Go to file
Paul Sokolovsky 0c904df8e6 vm: Save current active exception on opening new try block.
Required to reraise correct exceptions in except block, regardless if more
try blocks with active exceptions happen in the same except block.

P.S. This "automagic reraise" appears to be quite wasteful feature of Python
- we need to save pending exception just in case it *might* be reraised.
Instead, programmer could explcitly capture exception to a variable using
"except ... as var", and reraise that. So, consider disabling argless raise
support as an optimization.
2014-03-30 01:01:35 +02:00
examples ffi: Implement ffivar.get()/set() methods. 2014-02-14 20:38:35 +02:00
logo Make GitHub logo/image a JPEG so it's smaller. 2014-01-14 23:55:53 +00:00
py vm: Save current active exception on opening new try block. 2014-03-30 01:01:35 +02:00
stm Remove mp_obj_type_t.methods entry and use .locals_dict instead. 2014-03-26 21:47:19 +00:00
stmhal stmhal: Add Windows .inf file for USB CDC device. 2014-03-29 17:43:02 +00:00
teensy Implement proper exception type hierarchy. 2014-02-15 16:10:44 +00:00
tests vm: Save current active exception on opening new try block. 2014-03-30 01:01:35 +02:00
tools Add tools/pyboard.py, a simple module to communicate with the pyboard. 2014-03-24 12:42:06 +00:00
unix unix: Fix ffi.c to compile with latest changes to API. 2014-03-29 13:48:32 +00:00
unix-cpy py: Factor out code from runtime.c to emitglue.c. 2014-03-27 23:26:35 +00:00
windows Change mp_method_t.name from const char * to qstr. 2014-03-26 20:15:40 +00:00
.gitignore Added memzip filesystem support for teensy 2014-01-11 16:16:20 -08:00
CODECONVENTIONS.md Add CODECONVENTIONS, and modify i2c module to conform. 2013-12-29 12:12:25 +00:00
LICENSE Add LICENSE and README. 2013-12-20 11:47:41 +00:00
README.md Update README. 2014-03-24 12:47:37 +00:00

The Micro Python project

MicroPython Logo

This is the Micro Python project, which aims to put an implementation of Python 3.x on a microcontroller.

WARNING: this project is in its early stages and is subject to large changes of the code-base, including project-wide name changes and API changes. The software will not start to mature until March 2014 at the earliest.

See the repository www.github.com/micropython/pyboard for the Micro Python board.

Major components in this repository:

  • py/ -- the core Python implementation, including compiler and runtime.
  • unix/ -- a version of Micro Python that runs on Unix.
  • stmhal/ -- a version of Micro Python that runs on the Micro Python board with an STM32F405RG (using ST's new Cube HAL drivers).
  • stm/ -- obsolete version of Micro Python for the Micro Python board that uses ST's old peripheral drivers.
  • teensy/ -- a version of Micro Python that runs on the Teensy 3.1 (preliminary but functional).

Additional components:

  • unix-cpy/ -- a version of Micro Python that outputs bytecode (for testing).
  • tests/ -- test framework and test scripts.
  • tools/ -- various tools, including the pyboard.py module.
  • examples/ -- a few example Python scripts.

"make" is used to build the components, or "gmake" on BSD-based systems. You will also need bash and python (2.7 or 3.3) for the stm port.

The Unix version

The "unix" part requires a standard Unix environment with gcc and GNU make. x86 and x64 architectures are supported (i.e. x86 32- and 64-bit). ARM to be confirmed. Porting to other architectures require writing some assembly code for the exception handling.

To build:

$ cd unix
$ make

Then to test it:

$ ./micropython
>>> list(5 * x + y for x in range(10) for y in [4, 2, 1])

Debian/Ubuntu/Mint derivative Linux distros will require build-essentials and libreadline-dev packages installed. To build FFI (Foreign Function Interface) module (recommended, enable in unix/mpconfigport.mk), libffi-dev is required.

The STM version

The "stmhal" part requires an ARM compiler, arm-none-eabi-gcc, and associated bin-utils. For those using Arch Linux, you need arm-none-eabi-binutils and arm-none-eabi-gcc packages from the AUR. Otherwise, try here: https://launchpad.net/gcc-arm-embedded

To build:

$ cd stmhal
$ make

You then need to get your board into DFU mode. On the pyboard, connect the 3V3 pin to the P1/DFU pin with a wire (on PYBv1.0 they are next to each other on the bottom left of the board, second row from the bottom).

Then to flash the code via USB DFU to your device:

$ dfu-util -a 0 -D build/flash.dfu

You will need the dfu-util program, on Arch Linux it's dfu-util-git in the AUR.