Supported triggers: UART.IRQ_RX and UART.IRQ_TXIDLE. It will probably work
on other boards as well, but so far untested.
The irq.flags() value is changed only when requested by a triggered event.
Do not change it otherwise.
Signed-off-by: robert-hh <robert@hammelrath.com>
This commit fixes a bug in the existing driver, that the UART baud rate
could not be changed without reset or power cycle. It adds as well
functionality to UART.deinit().
Signed-off-by: robert-hh <robert@hammelrath.com>
Before, the input was still set to `pin.irq()` mode, only the handler was
disabled. That prevented switching the pin between input and output mode.
Signed-off-by: robert-hh <robert@hammelrath.com>
When PWM constructor was created without specifying a device or setting
both freq and duty rate, it was not tagged as used, and further calls to
get a PWM object may get the same PWM device assigned.
Fixes#13494.
Signed-off-by: robert-hh <robert@hammelrath.com>
Exceptions in pin interrupt handlers would end up crashing MicroPython with
a "FATAL: uncaught exception".
In addition, MicroPython would get stuck trying to output this error
message, or generally any print output from inside a pin interrupt handler,
through the UART after the first character, so that only "F" was visible.
The reason was a matching interrupt priority between the running pin
interrupt and the UARTE interrupt signaling completion of the output
operation. Fix that by increasing the UARTE interrupt priority.
Code taken from the stm32 port and adapted.
Signed-off-by: Christian Walther <cwalther@gmx.ch>
Under some circumstances, after a hard reset, the low-frequency clock would
not be running. This caused time.ticks_ms() to return 0, time.sleep_ms()
to get stuck, and other misbehavior. A soft reboot would return it to a
working state.
The cause was a race condition that was hit when the bootloader would
itself turn LFCLK on, but turn it off again shortly before launching the
main application (this apparently happens with the Adafruit bootloader
from https://github.com/fanoush/ds-d6/tree/master/micropython). Stopping
the clock is an asynchronous operation and it continues running for a short
time after the stop command is given. When MicroPython checked whether to
start it by looking at the LFCLKSTAT register (nrf_clock_lf_is_running)
during that time, it would mistakenly not be started again. What
MicroPython should be looking at is not whether the clock is running at
this time, but whether a start/stop command has been given, which is
indicated by the LFCLKRUN register (nrf_clock_lf_start_task_status_get).
It is not clearly documented, but empirically LFCLKRUN is not just set when
the LFCLKSTART task is triggered, but also cleared when the LFCLKSTOP task
is triggered, which is exactly what we need.
The matter is complicated by the fact that the nRF52832 has an anomaly
(see [errata](https://infocenter.nordicsemi.com/topic/errata_nRF52832_Rev3/ERR/nRF52832/Rev3/latest/anomaly_832_132.html?cp=5_2_1_0_1_33))
where starting the LFCLK will not work between 66µs and 138µs after it last
stopped. Apply a workaround for that. See nrfx_clock_lfclk_start() in
micropython/lib/nrfx/drivers/src/nrfx_clock.c for reference, but we are not
using that because it also does other things and makes the code larger.
Signed-off-by: Christian Walther <cwalther@gmx.ch>
It destroys a few manual alignments, but these seem minor compared to
the benefit of automated code style consistency.
Signed-off-by: Christian Walther <cwalther@gmx.ch>
The STATIC macro was introduced a very long time ago in commit
d5df6cd44a. The original reason for this was
to have the option to define it to nothing so that all static functions
become global functions and therefore visible to certain debug tools, so
one could do function size comparison and other things.
This STATIC feature is rarely (if ever) used. And with the use of LTO and
heavy inline optimisation, analysing the size of individual functions when
they are not static is not a good representation of the size of code when
fully optimised.
So the macro does not have much use and it's simpler to just remove it.
Then you know exactly what it's doing. For example, newcomers don't have
to learn what the STATIC macro is and why it exists. Reading the code is
also less "loud" with a lowercase static.
One other minor point in favour of removing it, is that it stops bugs with
`STATIC inline`, which should always be `static inline`.
Methodology for this commit was:
1) git ls-files | egrep '\.[ch]$' | \
xargs sed -Ei "s/(^| )STATIC($| )/\1static\2/"
2) Do some manual cleanup in the diff by searching for the word STATIC in
comments and changing those back.
3) "git-grep STATIC docs/", manually fixed those cases.
4) "rg -t python STATIC", manually fixed codegen lines that used STATIC.
This work was funded through GitHub Sponsors.
Signed-off-by: Angus Gratton <angus@redyak.com.au>
If there are any free chunks found then it's better to sweep the filesystem
and use the available chunks, rather than error out with ENOSPC when there
is in fact a bit of space remaining.
Signed-off-by: Damien George <damien@micropython.org>
The os.dupterm() function has changed on this port, it now matches the
semantics used by all other ports (except it's restricted to accept only
machine.UART objects).
Signed-off-by: Damien George <damien@micropython.org>
Minor changes for consistency are:
- nrf gains: unique_id(), freq() [they do nothing]
- samd: deepsleep() now resets after calling lightsleep()
- esp32: lightsleep()/deepsleep() no longer take kw arg "sleep", instead
it's positional to match others. also, passing 0 here will now do a 0ms
sleep instead of acting like nothing was passed.
reset_cause() no longer takes any args (before it would just ignore them)
- mimxrt: freq() with an argument and lightsleep() both raise
NotImplementedError
Signed-off-by: Damien George <damien@micropython.org>
And use it in all ports. The ports are unchanged, except esp8266 which now
just returns None from this function instead of the time elapsed (to match
other ports), and qemu-arm which gains this function.
Signed-off-by: Damien George <damien@micropython.org>
This is a code factoring to have the dict for the machine module in one
location, and all the ports use that same dict. The machine.soft_reset()
function implementation is also factored because it's the same for all
ports that did already implement it. Eventually more functions/bindings
can be factored.
All ports remain functionally the same, except:
- cc3200 port: gains soft_reset, mem8, mem16, mem32, Signal; loses POWER_ON
(which was a legacy constant, replaced long ago by PWRON_RESET)
- nrf port: gains Signal
- qemu-arm port: gains soft_reset
- unix port: gains soft_reset
- zephyr port: gains soft_reset, mem8, mem16, mem32
Signed-off-by: Damien George <damien@micropython.org>
MICROPY_PY_MACHINE_SPI is defined in mpconfigport.h to be equal to
MICROPY_PY_MACHINE_HW_SPI, so they are equivalent options. The former one
is preferred because it's used by all other ports.
The default in mpconfigport.h is to enable this option, and all boards that
enable SPI have this removed from their mpconfigboard.h file so they pick
up the default.
Signed-off-by: Damien George <damien@micropython.org>
The contents of machine_mem.h, machine_i2c.h and machine_spi.h have been
moved into extmod/modmachine.h.
Signed-off-by: Damien George <damien@micropython.org>
The contents of machine_bitstream.h, machine_pinbase.h, machine_pulse.h and
machine_signal.h have been moved into extmod/modmachine.h.
Signed-off-by: Damien George <damien@micropython.org>
The machine_i2c_type, machine_spi_type and machine_timer_type symbols are
already declared in extmod/modmachine.h and should not be declared anywhere
else.
Also move declarations of machine_pin_type and machine_rtc_type to the
common header in extmod.
Signed-off-by: Damien George <damien@micropython.org>
This is a code factoring to have the Python bindings in one location, and
all the ports use those same bindings. For all ports except the two listed
below there is no functional change.
The nrf port has UART.sendbreak() removed, but this method previously did
nothing.
The zephyr port has the following methods added:
- UART.init(): supports setting timeout and timeout_char.
- UART.deinit(): does nothing, just returns None.
- UART.flush(): raises OSError(EINVAL) because it's not implemented.
- UART.any() and UART.txdone(): raise NotImplementedError.
Signed-off-by: Damien George <damien@micropython.org>
No functional change, just code factoring to have the Python bindings in
one location, and all the ports use those same bindings.
Signed-off-by: Damien George <damien@micropython.org>
With public declarations moved to extmod/modmachine.h. It's now mandatory
for a port to define MICROPY_PY_MACHINE_PWM_INCLUDEFILE if it enables
MICROPY_PY_MACHINE_PWM. This follows how extmod/machine_wdt.c works.
All ports have been updated to work with this modified scheme.
Signed-off-by: Damien George <damien@micropython.org>
The asyncio module now has much better CPython compatibility and
deserves to be just called "asyncio".
This will avoid people having to write `from uasyncio import asyncio`.
Renames all files, and updates port manifests to use the new path. Also
renames the built-in _uasyncio to _asyncio.
This work was funded through GitHub Sponsors.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
Applies to drivers/examples/extmod/port-modules/tools.
This work was funded through GitHub Sponsors.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
Updates any includes, and references from Makefiles/CMake.
This essentially reverts what was done long ago in commit
136b5cbd76
This work was funded through GitHub Sponsors.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This renames the builtin-modules, such that help('modules') and printing
the module object will show "module" rather than "umodule".
This work was funded through GitHub Sponsors.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
API additions;
- time.sleep() is added
- time.ticks_cpu() is added, but it just returns 0
No API or functional change to existing time functions.
Signed-off-by: Damien George <damien@micropython.org>
Based on extmod/utime_mphal.c, with:
- a globals dict added
- time.localtime wrapper added
- time.time wrapper added
- time.time_ns function added
New configuration options are added for this module:
- MICROPY_PY_UTIME (enabled at basic features level)
- MICROPY_PY_UTIME_GMTIME_LOCALTIME_MKTIME
- MICROPY_PY_UTIME_TIME_TIME_NS
Signed-off-by: Damien George <damien@micropython.org>
Changes in this commit:
- Move the pwm_seq array to the p_config data structure. That prevents
potential resource collisions between PWM devices.
- Rename the keyword argument 'id' to 'device'. That's consistent with the
SAMD port as the other port allowing to specify it.
Changes in this commit:
- Add the timeout and timeout_char keyword options.
- Make uart.read() non-blocking.
- Add uart.any().
- Add ioctl MP_STREAM_POLL handling.
- Change uart.write() into non-busy waiting. uart.write() still waits until
all data has been sent, but calls MICROPY_EVENT_POLL_HOOK while waiting.
uart.write() uses DMA for transfer. One option would be to add a small
local buffer, such that transfers up to the size of the buffer could be
done without waiting.
- As a side effect to the change of uart.write(), uart.txdone() and ioctl
flush now report/wait correctly for the end of transmission.
- Change machine_hard_uart_buf_t in machine_hard_uart_obj_t to an instance
of that struct, rather than a pointer to one.
These have the same frequency, but can have different duty cycle and
polarity.
pwm.deinit() stops all channels of a module, but does not release the
module. pwm.init() without arguments restarts all outputs.
Using extmod/machine_pwm.c for the Python bindings and the existing
softpwm.c driver, by just adding the interface.
Properties:
- Frequency range 1-3906 Hz.
- All PWM outputs run at the same frequency but can have different duty
cycles.
- Limited to the P0.x pins.
Since it uses the existing softpwm.c mechanism, it will be affected by
playing music with the music class.
This is a breaking change, making the hardware PWM on the nrf port
compatible with the other ports providing machine.PWM.
Frequency range 4Hz - ~5.4 MHz. The base clock range is 125kHz to 16 MHz,
and the divider range is 3 - 32767.
The hardware supports up to four outputs per PWM device with different duty
cycles, but only one output is (and was) supported.
So that it doesn't clash with the extmod version.
Also make the default for this enabled, so that most boards do not need to
configure it.
Signed-off-by: Damien George <damien@micropython.org>