single(emit, REG_TEMP0, 0);
need_reg_single(emit, REG_TEMP1, 0);
emit_native_load_fast(emit, qst, local_num);
vtype_kind_t vtype;
int reg_base = REG_TEMP0;
emit_pre_pop_reg_flexible(emit, &vtype, &reg_base, -1, -1);
int reg_src = REG_TEMP1;
emit_pre_pop_reg_flexible(emit, &vtype, &reg_src, reg_base, reg_base);
ASM_STORE_REG_REG_OFFSET(emit->as, reg_src, reg_base, 1);
emit_post(emit);
}
STATIC void emit_native_store_local(emit_t *emit, qstr qst, mp_uint_t local_num, int kind) {
if (kind == MP_EMIT_IDOP_LOCAL_FAST) {
emit_native_store_fast(emit, qst, local_num);
} else {
emit_native_store_deref(emit, qst, local_num);
}
}
STATIC void emit_native_store_global(emit_t *emit, qstr qst, int kind) {
MP_STATIC_ASSERT(MP_F_STORE_NAME + MP_EMIT_IDOP_GLOBAL_NAME == MP_F_STORE_NAME);
MP_STATIC_ASSERT(MP_F_STORE_NAME + MP_EMIT_IDOP_GLOBAL_GLOBAL == MP_F_STORE_GLOBAL);
if (kind == MP_EMIT_IDOP_GLOBAL_NAME) {
// mp_store_name, but needs conversion of object (maybe have mp_viper_store_name(obj, type))
vtype_kind_t vtype;
emit_pre_pop_reg(emit, &vtype, REG_ARG_2);
assert(vtype == VTYPE_PYOBJ);
} else {
vtype_kind_t vtype = peek_vtype(emit, 0);
if (vtype == VTYPE_PYOBJ) {
emit_pre_pop_reg(emit, &vtype, REG_ARG_2);
} else {
emit_pre_pop_reg(emit, &vtype, REG_ARG_1);
emit_call_with_imm_arg(emit, MP_F_CONVERT_NATIVE_TO_OBJ, vtype, REG_ARG_2); // arg2 = type
ASM_MOV_REG_REG(emit->as, REG_ARG_2, REG_RET);
}
}
emit_call_with_qstr_arg(emit, MP_F_STORE_NAME + kind, qst, REG_ARG_1); // arg1 = name
emit_post(emit);
}
STATIC void emit_native_store_attr(emit_t *emit, qstr qst) {
vtype_kind_t vtype_base;
vtype_kind_t vtype_val = peek_vtype(emit, 1);
if (vtype_val == VTYPE_PYOBJ) {
emit_pre_pop_reg_reg(emit, &vtype_base, REG_ARG_1, &vtype_val, REG_ARG_3); // arg1 = base, arg3 = value
} else {
emit_access_stack(emit, 2, &vtype_val, REG_ARG_1); // arg1 = value
emit_call_with_imm_arg(emit, MP_F_CONVERT_NATIVE_TO_OBJ, vtype_val, REG_ARG_2); // arg2 = type
ASM_MOV_REG_REG(emit->as, REG_ARG_3, REG_RET); // arg3 = value (converted)
emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = base
adjust_stack(emit, -1); // pop value
}
assert(vtype_base == VTYPE_PYOBJ);
emit_call_with_qstr_arg(emit, MP_F_STORE_ATTR, qst, REG_ARG_2); // arg2 = attribute name
emit_post(emit);
}
STATIC void emit_native_store_subscr(emit_t *emit) {
DEBUG_printf("store_subscr\n");
// need to compile: base[index] = value
// pop: index, base, value
// optimise case where index is an immediate
vtype_kind_t vtype_base = peek_vtype(emit, 1);
if (vtype_base == VTYPE_PYOBJ) {
// standard Python subscr
vtype_kind_t vtype_index = peek_vtype(emit, 0);
vtype_kind_t vtype_value = peek_vtype(emit, 2);
if (vtype_index != VTYPE_PYOBJ || vtype_value != VTYPE_PYOBJ) {
// need to implicitly convert non-objects to objects
// TODO do this properly
emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_1, 3);
adjust_stack(emit, 3);
}
emit_pre_pop_reg_reg_reg(emit, &vtype_index, REG_ARG_2, &vtype_base, REG_ARG_1, &vtype_value, REG_ARG_3);
emit_call(emit, MP_F_OBJ_SUBSCR);
} else {
// viper store
// TODO The different machine architectures have very different
// capabilities and requirements for stores, so probably best to
// write a completely separate store-optimiser for each one.
stack_info_t *top = peek_stack(emit, 0);
if (top->vtype == VTYPE_INT && top->kind == STACK_IMM) {
// index is an immediate
mp_int_t index_value = top->data.u_imm;
emit_pre_pop_discard(emit); // discard index
vtype_kind_t vtype_value;
int reg_base = REG_ARG_1;
int reg_index = REG_ARG_2;
int reg_value = REG_ARG_3;
emit_pre_pop_reg_flexible(emit, &vtype_base, &reg_base, reg_index, reg_value);
#if N_X64 || N_X86
// special case: x86 needs byte stores to be from lower 4 regs (REG_ARG_3 is EDX)
emit_pre_pop_reg(emit, &vtype_value, reg_value);
#else
emit_pre_pop_reg_flexible(emit, &vtype_value, &reg_value, reg_base, reg_index);
#endif
if (vtype_value != VTYPE_BOOL && vtype_value != VTYPE_INT && vtype_value != VTYPE_UINT) {
EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
MP_ERROR_TEXT("can't store '%q'"), vtype_to_qstr(vtype_value));
}
switch (vtype_base) {
case VTYPE_PTR8: {
// pointer to 8-bit memory
// TODO optimise to use thumb strb r1, [r2, r3]
if (index_value != 0) {
// index is non-zero
#if N_THUMB
if (index_value > 0 && index_value < 32) {
asm_thumb_strb_rlo_rlo_i5(emit->as, reg_value, reg_base, index_value);
break;
}
#endif
ASM_MOV_REG_IMM(emit->as, reg_index, index_value);
#if N_ARM
asm_arm_strb_reg_reg_reg(emit->as, reg_value, reg_base, reg_index);
return;
#endif
ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add index to base
reg_base = reg_index;
}
ASM_STORE8_REG_REG(emit->as, reg_value, reg_base); // store value to (base+index)
break;
}
case VTYPE_PTR16: {
// pointer to 16-bit memory
if (index_value != 0) {
// index is a non-zero immediate
#if N_THUMB
if (index_value > 0 && index_value < 32) {
asm_thumb_strh_rlo_rlo_i5(emit->as, reg_value, reg_base, index_value);
break;
}
#endif
ASM_MOV_REG_IMM(emit->as, reg_index, index_value << 1);
ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add 2*index to base
reg_base = reg_index;
}
ASM_STORE16_REG_REG(emit->as, reg_value, reg_base); // store value to (base+2*index)
break;
}
case VTYPE_PTR32: {
// pointer to 32-bit memory
if (index_value != 0) {
// index is a non-zero immediate
#if N_THUMB
if (index_value > 0 && index_value < 32) {
asm_thumb_str_rlo_rlo_i5(emit->as, reg_value, reg_base, index_value);
break;
}
#endif
#if N_ARM
ASM_MOV_REG_IMM(emit->as, reg_index, index_value);
asm_arm_str_reg_reg_reg(emit->as, reg_value, reg_base, reg_index);
return;
#endif
ASM_MOV_REG_IMM(emit->as, reg_index, index_value << 2);
ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add 4*index to base
reg_base = reg_index;
}
ASM_STORE32_REG_REG(emit->as, reg_value, reg_base); // store value to (base+4*index)
break;
}
default:
EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
MP_ERROR_TEXT("can't store to '%q'"), vtype_to_qstr(vtype_base));
}
} else {
// index is not an immediate
vtype_kind_t vtype_index, vtype_value;
int reg_index = REG_ARG_2;
int reg_value = REG_ARG_3;
emit_pre_pop_reg_flexible(emit, &vtype_index, &reg_index, REG_ARG_1, reg_value);
emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1);
if (vtype_index != VTYPE_INT && vtype_index != VTYPE_UINT) {
EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
MP_ERROR_TEXT("can't store with '%q' index"), vtype_to_qstr(vtype_index));
}
#if N_X64 || N_X86
// special case: x86 needs byte stores to be from lower 4 regs (REG_ARG_3 is EDX)
emit_pre_pop_reg(emit, &vtype_value, reg_value);
#else
emit_pre_pop_reg_flexible(emit, &vtype_value, &reg_value, REG_ARG_1, reg_index);
#endif
if (vtype_value != VTYPE_BOOL && vtype_value != VTYPE_INT && vtype_value != VTYPE_UINT) {
EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
MP_ERROR_TEXT("can't store '%q'"), vtype_to_qstr(vtype_value));
}
switch (vtype_base) {
case VTYPE_PTR8: {
// pointer to 8-bit memory
// TODO optimise to use thumb strb r1, [r2, r3]
#if N_ARM
asm_arm_strb_reg_reg_reg(emit->as, reg_value, REG_ARG_1, reg_index);
break;
#endif
ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
ASM_STORE8_REG_REG(emit->as, reg_value, REG_ARG_1); // store value to (base+index)
break;
}
case VTYPE_PTR16: {
// pointer to 16-bit memory
#if N_ARM
asm_arm_strh_reg_reg_reg(emit->as, reg_value, REG_ARG_1, reg_index);
break;
#endif
ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
ASM_STORE16_REG_REG(emit->as, reg_value, REG_ARG_1); // store value to (base+2*index)
break;
}
case VTYPE_PTR32: {
// pointer to 32-bit memory
#if N_ARM
asm_arm_str_reg_reg_reg(emit->as, reg_value, REG_ARG_1, reg_index);
break;
#endif
ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
ASM_STORE32_REG_REG(emit->as, reg_value, REG_ARG_1); // store value to (base+4*index)
break;
}
default:
EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
MP_ERROR_TEXT("can't store to '%q'"), vtype_to_qstr(vtype_base));
}
}
}
}
STATIC void emit_native_delete_local(emit_t *emit, qstr qst, mp_uint_t local_num, int kind) {
if (kind == MP_EMIT_IDOP_LOCAL_FAST) {
// TODO: This is not compliant implementation. We could use MP_OBJ_SENTINEL
// to mark deleted vars but then every var would need to be checked on
// each access. Very inefficient, so just set value to None to enable GC.
emit_native_load_const_tok(emit, MP_TOKEN_KW_NONE);
emit_native_store_fast(emit, qst, local_num);
} else {
// TODO implement me!
}
}
STATIC void emit_native_delete_global(emit_t *emit, qstr qst, int kind) {
MP_STATIC_ASSERT(MP_F_DELETE_NAME + MP_EMIT_IDOP_GLOBAL_NAME == MP_F_DELETE_NAME);
MP_STATIC_ASSERT(MP_F_DELETE_NAME + MP_EMIT_IDOP_GLOBAL_GLOBAL == MP_F_DELETE_GLOBAL);
emit_native_pre(emit);
emit_call_with_qstr_arg(emit, MP_F_DELETE_NAME + kind, qst, REG_ARG_1);
emit_post(emit);
}
STATIC void emit_native_delete_attr(emit_t *emit, qstr qst) {
vtype_kind_t vtype_base;
emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = base
assert(vtype_base == VTYPE_PYOBJ);
ASM_XOR_REG_REG(emit->as, REG_ARG_3, REG_ARG_3); // arg3 = value (null for delete)
emit_call_with_qstr_arg(emit, MP_F_STORE_ATTR, qst, REG_ARG_2); // arg2 = attribute name
emit_post(emit);
}
STATIC void emit_native_delete_subscr(emit_t *emit) {
vtype_kind_t vtype_index, vtype_base;
emit_pre_pop_reg_reg(emit, &vtype_index, REG_ARG_2, &vtype_base, REG_ARG_1); // index, base
assert(vtype_index == VTYPE_PYOBJ);
assert(vtype_base == VTYPE_PYOBJ);
emit_call_with_imm_arg(emit, MP_F_OBJ_SUBSCR, (mp_uint_t)MP_OBJ_NULL, REG_ARG_3);
}
STATIC void emit_native_subscr(emit_t *emit, int kind) {
if (kind == MP_EMIT_SUBSCR_LOAD) {
emit_native_load_subscr(emit);
} else if (kind == MP_EMIT_SUBSCR_STORE) {
emit_native_store_subscr(emit);
} else {
emit_native_delete_subscr(emit);
}
}
STATIC void emit_native_attr(emit_t *emit, qstr qst, int kind) {
if (kind == MP_EMIT_ATTR_LOAD) {
emit_native_load_attr(emit, qst);
} else if (kind == MP_EMIT_ATTR_STORE) {
emit_native_store_attr(emit, qst);
} else {
emit_native_delete_attr(emit, qst);
}
}
STATIC void emit_native_dup_top(emit_t *emit) {
DEBUG_printf("dup_top\n");
vtype_kind_t vtype;
int reg = REG_TEMP0;
emit_pre_pop_reg_flexible(emit, &vtype, &reg, -1, -1);
emit_post_push_reg_reg(emit, vtype, reg, vtype, reg);
}
STATIC void emit_native_dup_top_two(emit_t *emit) {
vtype_kind_t vtype0, vtype1;
emit_pre_pop_reg_reg(emit, &vtype0, REG_TEMP0, &vtype1, REG_TEMP1);
emit_post_push_reg_reg_reg_reg(emit, vtype1, REG_TEMP1, vtype0, REG_TEMP0, vtype1, REG_TEMP1, vtype0, REG_TEMP0);
}
STATIC void emit_native_pop_top(emit_t *emit) {
DEBUG_printf("pop_top\n");
emit_pre_pop_discard(emit);
emit_post(emit);
}
STATIC void emit_native_rot_two(emit_t *emit) {
DEBUG_printf("rot_two\n");
vtype_kind_t vtype0, vtype1;
emit_pre_pop_reg_reg(emit, &vtype0, REG_TEMP0, &vtype1, REG_TEMP1);
emit_post_push_reg_reg(emit, vtype0, REG_TEMP0, vtype1, REG_TEMP1);
}
STATIC void emit_native_rot_three(emit_t *emit) {
DEBUG_printf("rot_three\n");
vtype_kind_t vtype0, vtype1, vtype2;
emit_pre_pop_reg_reg_reg(emit, &vtype0, REG_TEMP0, &vtype1, REG_TEMP1, &vtype2, REG_TEMP2);
emit_post_push_reg_reg_reg(emit, vtype0, REG_TEMP0, vtype2, REG_TEMP2, vtype1, REG_TEMP1);
}
STATIC void emit_native_jump(emit_t *emit, mp_uint_t label) {
DEBUG_printf("jump(label=" UINT_FMT ")\n", label);
emit_native_pre(emit);
// need to commit stack because we are jumping elsewhere
need_stack_settled(emit);
ASM_JUMP(emit->as, label);
emit_post(emit);
mp_asm_base_suppress_code(&emit->as->base);
}
STATIC void emit_native_jump_helper(emit_t *emit, bool cond, mp_uint_t label, bool pop) {
vtype_kind_t vtype = peek_vtype(emit, 0);
if (vtype == VTYPE_PYOBJ) {
emit_pre_pop_reg(emit, &vtype, REG_ARG_1);
if (!pop) {
adjust_stack(emit, 1);
}
emit_call(emit, MP_F_OBJ_IS_TRUE);
} else {
emit_pre_pop_reg(emit, &vtype, REG_RET);
if (!pop) {
adjust_stack(emit, 1);
}
if (!(vtype == VTYPE_BOOL || vtype == VTYPE_INT || vtype == VTYPE_UINT)) {
EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
MP_ERROR_TEXT("can't implicitly convert '%q' to 'bool'"), vtype_to_qstr(vtype));
}
}
// For non-pop need to save the vtype so that emit_native_adjust_stack_size
// can use it. This is a bit of a hack.
if (!pop) {
emit->saved_stack_vtype = vtype;
}
// need to commit stack because we may jump elsewhere
need_stack_settled(emit);
// Emit the jump
if (cond) {
ASM_JUMP_IF_REG_NONZERO(emit->as, REG_RET, label, vtype == VTYPE_PYOBJ);
} else {
ASM_JUMP_IF_REG_ZERO(emit->as, REG_RET, label, vtype == VTYPE_PYOBJ);
}
if (!pop) {
adjust_stack(emit, -1);
}
emit_post(emit);
}
STATIC void emit_native_pop_jump_if(emit_t *emit, bool cond, mp_uint_t label) {
DEBUG_printf("pop_jump_if(cond=%u, label=" UINT_FMT ")\n", cond, label);
emit_native_jump_helper(emit, cond, label, true);
}
STATIC void emit_native_jump_if_or_pop(emit_t *emit, bool cond, mp_uint_t label) {
DEBUG_printf("jump_if_or_pop(cond=%u, label=" UINT_FMT ")\n", cond, label);
emit_native_jump_helper(emit, cond, label, false);
}
STATIC void emit_native_unwind_jump(emit_t *emit, mp_uint_t label, mp_uint_t except_depth) {
if (except_depth > 0) {
exc_stack_entry_t *first_finally = NULL;
exc_stack_entry_t *prev_finally = NULL;
exc_stack_entry_t *e = &emit->exc_stack[emit->exc_stack_size - 1];
for (; except_depth > 0; --except_depth, --e) {
if (e->is_finally && e->is_active) {
// Found an active finally handler
if (first_finally == NULL) {
first_finally = e;
}
if (prev_finally != NULL) {
// Mark prev finally as needed to unwind a jump
prev_finally->unwind_label = e->label;
}
prev_finally = e;
}
}
if (prev_finally == NULL) {
// No finally, handle the jump ourselves
// First, restore the exception handler address for the jump
if (e < emit->exc_stack) {
ASM_XOR_REG_REG(emit->as, REG_RET, REG_RET);
} else {
ASM_MOV_REG_PCREL(emit->as, REG_RET, e->label);
}
ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_HANDLER_PC(emit), REG_RET);
} else {
// Last finally should do our jump for us
// Mark finally as needing to decide the type of jump
prev_finally->unwind_label = UNWIND_LABEL_DO_FINAL_UNWIND;
ASM_MOV_REG_PCREL(emit->as, REG_RET, label & ~MP_EMIT_BREAK_FROM_FOR);
ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_HANDLER_UNWIND(emit), REG_RET);
// Cancel any active exception (see also emit_native_pop_except_jump)
ASM_MOV_REG_IMM(emit->as, REG_RET, (mp_uint_t)MP_OBJ_NULL);
ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_VAL(emit), REG_RET);
// Jump to the innermost active finally
label = first_finally->label;
}
}
emit_native_jump(emit, label & ~MP_EMIT_BREAK_FROM_FOR);
}
STATIC void emit_native_setup_with(emit_t *emit, mp_uint_t label) {
// the context manager is on the top of the stack
// stack: (..., ctx_mgr)
// get __exit__ method
vtype_kind_t vtype;
emit_access_stack(emit, 1, &vtype, REG_ARG_1); // arg1 = ctx_mgr
assert(vtype == VTYPE_PYOBJ);
emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_3, 2); // arg3 = dest ptr
emit_call_with_qstr_arg(emit, MP_F_LOAD_METHOD, MP_QSTR___exit__, REG_ARG_2);
// stack: (..., ctx_mgr, __exit__, self)
emit_pre_pop_reg(emit, &vtype, REG_ARG_3); // self
emit_pre_pop_reg(emit, &vtype, REG_ARG_2); // __exit__
emit_pre_pop_reg(emit, &vtype, REG_ARG_1); // ctx_mgr
emit_post_push_reg(emit, vtype, REG_ARG_2); // __exit__
emit_post_push_reg(emit, vtype, REG_ARG_3); // self
// stack: (..., __exit__, self)
// REG_ARG_1=ctx_mgr
// get __enter__ method
emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_3, 2); // arg3 = dest ptr
emit_call_with_qstr_arg(emit, MP_F_LOAD_METHOD, MP_QSTR___enter__, REG_ARG_2); // arg2 = method name
// stack: (..., __exit__, self, __enter__, self)
// call __enter__ method
emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, 2); // pointer to items, including meth and self
emit_call_with_2_imm_args(emit, MP_F_CALL_METHOD_N_KW, 0, REG_ARG_1, 0, REG_ARG_2);
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // push return value of __enter__
// stack: (..., __exit__, self, as_value)
// need to commit stack because we may jump elsewhere
need_stack_settled(emit);
emit_native_push_exc_stack(emit, label, true);
emit_native_dup_top(emit);
// stack: (..., __exit__, self, as_value, as_value)
}
STATIC void emit_native_setup_block(emit_t *emit, mp_uint_t label, int kind) {
if (kind == MP_EMIT_SETUP_BLOCK_WITH) {
emit_native_setup_with(emit, label);
} else {
// Set up except and finally
emit_native_pre(emit);
need_stack_settled(emit);
emit_native_push_exc_stack(emit, label, kind == MP_EMIT_SETUP_BLOCK_FINALLY);
emit_post(emit);
}
}
STATIC void emit_native_with_cleanup(emit_t *emit, mp_uint_t label) {
// Note: 3 labels are reserved for this function, starting at *emit->label_slot
// stack: (..., __exit__, self, as_value)
emit_native_pre(emit);
emit_native_leave_exc_stack(emit, false);
adjust_stack(emit, -1);
// stack: (..., __exit__, self)
// Label for case where __exit__ is called from an unwind jump
emit_native_label_assign(emit, *emit->label_slot + 2);
// call __exit__
emit_post_push_imm(emit, VTYPE_PTR_NONE, 0);
emit_post_push_imm(emit, VTYPE_PTR_NONE, 0);
emit_post_push_imm(emit, VTYPE_PTR_NONE, 0);
emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, 5);
emit_call_with_2_imm_args(emit, MP_F_CALL_METHOD_N_KW, 3, REG_ARG_1, 0, REG_ARG_2);
// Replace exc with None and finish
emit_native_jump(emit, *emit->label_slot);
// nlr_catch
// Don't use emit_native_label_assign because this isn't a real finally label
mp_asm_base_label_assign(&emit->as->base, label);
// Leave with's exception handler
emit_native_leave_exc_stack(emit, true);
// Adjust stack counter for: __exit__, self (implicitly discard as_value which is above self)
emit_native_adjust_stack_size(emit, 2);
// stack: (..., __exit__, self)
ASM_MOV_REG_LOCAL(emit->as, REG_ARG_1, LOCAL_IDX_EXC_VAL(emit)); // get exc
// Check if exc is MP_OBJ_NULL (i.e. zero) and jump to non-exc handler if it is
ASM_JUMP_IF_REG_ZERO(emit->as, REG_ARG_1, *emit->label_slot + 2, false);
ASM_LOAD_REG_REG_OFFSET(emit->as, REG_ARG_2, REG_ARG_1, 0); // get type(exc)
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_ARG_2); // push type(exc)
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_ARG_1); // push exc value
emit_post_push_imm(emit, VTYPE_PTR_NONE, 0); // traceback info
// Stack: (..., __exit__, self, type(exc), exc, traceback)
// call __exit__ method
emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, 5);
emit_call_with_2_imm_args(emit, MP_F_CALL_METHOD_N_KW, 3, REG_ARG_1, 0, REG_ARG_2);
// Stack: (...)
// If REG_RET is true then we need to replace exception with None (swallow exception)
if (REG_ARG_1 != REG_RET) {
ASM_MOV_REG_REG(emit->as, REG_ARG_1, REG_RET);
}
emit_call(emit, MP_F_OBJ_IS_TRUE);
ASM_JUMP_IF_REG_ZERO(emit->as, REG_RET, *emit->label_slot + 1, true);
// Replace exception with MP_OBJ_NULL.
emit_native_label_assign(emit, *emit->label_slot);
ASM_MOV_REG_IMM(emit->as, REG_TEMP0, (mp_uint_t)MP_OBJ_NULL);
ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_VAL(emit), REG_TEMP0);
// end of with cleanup nlr_catch block
emit_native_label_assign(emit, *emit->label_slot + 1);
// Exception is in nlr_buf.ret_val slot
}
STATIC void emit_native_end_finally(emit_t *emit) {
// logic:
// exc = pop_stack
// if exc == None: pass
// else: raise exc
// the check if exc is None is done in the MP_F_NATIVE_RAISE stub
emit_native_pre(emit);
ASM_MOV_REG_LOCAL(emit->as, REG_ARG_1, LOCAL_IDX_EXC_VAL(emit));
emit_call(emit, MP_F_NATIVE_RAISE);
// Get state for this finally and see if we need to unwind
exc_stack_entry_t *e = emit_native_pop_exc_stack(emit);
if (e->unwind_label != UNWIND_LABEL_UNUSED) {
ASM_MOV_REG_LOCAL(emit->as, REG_RET, LOCAL_IDX_EXC_HANDLER_UNWIND(emit));
ASM_JUMP_IF_REG_ZERO(emit->as, REG_RET, *emit->label_slot, false);
if (e->unwind_label == UNWIND_LABEL_DO_FINAL_UNWIND) {
ASM_JUMP_REG(emit->as, REG_RET);
} else {
emit_native_jump(emit, e->unwind_label);
}
emit_native_label_assign(emit, *emit->label_slot);
}
emit_post(emit);
}
STATIC void emit_native_get_iter(emit_t *emit, bool use_stack) {
// perhaps the difficult one, as we want to rewrite for loops using native code
// in cases where we iterate over a Python object, can we use normal runtime calls?
vtype_kind_t vtype;
emit_pre_pop_reg(emit, &vtype, REG_ARG_1);
assert(vtype == VTYPE_PYOBJ);
if (use_stack) {
emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_2, MP_OBJ_ITER_BUF_NSLOTS);
emit_call(emit, MP_F_NATIVE_GETITER);
} else {
// mp_getiter will allocate the iter_buf on the heap
ASM_MOV_REG_IMM(emit->as, REG_ARG_2, 0);
emit_call(emit, MP_F_NATIVE_GETITER);
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}
}
STATIC void emit_native_for_iter(emit_t *emit, mp_uint_t label) {
emit_native_pre(emit);
emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_1, MP_OBJ_ITER_BUF_NSLOTS);
adjust_stack(emit, MP_OBJ_ITER_BUF_NSLOTS);
emit_call(emit, MP_F_NATIVE_ITERNEXT);
#if MICROPY_DEBUG_MP_OBJ_SENTINELS
ASM_MOV_REG_IMM(emit->as, REG_TEMP1, (mp_uint_t)MP_OBJ_STOP_ITERATION);
ASM_JUMP_IF_REG_EQ(emit->as, REG_RET, REG_TEMP1, label);
#else
MP_STATIC_ASSERT(MP_OBJ_STOP_ITERATION == 0);
ASM_JUMP_IF_REG_ZERO(emit->as, REG_RET, label, false);
#endif
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}
STATIC void emit_native_for_iter_end(emit_t *emit) {
// adjust stack counter (we get here from for_iter ending, which popped the value for us)
emit_native_pre(emit);
adjust_stack(emit, -MP_OBJ_ITER_BUF_NSLOTS);
emit_post(emit);
}
STATIC void emit_native_pop_except_jump(emit_t *emit, mp_uint_t label, bool within_exc_handler) {
if (within_exc_handler) {
// Cancel any active exception so subsequent handlers don't see it
ASM_MOV_REG_IMM(emit->as, REG_TEMP0, (mp_uint_t)MP_OBJ_NULL);
ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_VAL(emit), REG_TEMP0);
} else {
emit_native_leave_exc_stack(emit, false);
}
emit_native_jump(emit, label);
}
STATIC void emit_native_unary_op(emit_t *emit, mp_unary_op_t op) {
vtype_kind_t vtype;
emit_pre_pop_reg(emit, &vtype, REG_ARG_2);
if (vtype == VTYPE_PYOBJ) {
emit_call_with_imm_arg(emit, MP_F_UNARY_OP, op, REG_ARG_1);
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
} else {
adjust_stack(emit, 1);
EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
MP_ERROR_TEXT("unary op %q not implemented"), mp_unary_op_method_name[op]);
}
}
STATIC void emit_native_binary_op(emit_t *emit, mp_binary_op_t op) {
DEBUG_printf("binary_op(" UINT_FMT ")\n", op);
vtype_kind_t vtype_lhs = peek_vtype(emit, 1);
vtype_kind_t vtype_rhs = peek_vtype(emit, 0);
if ((vtype_lhs == VTYPE_INT || vtype_lhs == VTYPE_UINT)
&& (vtype_rhs == VTYPE_INT || vtype_rhs == VTYPE_UINT)) {
// for integers, inplace and normal ops are equivalent, so use just normal ops
if (MP_BINARY_OP_INPLACE_OR <= op && op <= MP_BINARY_OP_INPLACE_POWER) {
op += MP_BINARY_OP_OR - MP_BINARY_OP_INPLACE_OR;
}
#if N_X64 || N_X86
// special cases for x86 and shifting
if (op == MP_BINARY_OP_LSHIFT || op == MP_BINARY_OP_RSHIFT) {
#if N_X64
emit_pre_pop_reg_reg(emit, &vtype_rhs, ASM_X64_REG_RCX, &vtype_lhs, REG_RET);
#else
emit_pre_pop_reg_reg(emit, &vtype_rhs, ASM_X86_REG_ECX, &vtype_lhs, REG_RET);
#endif
if (op == MP_BINARY_OP_LSHIFT) {
ASM_LSL_REG(emit->as, REG_RET);
} else {
if (vtype_lhs == VTYPE_UINT) {
ASM_LSR_REG(emit->as, REG_RET);
} else {
ASM_ASR_REG(emit->as, REG_RET);
}
}
emit_post_push_reg(emit, vtype_lhs, REG_RET);
return;
}
#endif
// special cases for floor-divide and module because we dispatch to helper functions
if (op == MP_BINARY_OP_FLOOR_DIVIDE || op == MP_BINARY_OP_MODULO) {
emit_pre_pop_reg_reg(emit, &vtype_rhs, REG_ARG_2, &vtype_lhs, REG_ARG_1);
if (vtype_lhs != VTYPE_INT) {
EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
MP_ERROR_TEXT("div/mod not implemented for uint"), mp_binary_op_method_name[op]);
}
if (op == MP_BINARY_OP_FLOOR_DIVIDE) {
emit_call(emit, MP_F_SMALL_INT_FLOOR_DIVIDE);
} else {
emit_call(emit, MP_F_SMALL_INT_MODULO);
}
emit_post_push_reg(emit, VTYPE_INT, REG_RET);
return;
}
int reg_rhs = REG_ARG_3;
emit_pre_pop_reg_flexible(emit, &vtype_rhs, &reg_rhs, REG_RET, REG_ARG_2);
emit_pre_pop_reg(emit, &vtype_lhs, REG_ARG_2);
#if !(N_X64 || N_X86)
if (op == MP_BINARY_OP_LSHIFT || op == MP_BINARY_OP_RSHIFT) {
if (op == MP_BINARY_OP_LSHIFT) {
ASM_LSL_REG_REG(emit->as, REG_ARG_2, reg_rhs);
} else {
if (vtype_lhs == VTYPE_UINT) {
ASM_LSR_REG_REG(emit->as, REG_ARG_2, reg_rhs);
} else {
ASM_ASR_REG_REG(emit->as, REG_ARG_2, reg_rhs);
}
}
emit_post_push_reg(emit, vtype_lhs, REG_ARG_2);
return;
}
#endif
if (op == MP_BINARY_OP_OR) {
ASM_OR_REG_REG(emit->as, REG_ARG_2, reg_rhs);
emit_post_push_reg(emit, vtype_lhs, REG_ARG_2);
} else if (op == MP_BINARY_OP_XOR) {
ASM_XOR_REG_REG(emit->as, REG_ARG_2, reg_rhs);
emit_post_push_reg(emit, vtype_lhs, REG_ARG_2);
} else if (op == MP_BINARY_OP_AND) {
ASM_AND_REG_REG(emit->as, REG_ARG_2, reg_rhs);
emit_post_push_reg(emit, vtype_lhs, REG_ARG_2);
} else if (op == MP_BINARY_OP_ADD) {
ASM_ADD_REG_REG(emit->as, REG_ARG_2, reg_rhs);
emit_post_push_reg(emit, vtype_lhs, REG_ARG_2);
} else if (op == MP_BINARY_OP_SUBTRACT) {
ASM_SUB_REG_REG(emit->as, REG_ARG_2, reg_rhs);
emit_post_push_reg(emit, vtype_lhs, REG_ARG_2);
} else if (op == MP_BINARY_OP_MULTIPLY) {
ASM_MUL_REG_REG(emit->as, REG_ARG_2, reg_rhs);
emit_post_push_reg(emit, vtype_lhs, REG_ARG_2);
} else if (MP_BINARY_OP_LESS <= op && op <= MP_BINARY_OP_NOT_EQUAL) {
// comparison ops are (in enum order):
// MP_BINARY_OP_LESS
// MP_BINARY_OP_MORE
// MP_BINARY_OP_EQUAL
// MP_BINARY_OP_LESS_EQUAL
// MP_BINARY_OP_MORE_EQUAL
// MP_BINARY_OP_NOT_EQUAL
if (vtype_lhs != vtype_rhs) {
EMIT_NATIVE_VIPER_TYPE_ERROR(emit, MP_ERROR_TEXT("comparison of int and uint"));
}
size_t op_idx = op - MP_BINARY_OP_LESS + (vtype_lhs == VTYPE_UINT ? 0 : 6);
need_reg_single(emit, REG_RET, 0);
#if N_X64
asm_x64_xor_r64_r64(emit->as, REG_RET, REG_RET);
asm_x64_cmp_r64_with_r64(emit->as, reg_rhs, REG_ARG_2);
static byte ops[6 + 6] = {
// unsigned
ASM_X64_CC_JB,
ASM_X64_CC_JA,
ASM_X64_CC_JE,
ASM_X64_CC_JBE,
ASM_X64_CC_JAE,
ASM_X64_CC_JNE,
// signed
ASM_X64_CC_JL,
ASM_X64_CC_JG,
ASM_X64_CC_JE,
ASM_X64_CC_JLE,
ASM_X64_CC_JGE,
ASM_X64_CC_JNE,
};
asm_x64_setcc_r8(emit->as, ops[op_idx], REG_RET);
#elif N_X86
asm_x86_xor_r32_r32(emit->as, REG_RET, REG_RET);
asm_x86_cmp_r32_with_r32(emit->as, reg_rhs, REG_ARG_2);
static byte ops[6 + 6] = {
// unsigned
ASM_X86_CC_JB,
ASM_X86_CC_JA,
ASM_X86_CC_JE,
ASM_X86_CC_JBE,
ASM_X86_CC_JAE,
ASM_X86_CC_JNE,
// signed
ASM_X86_CC_JL,
ASM_X86_CC_JG,
ASM_X86_CC_JE,
ASM_X86_CC_JLE,
ASM_X86_CC_JGE,
ASM_X86_CC_JNE,
};
asm_x86_setcc_r8(emit->as, ops[op_idx], REG_RET);
#elif N_THUMB
asm_thumb_cmp_rlo_rlo(emit->as, REG_ARG_2, reg_rhs);
if (asm_thumb_allow_armv7m(emit->as)) {
static uint16_t ops[6 + 6] = {
// unsigned
ASM_THUMB_OP_ITE_CC,
ASM_THUMB_OP_ITE_HI,
ASM_THUMB_OP_ITE_EQ,
ASM_THUMB_OP_ITE_LS,
ASM_THUMB_OP_ITE_CS,
ASM_THUMB_OP_ITE_NE,
// signed
ASM_THUMB_OP_ITE_LT,
ASM_THUMB_OP_ITE_GT,
ASM_THUMB_OP_ITE_EQ,
ASM_THUMB_OP_ITE_LE,
ASM_THUMB_OP_ITE_GE,
ASM_THUMB_OP_ITE_NE,
};
asm_thumb_op16(emit->as, ops[op_idx]);
asm_thumb_mov_rlo_i8(emit->as, REG_RET, 1);
asm_thumb_mov_rlo_i8(emit->as, REG_RET, 0);
} else {
static uint16_t ops[6 + 6] = {
// unsigned
ASM_THUMB_CC_CC,
ASM_THUMB_CC_HI,
ASM_THUMB_CC_EQ,
ASM_THUMB_CC_LS,
ASM_THUMB_CC_CS,
ASM_THUMB_CC_NE,
// signed
ASM_THUMB_CC_LT,
ASM_THUMB_CC_GT,
ASM_THUMB_CC_EQ,
ASM_THUMB_CC_LE,
ASM_THUMB_CC_GE,
ASM_THUMB_CC_NE,
};
asm_thumb_bcc_rel9(emit->as, ops[op_idx], 6);
asm_thumb_mov_rlo_i8(emit->as, REG_RET, 0);
asm_thumb_b_rel12(emit->as, 4);
asm_thumb_mov_rlo_i8(emit->as, REG_RET, 1);
}
#elif N_ARM
asm_arm_cmp_reg_reg(emit->as, REG_ARG_2, reg_rhs);
static uint ccs[6 + 6] = {
// unsigned
ASM_ARM_CC_CC,
ASM_ARM_CC_HI,
ASM_ARM_CC_EQ,
ASM_ARM_CC_LS,
ASM_ARM_CC_CS,
ASM_ARM_CC_NE,
// signed
ASM_ARM_CC_LT,
ASM_ARM_CC_GT,
ASM_ARM_CC_EQ,
ASM_ARM_CC_LE,
ASM_ARM_CC_GE,
ASM_ARM_CC_NE,
};
asm_arm_setcc_reg(emit->as, REG_RET, ccs[op_idx]);
#elif N_XTENSA || N_XTENSAWIN
static uint8_t ccs[6 + 6] = {
// unsigned
ASM_XTENSA_CC_LTU,
0x80 | ASM_XTENSA_CC_LTU, // for GTU we'll swap args
ASM_XTENSA_CC_EQ,
0x80 | ASM_XTENSA_CC_GEU, // for LEU we'll swap args
ASM_XTENSA_CC_GEU,
ASM_XTENSA_CC_NE,
// signed
ASM_XTENSA_CC_LT,
0x80 | ASM_XTENSA_CC_LT, // for GT we'll swap args
ASM_XTENSA_CC_EQ,
0x80 | ASM_XTENSA_CC_GE, // for LE we'll swap args
ASM_XTENSA_CC_GE,
ASM_XTENSA_CC_NE,
};
uint8_t cc = ccs[op_idx];
if ((cc & 0x80) == 0) {
asm_xtensa_setcc_reg_reg_reg(emit->as, cc, REG_RET, REG_ARG_2, reg_rhs);
} else {
asm_xtensa_setcc_reg_reg_reg(emit->as, cc & ~0x80, REG_RET, reg_rhs, REG_ARG_2);
}
#else
#error not implemented
#endif
emit_post_push_reg(emit, VTYPE_BOOL, REG_RET);
} else {
// TODO other ops not yet implemented
adjust_stack(emit, 1);
EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
MP_ERROR_TEXT("binary op %q not implemented"), mp_binary_op_method_name[op]);
}
} else if (vtype_lhs == VTYPE_PYOBJ && vtype_rhs == VTYPE_PYOBJ) {
emit_pre_pop_reg_reg(emit, &vtype_rhs, REG_ARG_3, &vtype_lhs, REG_ARG_2);
bool invert = false;
if (op == MP_BINARY_OP_NOT_IN) {
invert = true;
op = MP_BINARY_OP_IN;
} else if (op == MP_BINARY_OP_IS_NOT) {
invert = true;
op = MP_BINARY_OP_IS;
}
emit_call_with_imm_arg(emit, MP_F_BINARY_OP, op, REG_ARG_1);
if (invert) {
ASM_MOV_REG_REG(emit->as, REG_ARG_2, REG_RET);
emit_call_with_imm_arg(emit, MP_F_UNARY_OP, MP_UNARY_OP_NOT, REG_ARG_1);
}
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
} else {
adjust_stack(emit, -1);
EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
MP_ERROR_TEXT("can't do binary op between '%q' and '%q'"),
vtype_to_qstr(vtype_lhs), vtype_to_qstr(vtype_rhs));
}
}
#if MICROPY_PY_BUILTINS_SLICE
STATIC void emit_native_build_slice(emit_t *emit, mp_uint_t n_args);
#endif
STATIC void emit_native_build(emit_t *emit, mp_uint_t n_args, int kind) {
// for viper: call runtime, with types of args
// if wrapped in byte_array, or something, allocates memory and fills it
MP_STATIC_ASSERT(MP_F_BUILD_TUPLE + MP_EMIT_BUILD_TUPLE == MP_F_BUILD_TUPLE);
MP_STATIC_ASSERT(MP_F_BUILD_TUPLE + MP_EMIT_BUILD_LIST == MP_F_BUILD_LIST);
MP_STATIC_ASSERT(MP_F_BUILD_TUPLE + MP_EMIT_BUILD_MAP == MP_F_BUILD_MAP);
MP_STATIC_ASSERT(MP_F_BUILD_TUPLE + MP_EMIT_BUILD_SET == MP_F_BUILD_SET);
#if MICROPY_PY_BUILTINS_SLICE
if (kind == MP_EMIT_BUILD_SLICE) {
emit_native_build_slice(emit, n_args);
return;
}
#endif
emit_native_pre(emit);
if (kind == MP_EMIT_BUILD_TUPLE || kind == MP_EMIT_BUILD_LIST || kind == MP_EMIT_BUILD_SET) {
emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_2, n_args); // pointer to items
}
emit_call_with_imm_arg(emit, MP_F_BUILD_TUPLE + kind, n_args, REG_ARG_1);
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // new tuple/list/map/set
}
STATIC void emit_native_store_map(emit_t *emit) {
vtype_kind_t vtype_key, vtype_value, vtype_map;
emit_pre_pop_reg_reg_reg(emit, &vtype_key, REG_ARG_2, &vtype_value, REG_ARG_3, &vtype_map, REG_ARG_1); // key, value, map
assert(vtype_key == VTYPE_PYOBJ);
assert(vtype_value == VTYPE_PYOBJ);
assert(vtype_map == VTYPE_PYOBJ);
emit_call(emit, MP_F_STORE_MAP);
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // map
}
#if MICROPY_PY_BUILTINS_SLICE
STATIC void emit_native_build_slice(emit_t *emit, mp_uint_t n_args) {
DEBUG_printf("build_slice %d\n", n_args);
if (n_args == 2) {
vtype_kind_t vtype_start, vtype_stop;
emit_pre_pop_reg_reg(emit, &vtype_stop, REG_ARG_2, &vtype_start, REG_ARG_1); // arg1 = start, arg2 = stop
assert(vtype_start == VTYPE_PYOBJ);
assert(vtype_stop == VTYPE_PYOBJ);
emit_native_mov_reg_const(emit, REG_ARG_3, MP_F_CONST_NONE_OBJ); // arg3 = step
} else {
assert(n_args == 3);
vtype_kind_t vtype_start, vtype_stop, vtype_step;
emit_pre_pop_reg_reg_reg(emit, &vtype_step, REG_ARG_3, &vtype_stop, REG_ARG_2, &vtype_start, REG_ARG_1); // arg1 = start, arg2 = stop, arg3 = step
assert(vtype_start == VTYPE_PYOBJ);
assert(vtype_stop == VTYPE_PYOBJ);
assert(vtype_step == VTYPE_PYOBJ);
}
emit_call(emit, MP_F_NEW_SLICE);
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}
#endif
STATIC void emit_native_store_comp(emit_t *emit, scope_kind_t kind, mp_uint_t collection_index) {
mp_fun_kind_t f;
if (kind == SCOPE_LIST_COMP) {
vtype_kind_t vtype_item;
emit_pre_pop_reg(emit, &vtype_item, REG_ARG_2);
assert(vtype_item == VTYPE_PYOBJ);
f = MP_F_LIST_APPEND;
#if MICROPY_PY_BUILTINS_SET
} else if (kind == SCOPE_SET_COMP) {
vtype_kind_t vtype_item;
emit_pre_pop_reg(emit, &vtype_item, REG_ARG_2);
assert(vtype_item == VTYPE_PYOBJ);
f = MP_F_STORE_SET;
#endif
} else {
// SCOPE_DICT_COMP
vtype_kind_t vtype_key, vtype_value;
emit_pre_pop_reg_reg(emit, &vtype_key, REG_ARG_2, &vtype_value, REG_ARG_3);
assert(vtype_key == VTYPE_PYOBJ);
assert(vtype_value == VTYPE_PYOBJ);
f = MP_F_STORE_MAP;
}
vtype_kind_t vtype_collection;
emit_access_stack(emit, collection_index, &vtype_collection, REG_ARG_1);
assert(vtype_collection == VTYPE_PYOBJ);
emit_call(emit, f);
emit_post(emit);
}
STATIC void emit_native_unpack_sequence(emit_t *emit, mp_uint_t n_args) {
DEBUG_printf("unpack_sequence %d\n", n_args);
vtype_kind_t vtype_base;
emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = seq
assert(vtype_base == VTYPE_PYOBJ);
emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_3, n_args); // arg3 = dest ptr
emit_call_with_imm_arg(emit, MP_F_UNPACK_SEQUENCE, n_args, REG_ARG_2); // arg2 = n_args
}
STATIC void emit_native_unpack_ex(emit_t *emit, mp_uint_t n_left, mp_uint_t n_right) {
DEBUG_printf("unpack_ex %d %d\n", n_left, n_right);
vtype_kind_t vtype_base;
emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = seq
assert(vtype_base == VTYPE_PYOBJ);
emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_3, n_left + n_right + 1); // arg3 = dest ptr
emit_call_with_imm_arg(emit, MP_F_UNPACK_EX, n_left | (n_right << 8), REG_ARG_2); // arg2 = n_left + n_right
}
STATIC void emit_native_make_function(emit_t *emit, scope_t *scope, mp_uint_t n_pos_defaults, mp_uint_t n_kw_defaults) {
// call runtime, with type info for args, or don't support dict/default params, or only support Python objects for them
emit_native_pre(emit);
emit_native_mov_reg_state(emit, REG_ARG_2, LOCAL_IDX_FUN_OBJ(emit));
ASM_LOAD_REG_REG_OFFSET(emit->as, REG_ARG_2, REG_ARG_2, OFFSETOF_OBJ_FUN_BC_CONTEXT);
if (n_pos_defaults == 0 && n_kw_defaults == 0) {
need_reg_all(emit);
ASM_MOV_REG_IMM(emit->as, REG_ARG_3, 0);
} else {
emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, 2);
need_reg_all(emit);
}
emit_load_reg_with_child(emit, REG_ARG_1, scope->raw_code);
ASM_CALL_IND(emit->as, MP_F_MAKE_FUNCTION_FROM_RAW_CODE);
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}
STATIC void emit_native_make_closure(emit_t *emit, scope_t *scope, mp_uint_t n_closed_over, mp_uint_t n_pos_defaults, mp_uint_t n_kw_defaults) {
// make function
emit_native_pre(emit);
emit_native_mov_reg_state(emit, REG_ARG_2, LOCAL_IDX_FUN_OBJ(emit));
ASM_LOAD_REG_REG_OFFSET(emit->as, REG_ARG_2, REG_ARG_2, OFFSETOF_OBJ_FUN_BC_CONTEXT);
if (n_pos_defaults == 0 && n_kw_defaults == 0) {
need_reg_all(emit);
ASM_MOV_REG_IMM(emit->as, REG_ARG_3, 0);
} else {
emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, 2 + n_closed_over);
adjust_stack(emit, 2 + n_closed_over);
need_reg_all(emit);
}
emit_load_reg_with_child(emit, REG_ARG_1, scope->raw_code);
ASM_CALL_IND(emit->as, MP_F_MAKE_FUNCTION_FROM_RAW_CODE);
// make closure
#if REG_ARG_1 != REG_RET
ASM_MOV_REG_REG(emit->as, REG_ARG_1, REG_RET);
#endif
ASM_MOV_REG_IMM(emit->as, REG_ARG_2, n_closed_over);
emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, n_closed_over);
if (n_pos_defaults != 0 || n_kw_defaults != 0) {
adjust_stack(emit, -2);
}
ASM_CALL_IND(emit->as, MP_F_NEW_CLOSURE);
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}
STATIC void emit_native_call_function(emit_t *emit, mp_uint_t n_positional, mp_uint_t n_keyword, mp_uint_t star_flags) {
DEBUG_printf("call_function(n_pos=" UINT_FMT ", n_kw=" UINT_FMT ", star_flags=" UINT_FMT ")\n", n_positional, n_keyword, star_flags);
// TODO: in viper mode, call special runtime routine with type info for args,
// and wanted type info for return, to remove need for boxing/unboxing
emit_native_pre(emit);
vtype_kind_t vtype_fun = peek_vtype(emit, n_positional + 2 * n_keyword);
if (vtype_fun == VTYPE_BUILTIN_CAST) {
// casting operator
assert(n_positional == 1 && n_keyword == 0);
assert(!star_flags);
DEBUG_printf(" cast to %d\n", vtype_fun);
vtype_kind_t vtype_cast = peek_stack(emit, 1)->data.u_imm;
switch (peek_vtype(emit, 0)) {
case VTYPE_PYOBJ: {
vtype_kind_t vtype;
emit_pre_pop_reg(emit, &vtype, REG_ARG_1);
emit_pre_pop_discard(emit);
emit_call_with_imm_arg(emit, MP_F_CONVERT_OBJ_TO_NATIVE, vtype_cast, REG_ARG_2); // arg2 = type
emit_post_push_reg(emit, vtype_cast, REG_RET);
break;
}
case VTYPE_BOOL:
case VTYPE_INT:
case VTYPE_UINT:
case VTYPE_PTR:
case VTYPE_PTR8:
case VTYPE_PTR16:
case VTYPE_PTR32:
case VTYPE_PTR_NONE:
emit_fold_stack_top(emit, REG_ARG_1);
emit_post_top_set_vtype(emit, vtype_cast);
break;
default:
// this can happen when casting a cast: int(int)
mp_raise_NotImplementedError(MP_ERROR_TEXT("casting"));
}
} else {
assert(vtype_fun == VTYPE_PYOBJ);
if (star_flags) {
emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, n_positional + 2 * n_keyword + 2); // pointer to args
emit_call_with_2_imm_args(emit, MP_F_CALL_METHOD_N_KW_VAR, 0, REG_ARG_1, n_positional | (n_keyword << 8), REG_ARG_2);
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
} else {
if (n_positional != 0 || n_keyword != 0) {
emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, n_positional + 2 * n_keyword); // pointer to args
}
emit_pre_pop_reg(emit, &vtype_fun, REG_ARG_1); // the function
emit_call_with_imm_arg(emit, MP_F_NATIVE_CALL_FUNCTION_N_KW, n_positional | (n_keyword << 8), REG_ARG_2);
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}
}
}
STATIC void emit_native_call_method(emit_t *emit, mp_uint_t n_positional, mp_uint_t n_keyword, mp_uint_t star_flags) {
if (star_flags) {
emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, n_positional + 2 * n_keyword + 3); // pointer to args
emit_call_with_2_imm_args(emit, MP_F_CALL_METHOD_N_KW_VAR, 1, REG_ARG_1, n_positional | (n_keyword << 8), REG_ARG_2);
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
} else {
emit_native_pre(emit);
emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, 2 + n_positional + 2 * n_keyword); // pointer to items, including meth and self
emit_call_with_2_imm_args(emit, MP_F_CALL_METHOD_N_KW, n_positional, REG_ARG_1, n_keyword, REG_ARG_2);
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}
}
STATIC void emit_native_return_value(emit_t *emit) {
DEBUG_printf("return_value\n");
if (emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) {
// Save pointer to current stack position for caller to access return value
emit_get_stack_pointer_to_reg_for_pop(emit, REG_TEMP0, 1);
emit_native_mov_state_reg(emit, OFFSETOF_CODE_STATE_SP, REG_TEMP0);
// Put return type in return value slot
ASM_MOV_REG_IMM(emit->as, REG_TEMP0, MP_VM_RETURN_NORMAL);
ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_RET_VAL(emit), REG_TEMP0);
// Do the unwinding jump to get to the return handler
emit_native_unwind_jump(emit, emit->exit_label, emit->exc_stack_size);
return;
}
if (emit->do_viper_types) {
vtype_kind_t return_vtype = emit->scope->scope_flags >> MP_SCOPE_FLAG_VIPERRET_POS;
if (peek_vtype(emit, 0) == VTYPE_PTR_NONE) {
emit_pre_pop_discard(emit);
if (return_vtype == VTYPE_PYOBJ) {
emit_native_mov_reg_const(emit, REG_PARENT_RET, MP_F_CONST_NONE_OBJ);
} else {
ASM_MOV_REG_IMM(emit->as, REG_ARG_1, 0);
}
} else {
vtype_kind_t vtype;
emit_pre_pop_reg(emit, &vtype, return_vtype == VTYPE_PYOBJ ? REG_PARENT_RET : REG_ARG_1);
if (vtype != return_vtype) {
EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
MP_ERROR_TEXT("return expected '%q' but got '%q'"),
vtype_to_qstr(return_vtype), vtype_to_qstr(vtype));
}
}
if (return_vtype != VTYPE_PYOBJ) {
emit_call_with_imm_arg(emit, MP_F_CONVERT_NATIVE_TO_OBJ, return_vtype, REG_ARG_2);
#if REG_RET != REG_PARENT_RET
ASM_MOV_REG_REG(emit->as, REG_PARENT_RET, REG_RET);
#endif
}
} else {
vtype_kind_t vtype;
emit_pre_pop_reg(emit, &vtype, REG_PARENT_RET);
assert(vtype == VTYPE_PYOBJ);
}
if (NEED_GLOBAL_EXC_HANDLER(emit)) {
// Save return value for the global exception handler to use
ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_RET_VAL(emit), REG_PARENT_RET);
}
emit_native_unwind_jump(emit, emit->exit_label, emit->exc_stack_size);
}
STATIC void emit_native_raise_varargs(emit_t *emit, mp_uint_t n_args) {
(void)n_args;
assert(n_args == 1);
vtype_kind_t vtype_exc;
emit_pre_pop_reg(emit, &vtype_exc, REG_ARG_1); // arg1 = object to raise
if (vtype_exc != VTYPE_PYOBJ) {
EMIT_NATIVE_VIPER_TYPE_ERROR(emit, MP_ERROR_TEXT("must raise an object"));
}
// TODO probably make this 1 call to the runtime (which could even call convert, native_raise(obj, type))
emit_call(emit, MP_F_NATIVE_RAISE);
mp_asm_base_suppress_code(&emit->as->base);
}
STATIC void emit_native_yield(emit_t *emit, int kind) {
// Note: 1 (yield) or 3 (yield from) labels are reserved for this function, starting at *emit->label_slot
if (emit->do_viper_types) {
mp_raise_NotImplementedError(MP_ERROR_TEXT("native yield"));
}
emit->scope->scope_flags |= MP_SCOPE_FLAG_GENERATOR;
need_stack_settled(emit);
if (kind == MP_EMIT_YIELD_FROM) {
// Top of yield-from loop, conceptually implementing:
// for item in generator:
// yield item
// Jump to start of loop
emit_native_jump(emit, *emit->label_slot + 2);
// Label for top of loop
emit_native_label_assign(emit, *emit->label_slot + 1);
}
// Save pointer to current stack position for caller to access yielded value
emit_get_stack_pointer_to_reg_for_pop(emit, REG_TEMP0, 1);
emit_native_mov_state_reg(emit, OFFSETOF_CODE_STATE_SP, REG_TEMP0);
// Put return type in return value slot
ASM_MOV_REG_IMM(emit->as, REG_TEMP0, MP_VM_RETURN_YIELD);
ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_RET_VAL(emit), REG_TEMP0);
// Save re-entry PC
ASM_MOV_REG_PCREL(emit->as, REG_TEMP0, *emit->label_slot);
emit_native_mov_state_reg(emit, LOCAL_IDX_GEN_PC(emit), REG_TEMP0);
// Jump to exit handler
ASM_JUMP(emit->as, emit->exit_label);
// Label re-entry point
mp_asm_base_label_assign(&emit->as->base, *emit->label_slot);
// Re-open any active exception handler
if (emit->exc_stack_size > 0) {
// Find innermost active exception handler, to restore as current handler
exc_stack_entry_t *e = &emit->exc_stack[emit->exc_stack_size - 1];
for (; e >= emit->exc_stack; --e) {
if (e->is_active) {
// Found active handler, get its PC
ASM_MOV_REG_PCREL(emit->as, REG_RET, e->label);
ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_HANDLER_PC(emit), REG_RET);
break;
}
}
}
emit_native_adjust_stack_size(emit, 1); // send_value
if (kind == MP_EMIT_YIELD_VALUE) {
// Check LOCAL_IDX_EXC_VAL for any injected value
ASM_MOV_REG_LOCAL(emit->as, REG_ARG_1, LOCAL_IDX_EXC_VAL(emit));
emit_call(emit, MP_F_NATIVE_RAISE);
} else {
// Label loop entry
emit_native_label_assign(emit, *emit->label_slot + 2);
// Get the next item from the delegate generator
vtype_kind_t vtype;
emit_pre_pop_reg(emit, &vtype, REG_ARG_2); // send_value
emit_access_stack(emit, 1, &vtype, REG_ARG_1); // generator
ASM_MOV_REG_LOCAL(emit->as, REG_ARG_3, LOCAL_IDX_EXC_VAL(emit)); // throw_value
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_ARG_3);
emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, 1); // ret_value
emit_call(emit, MP_F_NATIVE_YIELD_FROM);
// If returned non-zero then generator continues
ASM_JUMP_IF_REG_NONZERO(emit->as, REG_RET, *emit->label_slot + 1, true);
// Pop exhausted gen, replace with ret_value
emit_native_adjust_stack_size(emit, 1); // ret_value
emit_fold_stack_top(emit, REG_ARG_1);
}
}
STATIC void emit_native_start_except_handler(emit_t *emit) {
// Protected block has finished so leave the current exception handler
emit_native_leave_exc_stack(emit, true);
// Get and push nlr_buf.ret_val
ASM_MOV_REG_LOCAL(emit->as, REG_TEMP0, LOCAL_IDX_EXC_VAL(emit));
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_TEMP0);
}
STATIC void emit_native_end_except_handler(emit_t *emit) {
adjust_stack(emit, -1); // pop the exception (end_finally didn't use it)
}
const emit_method_table_t EXPORT_FUN(method_table) = {
#if MICROPY_DYNAMIC_COMPILER
EXPORT_FUN(new),
EXPORT_FUN(free),
#endif
emit_native_start_pass,
emit_native_end_pass,
emit_native_adjust_stack_size,
emit_native_set_source_line,
{
emit_native_load_local,
emit_native_load_global,
},
{
emit_native_store_local,
emit_native_store_global,
},
{
emit_native_delete_local,
emit_native_delete_global,
},
emit_native_label_assign,
emit_native_import,
emit_native_load_const_tok,
emit_native_load_const_small_int,
emit_native_load_const_str,
emit_native_load_const_obj,
emit_native_load_null,
emit_native_load_method,
emit_native_load_build_class,
emit_native_subscr,
emit_native_attr,
emit_native_dup_top,
emit_native_dup_top_two,
emit_native_pop_top,
emit_native_rot_two,
emit_native_rot_three,
emit_native_jump,
emit_native_pop_jump_if,
emit_native_jump_if_or_pop,
emit_native_unwind_jump,
emit_native_setup_block,
emit_native_with_cleanup,
emit_native_end_finally,
emit_native_get_iter,
emit_native_for_iter,
emit_native_for_iter_end,
emit_native_pop_except_jump,
emit_native_unary_op,
emit_native_binary_op,
emit_native_build,
emit_native_store_map,
emit_native_store_comp,
emit_native_unpack_sequence,
emit_native_unpack_ex,
emit_native_make_function,
emit_native_make_closure,
emit_native_call_function,
emit_native_call_method,
emit_native_return_value,
emit_native_raise_varargs,
emit_native_yield,
emit_native_start_except_handler,
emit_native_end_except_handler,
};
#endif