/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include "py/runtime.h" #include "py/stream.h" #include "py/mperrno.h" #include "py/mphal.h" #include "lib/utils/interrupt_char.h" #include "uart.h" #include "irq.h" #include "pendsv.h" #if defined(STM32F4) #define UART_RXNE_IS_SET(uart) ((uart)->SR & USART_SR_RXNE) #else #define UART_RXNE_IS_SET(uart) ((uart)->ISR & USART_ISR_RXNE) #endif #define UART_RXNE_IT_EN(uart) do { (uart)->CR1 |= USART_CR1_RXNEIE; } while (0) #define UART_RXNE_IT_DIS(uart) do { (uart)->CR1 &= ~USART_CR1_RXNEIE; } while (0) extern void NORETURN __fatal_error(const char *msg); void uart_init0(void) { #if defined(STM32H7) RCC_PeriphCLKInitTypeDef RCC_PeriphClkInit = {0}; // Configure USART1/6 clock source RCC_PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART16; RCC_PeriphClkInit.Usart16ClockSelection = RCC_USART16CLKSOURCE_D2PCLK2; if (HAL_RCCEx_PeriphCLKConfig(&RCC_PeriphClkInit) != HAL_OK) { __fatal_error("HAL_RCCEx_PeriphCLKConfig"); } // Configure USART2/3/4/5/7/8 clock source RCC_PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART234578; RCC_PeriphClkInit.Usart16ClockSelection = RCC_USART234578CLKSOURCE_D2PCLK1; if (HAL_RCCEx_PeriphCLKConfig(&RCC_PeriphClkInit) != HAL_OK) { __fatal_error("HAL_RCCEx_PeriphCLKConfig"); } #endif for (int i = 0; i < MP_ARRAY_SIZE(MP_STATE_PORT(pyb_uart_obj_all)); i++) { MP_STATE_PORT(pyb_uart_obj_all)[i] = NULL; } } // unregister all interrupt sources void uart_deinit_all(void) { for (int i = 0; i < MP_ARRAY_SIZE(MP_STATE_PORT(pyb_uart_obj_all)); i++) { pyb_uart_obj_t *uart_obj = MP_STATE_PORT(pyb_uart_obj_all)[i]; if (uart_obj != NULL) { uart_deinit(uart_obj); } } } bool uart_exists(int uart_id) { if (uart_id > MP_ARRAY_SIZE(MP_STATE_PORT(pyb_uart_obj_all))) { // safeguard against pyb_uart_obj_all array being configured too small return false; } switch (uart_id) { #if defined(MICROPY_HW_UART1_TX) && defined(MICROPY_HW_UART1_RX) case PYB_UART_1: return true; #endif #if defined(MICROPY_HW_UART2_TX) && defined(MICROPY_HW_UART2_RX) case PYB_UART_2: return true; #endif #if defined(MICROPY_HW_UART3_TX) && defined(MICROPY_HW_UART3_RX) case PYB_UART_3: return true; #endif #if defined(MICROPY_HW_UART4_TX) && defined(MICROPY_HW_UART4_RX) case PYB_UART_4: return true; #endif #if defined(MICROPY_HW_UART5_TX) && defined(MICROPY_HW_UART5_RX) case PYB_UART_5: return true; #endif #if defined(MICROPY_HW_UART6_TX) && defined(MICROPY_HW_UART6_RX) case PYB_UART_6: return true; #endif #if defined(MICROPY_HW_UART7_TX) && defined(MICROPY_HW_UART7_RX) case PYB_UART_7: return true; #endif #if defined(MICROPY_HW_UART8_TX) && defined(MICROPY_HW_UART8_RX) case PYB_UART_8: return true; #endif default: return false; } } // assumes Init parameters have been set up correctly bool uart_init(pyb_uart_obj_t *uart_obj, uint32_t baudrate, uint32_t bits, uint32_t parity, uint32_t stop, uint32_t flow) { USART_TypeDef *UARTx; IRQn_Type irqn; int uart_unit; const pin_obj_t *pins[4] = {0}; switch (uart_obj->uart_id) { #if defined(MICROPY_HW_UART1_TX) && defined(MICROPY_HW_UART1_RX) case PYB_UART_1: uart_unit = 1; UARTx = USART1; irqn = USART1_IRQn; pins[0] = MICROPY_HW_UART1_TX; pins[1] = MICROPY_HW_UART1_RX; __HAL_RCC_USART1_CLK_ENABLE(); break; #endif #if defined(MICROPY_HW_UART2_TX) && defined(MICROPY_HW_UART2_RX) case PYB_UART_2: uart_unit = 2; UARTx = USART2; irqn = USART2_IRQn; pins[0] = MICROPY_HW_UART2_TX; pins[1] = MICROPY_HW_UART2_RX; #if defined(MICROPY_HW_UART2_RTS) if (flow & UART_HWCONTROL_RTS) { pins[2] = MICROPY_HW_UART2_RTS; } #endif #if defined(MICROPY_HW_UART2_CTS) if (flow & UART_HWCONTROL_CTS) { pins[3] = MICROPY_HW_UART2_CTS; } #endif __HAL_RCC_USART2_CLK_ENABLE(); break; #endif #if defined(MICROPY_HW_UART3_TX) && defined(MICROPY_HW_UART3_RX) case PYB_UART_3: uart_unit = 3; UARTx = USART3; #if defined(STM32F0) irqn = USART3_8_IRQn; #else irqn = USART3_IRQn; #endif pins[0] = MICROPY_HW_UART3_TX; pins[1] = MICROPY_HW_UART3_RX; #if defined(MICROPY_HW_UART3_RTS) if (flow & UART_HWCONTROL_RTS) { pins[2] = MICROPY_HW_UART3_RTS; } #endif #if defined(MICROPY_HW_UART3_CTS) if (flow & UART_HWCONTROL_CTS) { pins[3] = MICROPY_HW_UART3_CTS; } #endif __HAL_RCC_USART3_CLK_ENABLE(); break; #endif #if defined(MICROPY_HW_UART4_TX) && defined(MICROPY_HW_UART4_RX) case PYB_UART_4: uart_unit = 4; #if defined(STM32F0) UARTx = USART4; irqn = USART3_8_IRQn; __HAL_RCC_USART4_CLK_ENABLE(); #else UARTx = UART4; irqn = UART4_IRQn; __HAL_RCC_UART4_CLK_ENABLE(); #endif pins[0] = MICROPY_HW_UART4_TX; pins[1] = MICROPY_HW_UART4_RX; break; #endif #if defined(MICROPY_HW_UART5_TX) && defined(MICROPY_HW_UART5_RX) case PYB_UART_5: uart_unit = 5; #if defined(STM32F0) UARTx = USART5; irqn = USART3_8_IRQn; __HAL_RCC_USART5_CLK_ENABLE(); #else UARTx = UART5; irqn = UART5_IRQn; __HAL_RCC_UART5_CLK_ENABLE(); #endif pins[0] = MICROPY_HW_UART5_TX; pins[1] = MICROPY_HW_UART5_RX; break; #endif #if defined(MICROPY_HW_UART6_TX) && defined(MICROPY_HW_UART6_RX) case PYB_UART_6: uart_unit = 6; UARTx = USART6; #if defined(STM32F0) irqn = USART3_8_IRQn; #else irqn = USART6_IRQn; #endif pins[0] = MICROPY_HW_UART6_TX; pins[1] = MICROPY_HW_UART6_RX; #if defined(MICROPY_HW_UART6_RTS) if (flow & UART_HWCONTROL_RTS) { pins[2] = MICROPY_HW_UART6_RTS; } #endif #if defined(MICROPY_HW_UART6_CTS) if (flow & UART_HWCONTROL_CTS) { pins[3] = MICROPY_HW_UART6_CTS; } #endif __HAL_RCC_USART6_CLK_ENABLE(); break; #endif #if defined(MICROPY_HW_UART7_TX) && defined(MICROPY_HW_UART7_RX) case PYB_UART_7: uart_unit = 7; #if defined(STM32F0) UARTx = USART7; irqn = USART3_8_IRQn; __HAL_RCC_USART7_CLK_ENABLE(); #else UARTx = UART7; irqn = UART7_IRQn; __HAL_RCC_UART7_CLK_ENABLE(); #endif pins[0] = MICROPY_HW_UART7_TX; pins[1] = MICROPY_HW_UART7_RX; break; #endif #if defined(MICROPY_HW_UART8_TX) && defined(MICROPY_HW_UART8_RX) case PYB_UART_8: uart_unit = 8; #if defined(STM32F0) UARTx = USART8; irqn = USART3_8_IRQn; __HAL_RCC_USART8_CLK_ENABLE(); #else UARTx = UART8; irqn = UART8_IRQn; __HAL_RCC_UART8_CLK_ENABLE(); #endif pins[0] = MICROPY_HW_UART8_TX; pins[1] = MICROPY_HW_UART8_RX; break; #endif default: // UART does not exist or is not configured for this board return false; } uint32_t mode = MP_HAL_PIN_MODE_ALT; uint32_t pull = MP_HAL_PIN_PULL_UP; for (uint i = 0; i < 4; i++) { if (pins[i] != NULL) { bool ret = mp_hal_pin_config_alt(pins[i], mode, pull, AF_FN_UART, uart_unit); if (!ret) { return false; } } } uart_obj->irqn = irqn; uart_obj->uartx = UARTx; // init UARTx UART_HandleTypeDef huart; memset(&huart, 0, sizeof(huart)); huart.Instance = UARTx; huart.Init.BaudRate = baudrate; huart.Init.WordLength = bits; huart.Init.StopBits = stop; huart.Init.Parity = parity; huart.Init.Mode = UART_MODE_TX_RX; huart.Init.HwFlowCtl = flow; huart.Init.OverSampling = UART_OVERSAMPLING_16; HAL_UART_Init(&huart); uart_obj->is_enabled = true; uart_obj->attached_to_repl = false; if (bits == UART_WORDLENGTH_9B && parity == UART_PARITY_NONE) { uart_obj->char_mask = 0x1ff; uart_obj->char_width = CHAR_WIDTH_9BIT; } else { if (bits == UART_WORDLENGTH_9B || parity == UART_PARITY_NONE) { uart_obj->char_mask = 0xff; } else { uart_obj->char_mask = 0x7f; } uart_obj->char_width = CHAR_WIDTH_8BIT; } return true; } void uart_set_rxbuf(pyb_uart_obj_t *self, size_t len, void *buf) { self->read_buf_head = 0; self->read_buf_tail = 0; self->read_buf_len = len; self->read_buf = buf; if (len == 0) { HAL_NVIC_DisableIRQ(self->irqn); UART_RXNE_IT_DIS(self->uartx); } else { UART_RXNE_IT_EN(self->uartx); NVIC_SetPriority(IRQn_NONNEG(self->irqn), IRQ_PRI_UART); HAL_NVIC_EnableIRQ(self->irqn); } } void uart_deinit(pyb_uart_obj_t *self) { self->is_enabled = false; // Disable UART self->uartx->CR1 &= ~USART_CR1_UE; // Reset and turn off the UART peripheral if (self->uart_id == 1) { HAL_NVIC_DisableIRQ(USART1_IRQn); __HAL_RCC_USART1_FORCE_RESET(); __HAL_RCC_USART1_RELEASE_RESET(); __HAL_RCC_USART1_CLK_DISABLE(); } else if (self->uart_id == 2) { HAL_NVIC_DisableIRQ(USART2_IRQn); __HAL_RCC_USART2_FORCE_RESET(); __HAL_RCC_USART2_RELEASE_RESET(); __HAL_RCC_USART2_CLK_DISABLE(); #if defined(USART3) } else if (self->uart_id == 3) { #if !defined(STM32F0) HAL_NVIC_DisableIRQ(USART3_IRQn); #endif __HAL_RCC_USART3_FORCE_RESET(); __HAL_RCC_USART3_RELEASE_RESET(); __HAL_RCC_USART3_CLK_DISABLE(); #endif #if defined(UART4) } else if (self->uart_id == 4) { HAL_NVIC_DisableIRQ(UART4_IRQn); __HAL_RCC_UART4_FORCE_RESET(); __HAL_RCC_UART4_RELEASE_RESET(); __HAL_RCC_UART4_CLK_DISABLE(); #endif #if defined(USART4) } else if (self->uart_id == 4) { __HAL_RCC_USART4_FORCE_RESET(); __HAL_RCC_USART4_RELEASE_RESET(); __HAL_RCC_USART4_CLK_DISABLE(); #endif #if defined(UART5) } else if (self->uart_id == 5) { HAL_NVIC_DisableIRQ(UART5_IRQn); __HAL_RCC_UART5_FORCE_RESET(); __HAL_RCC_UART5_RELEASE_RESET(); __HAL_RCC_UART5_CLK_DISABLE(); #endif #if defined(USART5) } else if (self->uart_id == 5) { __HAL_RCC_USART5_FORCE_RESET(); __HAL_RCC_USART5_RELEASE_RESET(); __HAL_RCC_USART5_CLK_DISABLE(); #endif #if defined(UART6) } else if (self->uart_id == 6) { HAL_NVIC_DisableIRQ(USART6_IRQn); __HAL_RCC_USART6_FORCE_RESET(); __HAL_RCC_USART6_RELEASE_RESET(); __HAL_RCC_USART6_CLK_DISABLE(); #endif #if defined(UART7) } else if (self->uart_id == 7) { HAL_NVIC_DisableIRQ(UART7_IRQn); __HAL_RCC_UART7_FORCE_RESET(); __HAL_RCC_UART7_RELEASE_RESET(); __HAL_RCC_UART7_CLK_DISABLE(); #endif #if defined(USART7) } else if (self->uart_id == 7) { __HAL_RCC_USART7_FORCE_RESET(); __HAL_RCC_USART7_RELEASE_RESET(); __HAL_RCC_USART7_CLK_DISABLE(); #endif #if defined(UART8) } else if (self->uart_id == 8) { HAL_NVIC_DisableIRQ(UART8_IRQn); __HAL_RCC_UART8_FORCE_RESET(); __HAL_RCC_UART8_RELEASE_RESET(); __HAL_RCC_UART8_CLK_DISABLE(); #endif #if defined(USART8) } else if (self->uart_id == 8) { __HAL_RCC_USART8_FORCE_RESET(); __HAL_RCC_USART8_RELEASE_RESET(); __HAL_RCC_USART8_CLK_DISABLE(); #endif } } void uart_attach_to_repl(pyb_uart_obj_t *self, bool attached) { self->attached_to_repl = attached; } uint32_t uart_get_baudrate(pyb_uart_obj_t *self) { uint32_t uart_clk = 0; #if defined(STM32F0) uart_clk = HAL_RCC_GetPCLK1Freq(); #elif defined(STM32F7) switch ((RCC->DCKCFGR2 >> ((self->uart_id - 1) * 2)) & 3) { case 0: if (self->uart_id == 1 || self->uart_id == 6) { uart_clk = HAL_RCC_GetPCLK2Freq(); } else { uart_clk = HAL_RCC_GetPCLK1Freq(); } break; case 1: uart_clk = HAL_RCC_GetSysClockFreq(); break; case 2: uart_clk = HSI_VALUE; break; case 3: uart_clk = LSE_VALUE; break; } #elif defined(STM32H7) uint32_t csel; if (self->uart_id == 1 || self->uart_id == 6) { csel = RCC->D2CCIP2R >> 3; } else { csel = RCC->D2CCIP2R; } switch (csel & 3) { case 0: if (self->uart_id == 1 || self->uart_id == 6) { uart_clk = HAL_RCC_GetPCLK2Freq(); } else { uart_clk = HAL_RCC_GetPCLK1Freq(); } break; case 3: uart_clk = HSI_VALUE; break; case 4: uart_clk = CSI_VALUE; break; case 5: uart_clk = LSE_VALUE; break; default: break; } #else if (self->uart_id == 1 #if defined(USART6) || self->uart_id == 6 #endif ) { uart_clk = HAL_RCC_GetPCLK2Freq(); } else { uart_clk = HAL_RCC_GetPCLK1Freq(); } #endif // This formula assumes UART_OVERSAMPLING_16 uint32_t baudrate = uart_clk / self->uartx->BRR; return baudrate; } mp_uint_t uart_rx_any(pyb_uart_obj_t *self) { int buffer_bytes = self->read_buf_head - self->read_buf_tail; if (buffer_bytes < 0) { return buffer_bytes + self->read_buf_len; } else if (buffer_bytes > 0) { return buffer_bytes; } else { return UART_RXNE_IS_SET(self->uartx); } } // Waits at most timeout milliseconds for at least 1 char to become ready for // reading (from buf or for direct reading). // Returns true if something available, false if not. bool uart_rx_wait(pyb_uart_obj_t *self, uint32_t timeout) { uint32_t start = HAL_GetTick(); for (;;) { if (self->read_buf_tail != self->read_buf_head || UART_RXNE_IS_SET(self->uartx)) { return true; // have at least 1 char ready for reading } if (HAL_GetTick() - start >= timeout) { return false; // timeout } MICROPY_EVENT_POLL_HOOK } } // assumes there is a character available int uart_rx_char(pyb_uart_obj_t *self) { if (self->read_buf_tail != self->read_buf_head) { // buffering via IRQ int data; if (self->char_width == CHAR_WIDTH_9BIT) { data = ((uint16_t*)self->read_buf)[self->read_buf_tail]; } else { data = self->read_buf[self->read_buf_tail]; } self->read_buf_tail = (self->read_buf_tail + 1) % self->read_buf_len; if (UART_RXNE_IS_SET(self->uartx)) { // UART was stalled by flow ctrl: re-enable IRQ now we have room in buffer UART_RXNE_IT_EN(self->uartx); } return data; } else { // no buffering #if defined(STM32F0) || defined(STM32F7) || defined(STM32L4) || defined(STM32H7) return self->uartx->RDR & self->char_mask; #else return self->uartx->DR & self->char_mask; #endif } } // Waits at most timeout milliseconds for TX register to become empty. // Returns true if can write, false if can't. bool uart_tx_wait(pyb_uart_obj_t *self, uint32_t timeout) { uint32_t start = HAL_GetTick(); for (;;) { if (uart_tx_avail(self)) { return true; // tx register is empty } if (HAL_GetTick() - start >= timeout) { return false; // timeout } MICROPY_EVENT_POLL_HOOK } } // Waits at most timeout milliseconds for UART flag to be set. // Returns true if flag is/was set, false on timeout. STATIC bool uart_wait_flag_set(pyb_uart_obj_t *self, uint32_t flag, uint32_t timeout) { // Note: we don't use WFI to idle in this loop because UART tx doesn't generate // an interrupt and the flag can be set quickly if the baudrate is large. uint32_t start = HAL_GetTick(); for (;;) { #if defined(STM32F4) if (self->uartx->SR & flag) { return true; } #else if (self->uartx->ISR & flag) { return true; } #endif if (timeout == 0 || HAL_GetTick() - start >= timeout) { return false; // timeout } } } // src - a pointer to the data to send (16-bit aligned for 9-bit chars) // num_chars - number of characters to send (9-bit chars count for 2 bytes from src) // *errcode - returns 0 for success, MP_Exxx on error // returns the number of characters sent (valid even if there was an error) size_t uart_tx_data(pyb_uart_obj_t *self, const void *src_in, size_t num_chars, int *errcode) { if (num_chars == 0) { *errcode = 0; return 0; } uint32_t timeout; if (self->uartx->CR3 & USART_CR3_CTSE) { // CTS can hold off transmission for an arbitrarily long time. Apply // the overall timeout rather than the character timeout. timeout = self->timeout; } else { // The timeout specified here is for waiting for the TX data register to // become empty (ie between chars), as well as for the final char to be // completely transferred. The default value for timeout_char is long // enough for 1 char, but we need to double it to wait for the last char // to be transferred to the data register, and then to be transmitted. timeout = 2 * self->timeout_char; } const uint8_t *src = (const uint8_t*)src_in; size_t num_tx = 0; USART_TypeDef *uart = self->uartx; while (num_tx < num_chars) { if (!uart_wait_flag_set(self, UART_FLAG_TXE, timeout)) { *errcode = MP_ETIMEDOUT; return num_tx; } uint32_t data; if (self->char_width == CHAR_WIDTH_9BIT) { data = *((uint16_t*)src) & 0x1ff; src += 2; } else { data = *src++; } #if defined(STM32F4) uart->DR = data; #else uart->TDR = data; #endif ++num_tx; } // wait for the UART frame to complete if (!uart_wait_flag_set(self, UART_FLAG_TC, timeout)) { *errcode = MP_ETIMEDOUT; return num_tx; } *errcode = 0; return num_tx; } void uart_tx_strn(pyb_uart_obj_t *uart_obj, const char *str, uint len) { int errcode; uart_tx_data(uart_obj, str, len, &errcode); } // this IRQ handler is set up to handle RXNE interrupts only void uart_irq_handler(mp_uint_t uart_id) { // get the uart object pyb_uart_obj_t *self = MP_STATE_PORT(pyb_uart_obj_all)[uart_id - 1]; if (self == NULL) { // UART object has not been set, so we can't do anything, not // even disable the IRQ. This should never happen. return; } if (UART_RXNE_IS_SET(self->uartx)) { if (self->read_buf_len != 0) { uint16_t next_head = (self->read_buf_head + 1) % self->read_buf_len; if (next_head != self->read_buf_tail) { // only read data if room in buf #if defined(STM32F0) || defined(STM32F7) || defined(STM32L4) || defined(STM32H7) int data = self->uartx->RDR; // clears UART_FLAG_RXNE #else int data = self->uartx->DR; // clears UART_FLAG_RXNE #endif data &= self->char_mask; // Handle interrupt coming in on a UART REPL if (self->attached_to_repl && data == mp_interrupt_char) { pendsv_kbd_intr(); return; } if (self->char_width == CHAR_WIDTH_9BIT) { ((uint16_t*)self->read_buf)[self->read_buf_head] = data; } else { self->read_buf[self->read_buf_head] = data; } self->read_buf_head = next_head; } else { // No room: leave char in buf, disable interrupt UART_RXNE_IT_DIS(self->uartx); } } } }