esp32/machine_uart: Implement UART.RX_IDLE based on machine.Timer.

The UART.IRQ_IDLE callback is called about two character times after the
last byte, or 1 ms, whichever is larger.  For the irq, timer 0 is used.

machine_timer.c had to be reworked to make it's mechanisms available for
machine_uart.c.

The irq.flags() value is change only at a requested event.  Otherwise keep
the state.

Signed-off-by: robert-hh <robert@hammelrath.com>
This commit is contained in:
robert-hh 2024-07-04 16:57:29 +02:00 committed by Damien George
parent 7045975d04
commit a38b4f4287
3 changed files with 175 additions and 37 deletions

View File

@ -38,6 +38,7 @@
#include "hal/timer_hal.h"
#include "hal/timer_ll.h"
#include "soc/timer_periph.h"
#include "machine_timer.h"
#define TIMER_DIVIDER 8
@ -46,27 +47,8 @@
#define TIMER_FLAGS 0
typedef struct _machine_timer_obj_t {
mp_obj_base_t base;
timer_hal_context_t hal_context;
mp_uint_t group;
mp_uint_t index;
mp_uint_t repeat;
// ESP32 timers are 64 or 54-bit
uint64_t period;
mp_obj_t callback;
intr_handle_t handle;
struct _machine_timer_obj_t *next;
} machine_timer_obj_t;
const mp_obj_type_t machine_timer_type;
static void machine_timer_disable(machine_timer_obj_t *self);
static mp_obj_t machine_timer_init_helper(machine_timer_obj_t *self, mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args);
void machine_timer_deinit_all(void) {
@ -91,17 +73,16 @@ static void machine_timer_print(const mp_print_t *print, mp_obj_t self_in, mp_pr
#endif
}
static mp_obj_t machine_timer_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
#if CONFIG_IDF_TARGET_ESP32C3
mp_uint_t group = mp_obj_get_int(args[0]) & 1;
mp_uint_t index = 0;
#else
mp_uint_t group = (mp_obj_get_int(args[0]) >> 1) & 1;
mp_uint_t index = mp_obj_get_int(args[0]) & 1;
#endif
machine_timer_obj_t *machine_timer_create(mp_uint_t timer) {
machine_timer_obj_t *self = NULL;
#if CONFIG_IDF_TARGET_ESP32C3
mp_uint_t group = timer & 1;
mp_uint_t index = 0;
#else
mp_uint_t group = (timer >> 1) & 1;
mp_uint_t index = timer & 1;
#endif
// Check whether the timer is already initialized, if so use it
for (machine_timer_obj_t *t = MP_STATE_PORT(machine_timer_obj_head); t; t = t->next) {
@ -120,6 +101,14 @@ static mp_obj_t machine_timer_make_new(const mp_obj_type_t *type, size_t n_args,
self->next = MP_STATE_PORT(machine_timer_obj_head);
MP_STATE_PORT(machine_timer_obj_head) = self;
}
return self;
}
static mp_obj_t machine_timer_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
// Create the new timer.
machine_timer_obj_t *self = machine_timer_create(mp_obj_get_int(args[0]));
if (n_args > 1 || n_kw > 0) {
mp_map_t kw_args;
@ -130,7 +119,7 @@ static mp_obj_t machine_timer_make_new(const mp_obj_type_t *type, size_t n_args,
return self;
}
static void machine_timer_disable(machine_timer_obj_t *self) {
void machine_timer_disable(machine_timer_obj_t *self) {
if (self->hal_context.dev != NULL) {
// Disable the counter and alarm.
timer_ll_enable_counter(self->hal_context.dev, self->index, false);
@ -162,7 +151,7 @@ static void machine_timer_isr(void *self_in) {
}
}
static void machine_timer_enable(machine_timer_obj_t *self) {
void machine_timer_enable(machine_timer_obj_t *self, void (*timer_isr)) {
// Initialise the timer.
timer_hal_init(&self->hal_context, self->group, self->index);
timer_ll_enable_counter(self->hal_context.dev, self->index, false);
@ -176,7 +165,7 @@ static void machine_timer_enable(machine_timer_obj_t *self) {
timer_ll_clear_intr_status(self->hal_context.dev, TIMER_LL_EVENT_ALARM(self->index));
ESP_ERROR_CHECK(
esp_intr_alloc(timer_group_periph_signals.groups[self->group].timer_irq_id[self->index],
TIMER_FLAGS, machine_timer_isr, self, &self->handle)
TIMER_FLAGS, timer_isr, self, &self->handle)
);
timer_ll_enable_intr(self->hal_context.dev, TIMER_LL_EVENT_ALARM(self->index), true);
@ -234,7 +223,7 @@ static mp_obj_t machine_timer_init_helper(machine_timer_obj_t *self, mp_uint_t n
self->callback = args[ARG_callback].u_obj;
self->handle = NULL;
machine_timer_enable(self);
machine_timer_enable(self, machine_timer_isr);
return mp_const_none;
}

View File

@ -0,0 +1,66 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* Development of the code in this file was sponsored by Microbric Pty Ltd
*
* The MIT License (MIT)
*
* Copyright (c) 2013-2015 Damien P. George
* Copyright (c) 2016 Paul Sokolovsky
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MICROPY_INCLUDED_ESP32_MACHINE_TIMER_H
#define MICROPY_INCLUDED_ESP32_MACHINE_TIMER_H
#include "hal/timer_hal.h"
#include "hal/timer_ll.h"
#include "soc/timer_periph.h"
#define TIMER_DIVIDER 8
// TIMER_BASE_CLK is normally 80MHz. TIMER_DIVIDER ought to divide this exactly
#define TIMER_SCALE (APB_CLK_FREQ / TIMER_DIVIDER)
#define TIMER_FLAGS 0
typedef struct _machine_timer_obj_t {
mp_obj_base_t base;
timer_hal_context_t hal_context;
mp_uint_t group;
mp_uint_t index;
mp_uint_t repeat;
// ESP32 timers are 64-bit
uint64_t period;
mp_obj_t callback;
intr_handle_t handle;
struct _machine_timer_obj_t *next;
} machine_timer_obj_t;
machine_timer_obj_t *machine_timer_create(mp_uint_t timer);
void machine_timer_enable(machine_timer_obj_t *self, void (*timer_isr));
void machine_timer_disable(machine_timer_obj_t *self);
#endif // MICROPY_INCLUDED_ESP32_MACHINE_TIMER_H

View File

@ -39,6 +39,7 @@
#include "py/mperrno.h"
#include "py/mphal.h"
#include "uart.h"
#include "machine_timer.h"
#if SOC_UART_SUPPORT_XTAL_CLK
// Works independently of APB frequency, on ESP32C3, ESP32S3.
@ -54,8 +55,17 @@
#define UART_INV_MASK (UART_INV_TX | UART_INV_RX | UART_INV_RTS | UART_INV_CTS)
#define UART_IRQ_RX (1 << UART_DATA)
#define UART_IRQ_RXIDLE (0x1000)
#define UART_IRQ_BREAK (1 << UART_BREAK)
#define MP_UART_ALLOWED_FLAGS (UART_IRQ_RX | UART_IRQ_BREAK)
#define MP_UART_ALLOWED_FLAGS (UART_IRQ_RX | UART_IRQ_RXIDLE | UART_IRQ_BREAK)
#define RXIDLE_TIMER_MIN (5000) // 500 us
enum {
RXIDLE_INACTIVE,
RXIDLE_STANDBY,
RXIDLE_ARMED,
RXIDLE_ALERT,
};
typedef struct _machine_uart_obj_t {
mp_obj_base_t base;
@ -78,6 +88,9 @@ typedef struct _machine_uart_obj_t {
uint16_t mp_irq_trigger; // user IRQ trigger mask
uint16_t mp_irq_flags; // user IRQ active IRQ flags
mp_irq_obj_t *mp_irq_obj; // user IRQ object
machine_timer_obj_t *rxidle_timer;
uint8_t rxidle_state;
uint16_t rxidle_period;
} machine_uart_obj_t;
static const char *_parity_name[] = {"None", "1", "0"};
@ -93,28 +106,67 @@ static const char *_parity_name[] = {"None", "1", "0"};
{ MP_ROM_QSTR(MP_QSTR_RTS), MP_ROM_INT(UART_HW_FLOWCTRL_RTS) }, \
{ MP_ROM_QSTR(MP_QSTR_CTS), MP_ROM_INT(UART_HW_FLOWCTRL_CTS) }, \
{ MP_ROM_QSTR(MP_QSTR_IRQ_RX), MP_ROM_INT(UART_IRQ_RX) }, \
{ MP_ROM_QSTR(MP_QSTR_IRQ_RXIDLE), MP_ROM_INT(UART_IRQ_RXIDLE) }, \
{ MP_ROM_QSTR(MP_QSTR_IRQ_BREAK), MP_ROM_INT(UART_IRQ_BREAK) }, \
static void uart_timer_callback(void *self_in) {
machine_timer_obj_t *self = self_in;
uint32_t intr_status = timer_ll_get_intr_status(self->hal_context.dev);
if (intr_status & TIMER_LL_EVENT_ALARM(self->index)) {
timer_ll_clear_intr_status(self->hal_context.dev, TIMER_LL_EVENT_ALARM(self->index));
if (self->repeat) {
timer_ll_enable_alarm(self->hal_context.dev, self->index, true);
}
}
// The UART object is referred here by the callback field.
machine_uart_obj_t *uart = (machine_uart_obj_t *)self->callback;
if (uart->rxidle_state == RXIDLE_ALERT) {
// At the first call, just switch the state
uart->rxidle_state = RXIDLE_ARMED;
} else if (uart->rxidle_state == RXIDLE_ARMED) {
// At the second call, run the irq callback and stop the timer
uart->rxidle_state = RXIDLE_STANDBY;
uart->mp_irq_flags = UART_IRQ_RXIDLE;
mp_irq_handler(uart->mp_irq_obj);
mp_hal_wake_main_task_from_isr();
machine_timer_disable(uart->rxidle_timer);
}
}
static void uart_event_task(void *self_in) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
uart_event_t event;
for (;;) {
// Waiting for an UART event.
if (xQueueReceive(self->uart_queue, (void *)&event, (TickType_t)portMAX_DELAY)) {
self->mp_irq_flags = 0;
uint16_t mp_irq_flags = 0;
switch (event.type) {
// Event of UART receiving data
case UART_DATA:
self->mp_irq_flags |= UART_IRQ_RX;
if (self->mp_irq_trigger & UART_IRQ_RXIDLE) {
if (self->rxidle_state != RXIDLE_INACTIVE) {
if (self->rxidle_state == RXIDLE_STANDBY) {
self->rxidle_timer->repeat = true;
self->rxidle_timer->handle = NULL;
machine_timer_enable(self->rxidle_timer, uart_timer_callback);
}
}
self->rxidle_state = RXIDLE_ALERT;
}
mp_irq_flags |= UART_IRQ_RX;
break;
case UART_BREAK:
self->mp_irq_flags |= UART_IRQ_BREAK;
mp_irq_flags |= UART_IRQ_BREAK;
break;
default:
break;
}
// Check the flags to see if the user handler should be called
if (self->mp_irq_trigger & self->mp_irq_flags) {
if (self->mp_irq_trigger & mp_irq_flags) {
self->mp_irq_flags = mp_irq_flags;
mp_irq_handler(self->mp_irq_obj);
mp_hal_wake_main_task_from_isr();
}
@ -390,6 +442,7 @@ static mp_obj_t mp_machine_uart_make_new(const mp_obj_type_t *type, size_t n_arg
self->invert = 0;
self->flowcontrol = 0;
self->uart_event_task = 0;
self->rxidle_state = RXIDLE_INACTIVE;
switch (uart_num) {
case UART_NUM_0:
@ -464,8 +517,35 @@ static void mp_machine_uart_sendbreak(machine_uart_obj_t *self) {
check_esp_err(uart_set_baudrate(self->uart_num, baudrate));
}
// Configure the timer used for IRQ_RXIDLE
static void uart_irq_configure_timer(machine_uart_obj_t *self, mp_uint_t trigger) {
self->rxidle_state = RXIDLE_INACTIVE;
if (trigger & UART_IRQ_RXIDLE) {
// The RXIDLE event is always a soft IRQ.
self->mp_irq_obj->ishard = false;
uint32_t baudrate;
uart_get_baudrate(self->uart_num, &baudrate);
mp_int_t period = TIMER_SCALE * 20 / baudrate + 1;
if (period < RXIDLE_TIMER_MIN) {
period = RXIDLE_TIMER_MIN;
}
self->rxidle_period = period;
self->rxidle_timer->period = period;
// The Python callback is not used. So use this
// data field to hold a reference to the UART object.
self->rxidle_timer->callback = self;
self->rxidle_timer->repeat = true;
self->rxidle_timer->handle = NULL;
self->rxidle_state = RXIDLE_STANDBY;
}
}
static mp_uint_t uart_irq_trigger(mp_obj_t self_in, mp_uint_t new_trigger) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
uart_irq_configure_timer(self, new_trigger);
self->mp_irq_trigger = new_trigger;
return 0;
}
@ -511,6 +591,9 @@ static mp_irq_obj_t *mp_machine_uart_irq(machine_uart_obj_t *self, bool any_args
}
self->mp_irq_obj->ishard = false;
self->mp_irq_trigger = trigger;
self->rxidle_timer = machine_timer_create(0);
uart_irq_configure_timer(self, trigger);
// Start a task for handling events
if (handler != mp_const_none && self->uart_event_task == NULL) {
xTaskCreatePinnedToCore(uart_event_task, "uart_event_task", 2048, self,