micropython/ports/mimxrt/machine_uart.c
robert-hh 5e990cc27f mimxrt: Add support for MIMXRT1176 MCUs, and MIMXRT1170_EVK board.
The RT1176 has two cores, but the actual firmware supports only the CM7.
There are currently no good plans on how to use the CM4.

The actual MIMXRT1170_EVK board is on par with the existing MIMXRT boards,
with the following extensions:
- Use 64 MB RAM for the heap.
- Support both LAN interfaces as LAN(0) and LAN(1), with LAN(1)
  being the 1GB interface.

The dual LAN port interface can eventually be adapted as well for the
RT1062 MCU.

This work was done in collaboration with @alphaFred.
2022-11-17 14:11:50 +11:00

482 lines
18 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Damien P. George
* Copyright (c) 2021 Robert Hammelrath
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/runtime.h"
#include "py/stream.h"
#include "py/mphal.h"
#include "ticks.h"
#include "fsl_common.h"
#include "fsl_lpuart.h"
#include "fsl_iomuxc.h"
#include CLOCK_CONFIG_H
#include "pin.h"
#define DEFAULT_UART_BAUDRATE (115200)
#define DEFAULT_BUFFER_SIZE (256)
#define MIN_BUFFER_SIZE (32)
#define MAX_BUFFER_SIZE (32766)
#define UART_INVERT_TX (1)
#define UART_INVERT_RX (2)
#define UART_INVERT_MASK (UART_INVERT_TX | UART_INVERT_RX)
typedef struct _machine_uart_obj_t {
mp_obj_base_t base;
struct _lpuart_handle handle;
lpuart_config_t config;
LPUART_Type *lpuart;
uint16_t timeout; // timeout waiting for first char (in ms)
uint16_t timeout_char; // timeout waiting between chars (in ms)
uint8_t id;
uint8_t invert;
uint16_t tx_status;
uint8_t *txbuf;
uint16_t txbuf_len;
bool new;
} machine_uart_obj_t;
typedef struct _iomux_table_t {
uint32_t muxRegister;
uint32_t muxMode;
uint32_t inputRegister;
uint32_t inputDaisy;
uint32_t configRegister;
} iomux_table_t;
extern const mp_obj_type_t machine_uart_type;
STATIC const uint8_t uart_index_table[] = MICROPY_HW_UART_INDEX;
STATIC LPUART_Type *uart_base_ptr_table[] = LPUART_BASE_PTRS;
static const iomux_table_t iomux_table_uart[] = {
IOMUX_TABLE_UART
};
STATIC const char *_parity_name[] = {"None", "", "0", "1"}; // Is defined as 0, 2, 3
STATIC const char *_invert_name[] = {"None", "INV_TX", "INV_RX", "INV_TX|INV_RX"};
#define RX (iomux_table_uart[index + 1])
#define TX (iomux_table_uart[index])
bool lpuart_set_iomux(int8_t uart) {
int index = (uart - 1) * 2;
if (TX.muxRegister != 0) {
IOMUXC_SetPinMux(TX.muxRegister, TX.muxMode, TX.inputRegister, TX.inputDaisy, TX.configRegister, 0U);
IOMUXC_SetPinConfig(TX.muxRegister, TX.muxMode, TX.inputRegister, TX.inputDaisy, TX.configRegister,
pin_generate_config(PIN_PULL_UP_100K, PIN_MODE_OUT, PIN_DRIVE_6, TX.configRegister));
IOMUXC_SetPinMux(RX.muxRegister, RX.muxMode, RX.inputRegister, RX.inputDaisy, RX.configRegister, 0U);
IOMUXC_SetPinConfig(RX.muxRegister, RX.muxMode, RX.inputRegister, RX.inputDaisy, RX.configRegister,
pin_generate_config(PIN_PULL_UP_100K, PIN_MODE_IN, PIN_DRIVE_6, RX.configRegister));
return true;
} else {
return false;
}
}
void LPUART_UserCallback(LPUART_Type *base, lpuart_handle_t *handle, status_t status, void *userData) {
machine_uart_obj_t *self = userData;
if (kStatus_LPUART_TxIdle == status) {
self->tx_status = kStatus_LPUART_TxIdle;
}
if (kStatus_LPUART_RxRingBufferOverrun == status) {
; // Ringbuffer full, deassert RTS if flow control is enabled
}
}
STATIC void machine_uart_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_printf(print, "UART(%u, baudrate=%u, bits=%u, parity=%s, stop=%u, "
"rxbuf=%d, txbuf=%d, timeout=%u, timeout_char=%u, invert=%s)",
self->id, self->config.baudRate_Bps, 8 - self->config.dataBitsCount,
_parity_name[self->config.parityMode], self->config.stopBitCount + 1,
self->handle.rxRingBufferSize, self->txbuf_len, self->timeout, self->timeout_char,
_invert_name[self->invert]);
}
STATIC mp_obj_t machine_uart_init_helper(machine_uart_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_baudrate, ARG_bits, ARG_parity, ARG_stop,
ARG_timeout, ARG_timeout_char, ARG_invert, ARG_rxbuf, ARG_txbuf};
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_baudrate, MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_bits, MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_parity, MP_ARG_OBJ, {.u_rom_obj = MP_ROM_INT(-1)} },
{ MP_QSTR_stop, MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_timeout_char, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_invert, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_rxbuf, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_txbuf, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
};
// Parse args
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// Set baudrate if configured.
if (args[ARG_baudrate].u_int > 0) {
self->config.baudRate_Bps = args[ARG_baudrate].u_int;
}
// Set bits if configured.
if (args[ARG_bits].u_int > 0) {
self->config.dataBitsCount = 8 - args[ARG_bits].u_int;
}
// Set parity if configured.
if (args[ARG_parity].u_obj != MP_OBJ_NEW_SMALL_INT(-1)) {
if (args[ARG_parity].u_obj == mp_const_none) {
self->config.parityMode = kLPUART_ParityDisabled;
} else if (mp_obj_get_int(args[ARG_parity].u_obj) & 1) {
self->config.parityMode = kLPUART_ParityOdd;
} else {
self->config.parityMode = kLPUART_ParityEven;
}
}
// Set stop bits if configured.
if (args[ARG_stop].u_int > 0) {
self->config.stopBitCount = args[ARG_stop].u_int - 1;
}
// Set timeout if configured.
if (args[ARG_timeout].u_int >= 0) {
self->timeout = args[ARG_timeout].u_int;
}
// Set timeout_char if configured.
if (args[ARG_timeout_char].u_int >= 0) {
self->timeout_char = args[ARG_timeout_char].u_int;
}
// Set line inversion if configured.
if (args[ARG_invert].u_int >= 0) {
if (args[ARG_invert].u_int & ~UART_INVERT_MASK) {
mp_raise_ValueError(MP_ERROR_TEXT("bad inversion mask"));
}
self->invert = args[ARG_invert].u_int;
}
self->tx_status = kStatus_LPUART_TxIdle;
self->config.enableTx = true;
self->config.enableRx = true;
// Set the RX buffer size if configured.
size_t rxbuf_len = DEFAULT_BUFFER_SIZE;
if (args[ARG_rxbuf].u_int > 0) {
rxbuf_len = args[ARG_rxbuf].u_int;
if (rxbuf_len < MIN_BUFFER_SIZE) {
rxbuf_len = MIN_BUFFER_SIZE;
} else if (rxbuf_len > MAX_BUFFER_SIZE) {
mp_raise_ValueError(MP_ERROR_TEXT("rxbuf too large"));
}
}
// Set the TX buffer size if configured.
size_t txbuf_len = DEFAULT_BUFFER_SIZE;
if (args[ARG_txbuf].u_int > 0) {
txbuf_len = args[ARG_txbuf].u_int;
if (txbuf_len < MIN_BUFFER_SIZE) {
txbuf_len = MIN_BUFFER_SIZE;
} else if (txbuf_len > MAX_BUFFER_SIZE) {
mp_raise_ValueError(MP_ERROR_TEXT("txbuf too large"));
}
}
// Initialise the UART peripheral if any arguments given, or it was not initialised previously.
if (n_args > 0 || kw_args->used > 0 || self->new) {
self->new = false;
// may be obsolete
if (self->config.baudRate_Bps == 0) {
self->config.baudRate_Bps = DEFAULT_UART_BAUDRATE;
}
// Make sure timeout_char is at least as long as a whole character (13 bits to be safe).
uint32_t min_timeout_char = 13000 / self->config.baudRate_Bps + 1;
if (self->timeout_char < min_timeout_char) {
self->timeout_char = min_timeout_char;
}
LPUART_Init(self->lpuart, &self->config, BOARD_BOOTCLOCKRUN_UART_CLK_ROOT);
LPUART_TransferCreateHandle(self->lpuart, &self->handle, LPUART_UserCallback, self);
uint8_t *buffer = m_new(uint8_t, rxbuf_len + 1);
LPUART_TransferStartRingBuffer(self->lpuart, &self->handle, buffer, rxbuf_len);
self->txbuf = m_new(uint8_t, txbuf_len); // Allocate the TX buffer.
self->txbuf_len = txbuf_len;
// The Uart supports inverting, but not the fsl API, so it has to coded directly
// And it has to be done after LPUART_Init.
if (self->invert & UART_INVERT_RX) {
LPUART_EnableRx(self->lpuart, false);
self->lpuart->STAT |= 1 << LPUART_STAT_RXINV_SHIFT;
LPUART_EnableRx(self->lpuart, true);
}
if (self->invert & UART_INVERT_TX) {
LPUART_EnableTx(self->lpuart, false);
self->lpuart->CTRL |= 1 << LPUART_CTRL_TXINV_SHIFT;
LPUART_EnableTx(self->lpuart, true);
}
// Send long break; drop that code for a shorter break duration
LPUART_EnableTx(self->lpuart, false);
self->lpuart->STAT |= 1 << LPUART_STAT_BRK13_SHIFT;
LPUART_EnableTx(self->lpuart, true);
}
return MP_OBJ_FROM_PTR(self);
}
STATIC mp_obj_t machine_uart_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
// Get UART bus.
int uart_id = mp_obj_get_int(args[0]);
if (uart_id < 0 || uart_id > MICROPY_HW_UART_NUM || uart_index_table[uart_id] == 0) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("UART(%d) doesn't exist"), uart_id);
}
// Create the UART object and fill it with defaults.
uint8_t uart_hw_id = uart_index_table[uart_id]; // the hw uart number 1..n
machine_uart_obj_t *self = mp_obj_malloc(machine_uart_obj_t, &machine_uart_type);
self->id = uart_id;
self->lpuart = uart_base_ptr_table[uart_hw_id];
self->invert = false;
self->timeout = 1;
self->timeout_char = 1;
self->new = true;
LPUART_GetDefaultConfig(&self->config);
// Configure board-specific pin MUX based on the hardware device number.
bool uart_present = lpuart_set_iomux(uart_hw_id);
if (uart_present) {
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
return machine_uart_init_helper(self, n_args - 1, args + 1, &kw_args);
} else {
return mp_const_none;
}
}
// uart.init(baud, [kwargs])
STATIC mp_obj_t machine_uart_init(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
return machine_uart_init_helper(args[0], n_args - 1, args + 1, kw_args);
}
MP_DEFINE_CONST_FUN_OBJ_KW(machine_uart_init_obj, 1, machine_uart_init);
STATIC mp_obj_t machine_uart_any(mp_obj_t self_in) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
size_t count = LPUART_TransferGetRxRingBufferLength(self->lpuart, &self->handle);
return MP_OBJ_NEW_SMALL_INT(count);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(machine_uart_any_obj, machine_uart_any);
STATIC mp_obj_t machine_uart_sendbreak(mp_obj_t self_in) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
self->lpuart->CTRL |= 1 << LPUART_CTRL_SBK_SHIFT; // Set SBK bit
self->lpuart->CTRL &= ~LPUART_CTRL_SBK_MASK; // Clear SBK bit
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(machine_uart_sendbreak_obj, machine_uart_sendbreak);
STATIC mp_obj_t machine_uart_txdone(mp_obj_t self_in) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (self->tx_status == kStatus_LPUART_TxIdle) {
return mp_const_true;
} else {
return mp_const_false;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(machine_uart_txdone_obj, machine_uart_txdone);
STATIC const mp_rom_map_elem_t machine_uart_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&machine_uart_init_obj) },
{ MP_ROM_QSTR(MP_QSTR_any), MP_ROM_PTR(&machine_uart_any_obj) },
{ MP_ROM_QSTR(MP_QSTR_flush), MP_ROM_PTR(&mp_stream_flush_obj) },
{ MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&mp_stream_read_obj) },
{ MP_ROM_QSTR(MP_QSTR_readline), MP_ROM_PTR(&mp_stream_unbuffered_readline_obj) },
{ MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&mp_stream_readinto_obj) },
{ MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&mp_stream_write_obj) },
{ MP_ROM_QSTR(MP_QSTR_sendbreak), MP_ROM_PTR(&machine_uart_sendbreak_obj) },
{ MP_ROM_QSTR(MP_QSTR_txdone), MP_ROM_PTR(&machine_uart_txdone_obj) },
{ MP_ROM_QSTR(MP_QSTR_INV_TX), MP_ROM_INT(UART_INVERT_TX) },
{ MP_ROM_QSTR(MP_QSTR_INV_RX), MP_ROM_INT(UART_INVERT_RX) },
};
STATIC MP_DEFINE_CONST_DICT(machine_uart_locals_dict, machine_uart_locals_dict_table);
STATIC mp_uint_t machine_uart_read(mp_obj_t self_in, void *buf_in, mp_uint_t size, int *errcode) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
uint64_t t = ticks_us64() + (uint64_t)self->timeout * 1000;
uint64_t timeout_char_us = (uint64_t)self->timeout_char * 1000;
lpuart_transfer_t xfer;
uint8_t *dest = buf_in;
size_t avail;
size_t nget;
for (size_t received = 0; received < size;) {
// Wait for the first/next character.
while ((avail = LPUART_TransferGetRxRingBufferLength(self->lpuart, &self->handle)) <= 0) {
if (ticks_us64() > t) { // timed out
if (received <= 0) {
*errcode = MP_EAGAIN;
return MP_STREAM_ERROR;
} else {
return received;
}
}
MICROPY_EVENT_POLL_HOOK
}
// Get as many bytes as possible to meet the need.
nget = avail < (size - received) ? avail : size - received;
xfer.data = dest + received;
xfer.dataSize = nget;
LPUART_TransferReceiveNonBlocking(self->lpuart, &self->handle, &xfer, NULL);
received += nget;
t = ticks_us64() + timeout_char_us;
}
return size;
}
STATIC mp_uint_t machine_uart_write(mp_obj_t self_in, const void *buf_in, mp_uint_t size, int *errcode) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
lpuart_transfer_t xfer;
uint64_t t;
size_t remaining = size;
size_t offset = 0;
uint8_t fifo_size = FSL_FEATURE_LPUART_FIFO_SIZEn(0);
// First check if a previous transfer is still ongoing,
// then wait at least the number of remaining character times.
t = ticks_us64() + (uint64_t)(self->handle.txDataSize + fifo_size) * (13000000 / self->config.baudRate_Bps + 1000);
while (self->tx_status != kStatus_LPUART_TxIdle) {
if (ticks_us64() > t) { // timed out, hard error
*errcode = MP_ETIMEDOUT;
return MP_STREAM_ERROR;
}
MICROPY_EVENT_POLL_HOOK
}
// Check if the first part has to be sent semi-blocking.
if (size > self->txbuf_len) {
// Send the first block.
xfer.data = (uint8_t *)buf_in;
offset = xfer.dataSize = size - self->txbuf_len;
self->tx_status = kStatus_LPUART_TxBusy;
LPUART_TransferSendNonBlocking(self->lpuart, &self->handle, &xfer);
// Wait at least the number of character times for this chunk.
t = ticks_us64() + (uint64_t)xfer.dataSize * (13000000 / self->config.baudRate_Bps + 1000);
while (self->tx_status != kStatus_LPUART_TxIdle) {
// Wait for the first/next character to be sent.
if (ticks_us64() > t) { // timed out
if (self->handle.txDataSize >= size) {
*errcode = MP_ETIMEDOUT;
return MP_STREAM_ERROR;
} else {
return size - self->handle.txDataSize;
}
}
MICROPY_EVENT_POLL_HOOK
}
remaining = self->txbuf_len;
} else {
// The data fits into the tx buffer.
offset = 0;
remaining = size;
}
// Send the remaining data without waiting for completion.
memcpy(self->txbuf, (uint8_t *)buf_in + offset, remaining);
xfer.data = self->txbuf;
xfer.dataSize = remaining;
self->tx_status = kStatus_LPUART_TxBusy;
LPUART_TransferSendNonBlocking(self->lpuart, &self->handle, &xfer);
return size;
}
STATIC mp_uint_t machine_uart_ioctl(mp_obj_t self_in, mp_uint_t request, mp_uint_t arg, int *errcode) {
machine_uart_obj_t *self = self_in;
mp_uint_t ret;
if (request == MP_STREAM_POLL) {
uintptr_t flags = arg;
ret = 0;
if (flags & MP_STREAM_POLL_RD) {
uint32_t count;
count = LPUART_TransferGetRxRingBufferLength(self->lpuart, &self->handle);
if (count > 0) {
ret |= MP_STREAM_POLL_RD;
}
}
if ((flags & MP_STREAM_POLL_WR) && (self->tx_status == kStatus_LPUART_TxIdle)) {
ret |= MP_STREAM_POLL_WR;
}
} else if (request == MP_STREAM_FLUSH) {
// The timeout is estimated using the buffer size and the baudrate.
// Take the worst case assumptions at 13 bit symbol size times 2.
uint64_t timeout = (uint64_t)(3 + self->txbuf_len) * 13000000ll * 2 /
self->config.baudRate_Bps + ticks_us64();
do {
if (machine_uart_txdone((mp_obj_t)self) == mp_const_true) {
return 0;
}
MICROPY_EVENT_POLL_HOOK
} while (ticks_us64() < timeout);
*errcode = MP_ETIMEDOUT;
ret = MP_STREAM_ERROR;
} else {
*errcode = MP_EINVAL;
ret = MP_STREAM_ERROR;
}
return ret;
}
STATIC const mp_stream_p_t uart_stream_p = {
.read = machine_uart_read,
.write = machine_uart_write,
.ioctl = machine_uart_ioctl,
.is_text = false,
};
MP_DEFINE_CONST_OBJ_TYPE(
machine_uart_type,
MP_QSTR_UART,
MP_TYPE_FLAG_ITER_IS_STREAM,
make_new, machine_uart_make_new,
print, machine_uart_print,
protocol, &uart_stream_p,
locals_dict, &machine_uart_locals_dict
);