micropython/stmhal/adc.c
Damien George 029f215ead stmhal/adc: Add "mask" selection parameter to pyb.ADCAll constructor.
The "mask" parameter is used to select which pins the ADCAll constructor
will initialise to analog mode.  It defaults to all pins (0xffffffff),
which is backwards compatible with previous behaviour.
2016-11-29 14:32:05 +11:00

607 lines
22 KiB
C

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <string.h>
#include "py/nlr.h"
#include "py/runtime.h"
#include "py/binary.h"
#include "py/mphal.h"
#include "adc.h"
#include "pin.h"
#include "genhdr/pins.h"
#include "timer.h"
/// \moduleref pyb
/// \class ADC - analog to digital conversion: read analog values on a pin
///
/// Usage:
///
/// adc = pyb.ADC(pin) # create an analog object from a pin
/// val = adc.read() # read an analog value
///
/// adc = pyb.ADCAll(resolution) # creale an ADCAll object
/// val = adc.read_channel(channel) # read the given channel
/// val = adc.read_core_temp() # read MCU temperature
/// val = adc.read_core_vbat() # read MCU VBAT
/// val = adc.read_core_vref() # read MCU VREF
/* ADC defintions */
#define ADCx (ADC1)
#define ADCx_CLK_ENABLE __ADC1_CLK_ENABLE
#define ADC_NUM_CHANNELS (19)
#if defined(MCU_SERIES_F4) || defined(MCU_SERIES_F7)
#define ADC_FIRST_GPIO_CHANNEL (0)
#define ADC_LAST_GPIO_CHANNEL (15)
#elif defined(MCU_SERIES_L4)
#define ADC_FIRST_GPIO_CHANNEL (1)
#define ADC_LAST_GPIO_CHANNEL (16)
#else
#error Unsupported processor
#endif
#if defined(STM32F405xx) || defined(STM32F415xx) || \
defined(STM32F407xx) || defined(STM32F417xx) || \
defined(STM32F401xC) || defined(STM32F401xE) || \
defined(STM32F411xE)
#define VBAT_DIV (2)
#elif defined(STM32F427xx) || defined(STM32F429xx) || \
defined(STM32F437xx) || defined(STM32F439xx) || \
defined(STM32F746xx)
#define VBAT_DIV (4)
#elif defined(STM32L476xx)
#define VBAT_DIV (3)
#else
#error Unsupported processor
#endif
/* Core temperature sensor definitions */
#define CORE_TEMP_V25 (943) /* (0.76v/3.3v)*(2^ADC resoultion) */
#define CORE_TEMP_AVG_SLOPE (3) /* (2.5mv/3.3v)*(2^ADC resoultion) */
typedef struct _pyb_obj_adc_t {
mp_obj_base_t base;
mp_obj_t pin_name;
int channel;
ADC_HandleTypeDef handle;
} pyb_obj_adc_t;
STATIC bool is_adcx_channel(int channel) {
#if defined(MCU_SERIES_F4) || defined(MCU_SERIES_F7)
return IS_ADC_CHANNEL(channel);
#elif defined(MCU_SERIES_L4)
ADC_HandleTypeDef handle;
handle.Instance = ADCx;
return IS_ADC_CHANNEL(&handle, channel);
#else
#error Unsupported processor
#endif
}
STATIC void adc_wait_for_eoc_or_timeout(int32_t timeout) {
uint32_t tickstart = HAL_GetTick();
#if defined(MCU_SERIES_F4) || defined(MCU_SERIES_F7)
while ((ADCx->SR & ADC_FLAG_EOC) != ADC_FLAG_EOC) {
#elif defined(MCU_SERIES_L4)
while (READ_BIT(ADCx->ISR, ADC_FLAG_EOC) != ADC_FLAG_EOC) {
#else
#error Unsupported processor
#endif
if (((HAL_GetTick() - tickstart ) > timeout)) {
break; // timeout
}
}
}
STATIC void adcx_clock_enable(void) {
#if defined(MCU_SERIES_F4) || defined(MCU_SERIES_F7)
ADCx_CLK_ENABLE();
#elif defined(MCU_SERIES_L4)
__HAL_RCC_ADC_CLK_ENABLE();
#else
#error Unsupported processor
#endif
}
STATIC void adc_init_single(pyb_obj_adc_t *adc_obj) {
if (!is_adcx_channel(adc_obj->channel)) {
return;
}
if (ADC_FIRST_GPIO_CHANNEL <= adc_obj->channel && adc_obj->channel <= ADC_LAST_GPIO_CHANNEL) {
// Channels 0-16 correspond to real pins. Configure the GPIO pin in
// ADC mode.
const pin_obj_t *pin = pin_adc1[adc_obj->channel];
mp_hal_gpio_clock_enable(pin->gpio);
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.Pin = pin->pin_mask;
#if defined(MCU_SERIES_F4) || defined(MCU_SERIES_F7)
GPIO_InitStructure.Mode = GPIO_MODE_ANALOG;
#elif defined(MCU_SERIES_L4)
GPIO_InitStructure.Mode = GPIO_MODE_ANALOG_ADC_CONTROL;
#else
#error Unsupported processor
#endif
GPIO_InitStructure.Pull = GPIO_NOPULL;
HAL_GPIO_Init(pin->gpio, &GPIO_InitStructure);
}
adcx_clock_enable();
ADC_HandleTypeDef *adcHandle = &adc_obj->handle;
adcHandle->Instance = ADCx;
adcHandle->Init.ContinuousConvMode = DISABLE;
adcHandle->Init.DiscontinuousConvMode = DISABLE;
adcHandle->Init.NbrOfDiscConversion = 0;
adcHandle->Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
adcHandle->Init.DataAlign = ADC_DATAALIGN_RIGHT;
adcHandle->Init.NbrOfConversion = 1;
adcHandle->Init.DMAContinuousRequests = DISABLE;
#if defined(MCU_SERIES_F4) || defined(MCU_SERIES_F7)
adcHandle->Init.Resolution = ADC_RESOLUTION12b;
adcHandle->Init.ClockPrescaler = ADC_CLOCKPRESCALER_PCLK_DIV2;
adcHandle->Init.ScanConvMode = DISABLE;
adcHandle->Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T1_CC1;
adcHandle->Init.EOCSelection = DISABLE;
#elif defined(MCU_SERIES_L4)
adcHandle->Init.Resolution = ADC_RESOLUTION_12B;
adcHandle->Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1;
adcHandle->Init.ScanConvMode = ADC_SCAN_DISABLE;
adcHandle->Init.EOCSelection = ADC_EOC_SINGLE_CONV;
adcHandle->Init.ExternalTrigConv = ADC_SOFTWARE_START;
adcHandle->Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
adcHandle->Init.LowPowerAutoWait = DISABLE;
adcHandle->Init.Overrun = ADC_OVR_DATA_PRESERVED;
adcHandle->Init.OversamplingMode = DISABLE;
#else
#error Unsupported processor
#endif
HAL_ADC_Init(adcHandle);
#if defined(MCU_SERIES_L4)
ADC_MultiModeTypeDef multimode;
multimode.Mode = ADC_MODE_INDEPENDENT;
if (HAL_ADCEx_MultiModeConfigChannel(adcHandle, &multimode) != HAL_OK)
{
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Can not set multimode on ADC1 channel: %d", adc_obj->channel));
}
#endif
}
STATIC void adc_config_channel(ADC_HandleTypeDef *adc_handle, uint32_t channel) {
ADC_ChannelConfTypeDef sConfig;
sConfig.Channel = channel;
sConfig.Rank = 1;
#if defined(MCU_SERIES_F4) || defined(MCU_SERIES_F7)
sConfig.SamplingTime = ADC_SAMPLETIME_15CYCLES;
#elif defined(MCU_SERIES_L4)
sConfig.SamplingTime = ADC_SAMPLETIME_12CYCLES_5;
sConfig.SingleDiff = ADC_SINGLE_ENDED;
sConfig.OffsetNumber = ADC_OFFSET_NONE;
#else
#error Unsupported processor
#endif
sConfig.Offset = 0;
HAL_ADC_ConfigChannel(adc_handle, &sConfig);
}
STATIC uint32_t adc_read_channel(ADC_HandleTypeDef *adcHandle) {
uint32_t rawValue = 0;
HAL_ADC_Start(adcHandle);
if (HAL_ADC_PollForConversion(adcHandle, 10) == HAL_OK
&& (HAL_ADC_GetState(adcHandle) & HAL_ADC_STATE_EOC_REG) == HAL_ADC_STATE_EOC_REG) {
rawValue = HAL_ADC_GetValue(adcHandle);
}
HAL_ADC_Stop(adcHandle);
return rawValue;
}
/******************************************************************************/
/* Micro Python bindings : adc object (single channel) */
STATIC void adc_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
pyb_obj_adc_t *self = self_in;
mp_print_str(print, "<ADC on ");
mp_obj_print_helper(print, self->pin_name, PRINT_STR);
mp_printf(print, " channel=%lu>", self->channel);
}
/// \classmethod \constructor(pin)
/// Create an ADC object associated with the given pin.
/// This allows you to then read analog values on that pin.
STATIC mp_obj_t adc_make_new(const mp_obj_type_t *type, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
// check number of arguments
mp_arg_check_num(n_args, n_kw, 1, 1, false);
// 1st argument is the pin name
mp_obj_t pin_obj = args[0];
uint32_t channel;
if (MP_OBJ_IS_INT(pin_obj)) {
channel = mp_obj_get_int(pin_obj);
} else {
const pin_obj_t *pin = pin_find(pin_obj);
if ((pin->adc_num & PIN_ADC1) == 0) {
// No ADC1 function on that pin
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "pin %q does not have ADC capabilities", pin->name));
}
channel = pin->adc_channel;
}
if (!is_adcx_channel(channel)) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "not a valid ADC Channel: %d", channel));
}
if (ADC_FIRST_GPIO_CHANNEL <= channel && channel <= ADC_LAST_GPIO_CHANNEL) {
// these channels correspond to physical GPIO ports so make sure they exist
if (pin_adc1[channel] == NULL) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError,
"channel %d not available on this board", channel));
}
}
pyb_obj_adc_t *o = m_new_obj(pyb_obj_adc_t);
memset(o, 0, sizeof(*o));
o->base.type = &pyb_adc_type;
o->pin_name = pin_obj;
o->channel = channel;
adc_init_single(o);
return o;
}
/// \method read()
/// Read the value on the analog pin and return it. The returned value
/// will be between 0 and 4095.
STATIC mp_obj_t adc_read(mp_obj_t self_in) {
pyb_obj_adc_t *self = self_in;
adc_config_channel(&self->handle, self->channel);
uint32_t data = adc_read_channel(&self->handle);
return mp_obj_new_int(data);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(adc_read_obj, adc_read);
/// \method read_timed(buf, timer)
///
/// Read analog values into `buf` at a rate set by the `timer` object.
///
/// `buf` can be bytearray or array.array for example. The ADC values have
/// 12-bit resolution and are stored directly into `buf` if its element size is
/// 16 bits or greater. If `buf` has only 8-bit elements (eg a bytearray) then
/// the sample resolution will be reduced to 8 bits.
///
/// `timer` should be a Timer object, and a sample is read each time the timer
/// triggers. The timer must already be initialised and running at the desired
/// sampling frequency.
///
/// To support previous behaviour of this function, `timer` can also be an
/// integer which specifies the frequency (in Hz) to sample at. In this case
/// Timer(6) will be automatically configured to run at the given frequency.
///
/// Example using a Timer object (preferred way):
///
/// adc = pyb.ADC(pyb.Pin.board.X19) # create an ADC on pin X19
/// tim = pyb.Timer(6, freq=10) # create a timer running at 10Hz
/// buf = bytearray(100) # creat a buffer to store the samples
/// adc.read_timed(buf, tim) # sample 100 values, taking 10s
///
/// Example using an integer for the frequency:
///
/// adc = pyb.ADC(pyb.Pin.board.X19) # create an ADC on pin X19
/// buf = bytearray(100) # create a buffer of 100 bytes
/// adc.read_timed(buf, 10) # read analog values into buf at 10Hz
/// # this will take 10 seconds to finish
/// for val in buf: # loop over all values
/// print(val) # print the value out
///
/// This function does not allocate any memory.
STATIC mp_obj_t adc_read_timed(mp_obj_t self_in, mp_obj_t buf_in, mp_obj_t freq_in) {
pyb_obj_adc_t *self = self_in;
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf_in, &bufinfo, MP_BUFFER_WRITE);
size_t typesize = mp_binary_get_size('@', bufinfo.typecode, NULL);
TIM_HandleTypeDef *tim;
#if defined(TIM6)
if (mp_obj_is_integer(freq_in)) {
// freq in Hz given so init TIM6 (legacy behaviour)
tim = timer_tim6_init(mp_obj_get_int(freq_in));
HAL_TIM_Base_Start(tim);
} else
#endif
{
// use the supplied timer object as the sampling time base
tim = pyb_timer_get_handle(freq_in);
}
// configure the ADC channel
adc_config_channel(&self->handle, self->channel);
// This uses the timer in polling mode to do the sampling
// TODO use DMA
uint nelems = bufinfo.len / typesize;
for (uint index = 0; index < nelems; index++) {
// Wait for the timer to trigger so we sample at the correct frequency
while (__HAL_TIM_GET_FLAG(tim, TIM_FLAG_UPDATE) == RESET) {
}
__HAL_TIM_CLEAR_FLAG(tim, TIM_FLAG_UPDATE);
if (index == 0) {
// for the first sample we need to turn the ADC on
HAL_ADC_Start(&self->handle);
} else {
// for subsequent samples we can just set the "start sample" bit
#if defined(MCU_SERIES_F4) || defined(MCU_SERIES_F7)
ADCx->CR2 |= (uint32_t)ADC_CR2_SWSTART;
#elif defined(MCU_SERIES_L4)
SET_BIT(ADCx->CR, ADC_CR_ADSTART);
#else
#error Unsupported processor
#endif
}
// wait for sample to complete
#define READ_TIMED_TIMEOUT (10) // in ms
adc_wait_for_eoc_or_timeout(READ_TIMED_TIMEOUT);
// read value
uint value = ADCx->DR;
// store value in buffer
if (typesize == 1) {
value >>= 4;
}
mp_binary_set_val_array_from_int(bufinfo.typecode, bufinfo.buf, index, value);
}
// turn the ADC off
HAL_ADC_Stop(&self->handle);
#if defined(TIM6)
if (mp_obj_is_integer(freq_in)) {
// stop timer if we initialised TIM6 in this function (legacy behaviour)
HAL_TIM_Base_Stop(tim);
}
#endif
return mp_obj_new_int(bufinfo.len);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(adc_read_timed_obj, adc_read_timed);
STATIC const mp_map_elem_t adc_locals_dict_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR_read), (mp_obj_t)&adc_read_obj},
{ MP_OBJ_NEW_QSTR(MP_QSTR_read_timed), (mp_obj_t)&adc_read_timed_obj},
};
STATIC MP_DEFINE_CONST_DICT(adc_locals_dict, adc_locals_dict_table);
const mp_obj_type_t pyb_adc_type = {
{ &mp_type_type },
.name = MP_QSTR_ADC,
.print = adc_print,
.make_new = adc_make_new,
.locals_dict = (mp_obj_t)&adc_locals_dict,
};
/******************************************************************************/
/* adc all object */
typedef struct _pyb_adc_all_obj_t {
mp_obj_base_t base;
ADC_HandleTypeDef handle;
} pyb_adc_all_obj_t;
void adc_init_all(pyb_adc_all_obj_t *adc_all, uint32_t resolution, uint32_t en_mask) {
switch (resolution) {
case 6: resolution = ADC_RESOLUTION6b; break;
case 8: resolution = ADC_RESOLUTION8b; break;
case 10: resolution = ADC_RESOLUTION10b; break;
case 12: resolution = ADC_RESOLUTION12b; break;
default:
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError,
"resolution %d not supported", resolution));
}
for (uint32_t channel = ADC_FIRST_GPIO_CHANNEL; channel <= ADC_LAST_GPIO_CHANNEL; ++channel) {
// only initialise those channels that are selected with the en_mask
if (en_mask & (1 << channel)) {
// Channels 0-16 correspond to real pins. Configure the GPIO pin in
// ADC mode.
const pin_obj_t *pin = pin_adc1[channel];
if (pin) {
mp_hal_gpio_clock_enable(pin->gpio);
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.Pin = pin->pin_mask;
GPIO_InitStructure.Mode = GPIO_MODE_ANALOG;
GPIO_InitStructure.Pull = GPIO_NOPULL;
HAL_GPIO_Init(pin->gpio, &GPIO_InitStructure);
}
}
}
adcx_clock_enable();
ADC_HandleTypeDef *adcHandle = &adc_all->handle;
adcHandle->Instance = ADCx;
adcHandle->Init.Resolution = resolution;
adcHandle->Init.ContinuousConvMode = DISABLE;
adcHandle->Init.DiscontinuousConvMode = DISABLE;
adcHandle->Init.NbrOfDiscConversion = 0;
adcHandle->Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
adcHandle->Init.DataAlign = ADC_DATAALIGN_RIGHT;
adcHandle->Init.NbrOfConversion = 1;
adcHandle->Init.DMAContinuousRequests = DISABLE;
adcHandle->Init.EOCSelection = DISABLE;
#if defined(MCU_SERIES_F4) || defined(MCU_SERIES_F7)
adcHandle->Init.ClockPrescaler = ADC_CLOCKPRESCALER_PCLK_DIV2;
adcHandle->Init.ScanConvMode = DISABLE;
adcHandle->Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T1_CC1;
#elif defined(MCU_SERIES_L4)
adcHandle->Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV2;
adcHandle->Init.ScanConvMode = ADC_SCAN_DISABLE;
adcHandle->Init.ExternalTrigConv = ADC_EXTERNALTRIG_T1_CC1;
adcHandle->Init.LowPowerAutoWait = DISABLE;
adcHandle->Init.Overrun = ADC_OVR_DATA_PRESERVED;
adcHandle->Init.OversamplingMode = DISABLE;
#else
#error Unsupported processor
#endif
HAL_ADC_Init(adcHandle);
}
uint32_t adc_config_and_read_channel(ADC_HandleTypeDef *adcHandle, uint32_t channel) {
adc_config_channel(adcHandle, channel);
return adc_read_channel(adcHandle);
}
int adc_get_resolution(ADC_HandleTypeDef *adcHandle) {
uint32_t res_reg = __HAL_ADC_GET_RESOLUTION(adcHandle);
switch (res_reg) {
case ADC_RESOLUTION6b: return 6;
case ADC_RESOLUTION8b: return 8;
case ADC_RESOLUTION10b: return 10;
}
return 12;
}
int adc_read_core_temp(ADC_HandleTypeDef *adcHandle) {
int32_t raw_value = adc_config_and_read_channel(adcHandle, ADC_CHANNEL_TEMPSENSOR);
// Note: constants assume 12-bit resolution, so we scale the raw value to
// be 12-bits.
raw_value <<= (12 - adc_get_resolution(adcHandle));
return ((raw_value - CORE_TEMP_V25) / CORE_TEMP_AVG_SLOPE) + 25;
}
#if MICROPY_PY_BUILTINS_FLOAT
float adc_read_core_vbat(ADC_HandleTypeDef *adcHandle) {
uint32_t raw_value = adc_config_and_read_channel(adcHandle, ADC_CHANNEL_VBAT);
// Note: constants assume 12-bit resolution, so we scale the raw value to
// be 12-bits.
raw_value <<= (12 - adc_get_resolution(adcHandle));
// multiplier is 3.3/4095
return raw_value * VBAT_DIV * 0.8058608058608059e-3f;
}
float adc_read_core_vref(ADC_HandleTypeDef *adcHandle) {
uint32_t raw_value = adc_config_and_read_channel(adcHandle, ADC_CHANNEL_VREFINT);
// Note: constants assume 12-bit resolution, so we scale the raw value to
// be 12-bits.
raw_value <<= (12 - adc_get_resolution(adcHandle));
// multiplier is 3.3/4095
return raw_value * 0.8058608058608059e-3f;
}
#endif
/******************************************************************************/
/* Micro Python bindings : adc_all object */
STATIC mp_obj_t adc_all_make_new(const mp_obj_type_t *type, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
// check number of arguments
mp_arg_check_num(n_args, n_kw, 1, 2, false);
// make ADCAll object
pyb_adc_all_obj_t *o = m_new_obj(pyb_adc_all_obj_t);
o->base.type = &pyb_adc_all_type;
mp_int_t res = mp_obj_get_int(args[0]);
uint32_t en_mask = 0xffffffff;
if (n_args > 1) {
en_mask = mp_obj_get_int(args[1]);
}
adc_init_all(o, res, en_mask);
return o;
}
STATIC mp_obj_t adc_all_read_channel(mp_obj_t self_in, mp_obj_t channel) {
pyb_adc_all_obj_t *self = self_in;
uint32_t chan = mp_obj_get_int(channel);
uint32_t data = adc_config_and_read_channel(&self->handle, chan);
return mp_obj_new_int(data);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(adc_all_read_channel_obj, adc_all_read_channel);
STATIC mp_obj_t adc_all_read_core_temp(mp_obj_t self_in) {
pyb_adc_all_obj_t *self = self_in;
int data = adc_read_core_temp(&self->handle);
return mp_obj_new_int(data);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(adc_all_read_core_temp_obj, adc_all_read_core_temp);
#if MICROPY_PY_BUILTINS_FLOAT
STATIC mp_obj_t adc_all_read_core_vbat(mp_obj_t self_in) {
pyb_adc_all_obj_t *self = self_in;
float data = adc_read_core_vbat(&self->handle);
return mp_obj_new_float(data);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(adc_all_read_core_vbat_obj, adc_all_read_core_vbat);
STATIC mp_obj_t adc_all_read_core_vref(mp_obj_t self_in) {
pyb_adc_all_obj_t *self = self_in;
float data = adc_read_core_vref(&self->handle);
return mp_obj_new_float(data);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(adc_all_read_core_vref_obj, adc_all_read_core_vref);
#endif
STATIC const mp_map_elem_t adc_all_locals_dict_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR_read_channel), (mp_obj_t)&adc_all_read_channel_obj},
{ MP_OBJ_NEW_QSTR(MP_QSTR_read_core_temp), (mp_obj_t)&adc_all_read_core_temp_obj},
#if MICROPY_PY_BUILTINS_FLOAT
{ MP_OBJ_NEW_QSTR(MP_QSTR_read_core_vbat), (mp_obj_t)&adc_all_read_core_vbat_obj},
{ MP_OBJ_NEW_QSTR(MP_QSTR_read_core_vref), (mp_obj_t)&adc_all_read_core_vref_obj},
#endif
};
STATIC MP_DEFINE_CONST_DICT(adc_all_locals_dict, adc_all_locals_dict_table);
const mp_obj_type_t pyb_adc_all_type = {
{ &mp_type_type },
.name = MP_QSTR_ADCAll,
.make_new = adc_all_make_new,
.locals_dict = (mp_obj_t)&adc_all_locals_dict,
};