nrf/modules/machine/pwm: Use extmod/machine_pwm.c for PWM module.

This is a breaking change, making the hardware PWM on the nrf port
compatible with the other ports providing machine.PWM.

Frequency range 4Hz - ~5.4 MHz.  The base clock range is 125kHz to 16 MHz,
and the divider range is 3 - 32767.

The hardware supports up to four outputs per PWM device with different duty
cycles, but only one output is (and was) supported.
This commit is contained in:
robert-hh 2023-03-04 17:51:18 +01:00 committed by Damien George
parent cf43df4caa
commit a1f838cdf1
18 changed files with 267 additions and 225 deletions

View File

@ -330,7 +330,6 @@ DRIVERS_SRC_C += $(addprefix modules/,\
machine/pin.c \
machine/timer.c \
machine/rtcounter.c \
machine/pwm.c \
machine/temp.c \
uos/moduos.c \
uos/microbitfs.c \

View File

@ -14,6 +14,7 @@
#define MICROPY_BOARD_ENTER_BOOTLOADER(nargs, args) NANO33_board_enter_bootloader()
#define MICROPY_PY_MACHINE_UART (1)
#define MICROPY_PY_MACHINE_PWM (1)
#define MICROPY_PY_MACHINE_HW_PWM (1)
#define MICROPY_PY_MACHINE_HW_SPI (1)
#define MICROPY_PY_MACHINE_RTCOUNTER (1)

View File

@ -32,6 +32,7 @@
#define MICROPY_PY_MUSIC (1)
#define MICROPY_PY_MACHINE_UART (1)
#define MICROPY_PY_MACHINE_PWM (1)
#define MICROPY_PY_MACHINE_HW_PWM (1)
#define MICROPY_PY_MACHINE_HW_SPI (1)
#define MICROPY_PY_MACHINE_RTCOUNTER (1)

View File

@ -32,6 +32,7 @@
#define MICROPY_PY_MUSIC (1)
#define MICROPY_PY_MACHINE_UART (1)
#define MICROPY_PY_MACHINE_PWM (1)
#define MICROPY_PY_MACHINE_HW_PWM (1)
#define MICROPY_PY_MACHINE_HW_SPI (1)
#define MICROPY_PY_MACHINE_RTCOUNTER (1)

View File

@ -46,6 +46,7 @@
// Peripherals Config
#define MICROPY_PY_MACHINE_UART (1)
#define MICROPY_PY_MACHINE_PWM (1)
#define MICROPY_PY_MACHINE_HW_PWM (1)
#define MICROPY_PY_MACHINE_HW_SPI (1)
#define MICROPY_PY_MACHINE_RTCOUNTER (1)

View File

@ -29,6 +29,7 @@
#define MICROPY_PY_SYS_PLATFORM "nrf52"
#define MICROPY_PY_MACHINE_UART (1)
#define MICROPY_PY_MACHINE_PWM (1)
#define MICROPY_PY_MACHINE_HW_PWM (1)
#define MICROPY_PY_MACHINE_HW_SPI (1)
#define MICROPY_PY_MACHINE_RTCOUNTER (1)

View File

@ -32,6 +32,7 @@
#define MICROPY_PY_MUSIC (1)
#define MICROPY_PY_MACHINE_UART (1)
#define MICROPY_PY_MACHINE_PWM (1)
#define MICROPY_PY_MACHINE_HW_PWM (1)
#define MICROPY_PY_MACHINE_HW_SPI (1)
#define MICROPY_PY_MACHINE_RTCOUNTER (1)

View File

@ -32,6 +32,7 @@
#define MICROPY_PY_MUSIC (1)
#define MICROPY_PY_MACHINE_UART (1)
#define MICROPY_PY_MACHINE_PWM (1)
#define MICROPY_PY_MACHINE_HW_PWM (1)
#define MICROPY_PY_MACHINE_HW_SPI (1)
#define MICROPY_PY_MACHINE_RTCOUNTER (1)

View File

@ -29,6 +29,7 @@
#define MICROPY_PY_SYS_PLATFORM "nrf52840-MDK-USB-Dongle"
#define MICROPY_PY_MACHINE_UART (1)
#define MICROPY_PY_MACHINE_PWM (1)
#define MICROPY_PY_MACHINE_HW_PWM (1)
#define MICROPY_PY_MACHINE_HW_SPI (1)
#define MICROPY_PY_MACHINE_RTCOUNTER (1)

View File

@ -29,6 +29,7 @@
#define MICROPY_PY_SYS_PLATFORM "PARTICLE-XENON"
#define MICROPY_PY_MACHINE_UART (1)
#define MICROPY_PY_MACHINE_PWM (1)
#define MICROPY_PY_MACHINE_HW_PWM (1)
#define MICROPY_PY_MACHINE_HW_SPI (1)
#define MICROPY_PY_MACHINE_RTCOUNTER (1)

View File

@ -29,6 +29,7 @@
#define MICROPY_PY_SYS_PLATFORM "nrf52-DK"
#define MICROPY_PY_MACHINE_UART (1)
#define MICROPY_PY_MACHINE_PWM (1)
#define MICROPY_PY_MACHINE_HW_PWM (1)
#define MICROPY_PY_MACHINE_HW_SPI (1)
#define MICROPY_PY_MACHINE_RTCOUNTER (1)

View File

@ -29,6 +29,7 @@
#define MICROPY_PY_SYS_PLATFORM "nrf52840-PDK"
#define MICROPY_PY_MACHINE_UART (1)
#define MICROPY_PY_MACHINE_PWM (1)
#define MICROPY_PY_MACHINE_HW_PWM (1)
#define MICROPY_PY_MACHINE_HW_SPI (1)
#define MICROPY_PY_MACHINE_RTCOUNTER (1)

View File

@ -29,6 +29,7 @@
#define MICROPY_PY_SYS_PLATFORM "nrf52840-Dongle"
#define MICROPY_PY_MACHINE_UART (1)
#define MICROPY_PY_MACHINE_PWM (1)
#define MICROPY_PY_MACHINE_HW_PWM (1)
#define MICROPY_PY_MACHINE_HW_SPI (1)
#define MICROPY_PY_MACHINE_RTCOUNTER (1)

View File

@ -34,6 +34,7 @@
#define MICROPY_HW_USB_CDC (1)
#define MICROPY_PY_MACHINE_UART (1)
#define MICROPY_PY_MACHINE_PWM (1)
#define MICROPY_PY_MACHINE_HW_PWM (1)
#define MICROPY_PY_MACHINE_HW_SPI (1)
#define MICROPY_PY_MACHINE_RTCOUNTER (1)

View File

@ -280,6 +280,10 @@ soft_reset:
}
}
#if MICROPY_PY_MACHINE_HW_PWM
pwm_deinit_all();
#endif
mp_deinit();
printf("MPY: soft reboot\n");

View File

@ -42,25 +42,37 @@
#include "nrfx_pwm.h"
#endif
#define PWM_MAX_BASE_FREQ (16000000)
#define PWM_MIN_BASE_FREQ (125000)
#define PWM_MAX_PERIOD (32768)
typedef enum {
MODE_LOW_HIGH,
MODE_HIGH_LOW
MODE_HIGH_LOW,
MODE_LOW_HIGH
} pwm_mode_t;
typedef enum {
DUTY_NOT_SET,
DUTY_PERCENT,
DUTY_U16,
DUTY_NS
} pwm_duty_t;
typedef struct {
uint8_t pwm_pin;
uint8_t duty;
uint16_t pulse_width;
uint16_t period;
nrf_pwm_clk_t freq;
pwm_mode_t mode;
uint8_t duty_mode;
int8_t freq_div;
bool defer_start;
uint32_t duty;
uint32_t freq;
bool mode;
} machine_pwm_config_t;
typedef struct _machine_hard_pwm_obj_t {
typedef struct _machine_pwm_obj_t {
mp_obj_base_t base;
const nrfx_pwm_t *p_pwm;
machine_pwm_config_t *p_config;
} machine_hard_pwm_obj_t;
} machine_pwm_obj_t;
STATIC const nrfx_pwm_t machine_hard_pwm_instances[] = {
#if defined(NRF52_SERIES)
@ -74,8 +86,9 @@ STATIC const nrfx_pwm_t machine_hard_pwm_instances[] = {
};
STATIC machine_pwm_config_t hard_configs[MP_ARRAY_SIZE(machine_hard_pwm_instances)];
STATIC uint8_t pwm_used[MP_ARRAY_SIZE(machine_hard_pwm_instances)];
STATIC const machine_hard_pwm_obj_t machine_hard_pwm_obj[] = {
STATIC const machine_pwm_obj_t machine_hard_pwm_obj[] = {
#if defined(NRF52_SERIES)
{{&machine_pwm_type}, .p_pwm = &machine_hard_pwm_instances[0], .p_config = &hard_configs[0]},
{{&machine_pwm_type}, .p_pwm = &machine_hard_pwm_instances[1], .p_config = &hard_configs[1]},
@ -89,231 +102,257 @@ STATIC const machine_hard_pwm_obj_t machine_hard_pwm_obj[] = {
void pwm_init0(void) {
}
STATIC int hard_pwm_find(mp_obj_t id) {
if (mp_obj_is_int(id)) {
// given an integer id
int pwm_id = mp_obj_get_int(id);
if (pwm_id >= 0 && pwm_id < MP_ARRAY_SIZE(machine_hard_pwm_obj)) {
return pwm_id;
// Find a free PWM
STATIC int hard_pwm_find(int pin) {
// check, if a PWM object can be reused.
for (int i = 0; i < MP_ARRAY_SIZE(machine_hard_pwm_obj); i++) {
if (machine_hard_pwm_obj[i].p_config->pwm_pin == pin) {
return i;
}
}
return -1;
// if not, look for a free object.
for (int i = 0; i < MP_ARRAY_SIZE(machine_hard_pwm_obj); i++) {
if (pwm_used[i] == 0) {
return i;
}
}
mp_raise_ValueError(MP_ERROR_TEXT("no free PWM id"));
}
STATIC void machine_pwm_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
machine_hard_pwm_obj_t *self = self_in;
mp_printf(print, "PWM(%u)", self->p_pwm->drv_inst_idx);
STATIC void mp_machine_pwm_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
machine_pwm_obj_t *self = self_in;
static char *duty_suffix[] = { "", "", "_u16", "_ns" };
mp_printf(print, "<PWM: Pin=%u freq=%dHz duty%s=%d invert=%d id=%u>",
self->p_config->pwm_pin, self->p_config->freq,
duty_suffix[self->p_config->duty_mode], self->p_config->duty,
self->p_config->mode, self->p_pwm->drv_inst_idx);
}
/******************************************************************************/
/* MicroPython bindings for machine API */
STATIC mp_obj_t machine_hard_pwm_make_new(mp_arg_val_t *args);
STATIC void machine_hard_pwm_init(mp_obj_t self, mp_arg_val_t *args);
STATIC void machine_hard_pwm_deinit(mp_obj_t self);
STATIC mp_obj_t machine_hard_pwm_freq(mp_obj_t self, mp_arg_val_t *args);
STATIC void machine_hard_pwm_start(const machine_pwm_obj_t *self);
STATIC void mp_machine_pwm_deinit(const machine_pwm_obj_t *self);
STATIC void mp_machine_pwm_freq_set(const machine_pwm_obj_t *self, mp_int_t freq);
STATIC void mp_machine_pwm_duty_set(const machine_pwm_obj_t *self, mp_int_t duty);
STATIC void mp_machine_pwm_duty_set_u16(const machine_pwm_obj_t *self, mp_int_t duty_u16);
STATIC void mp_machine_pwm_duty_set_ns(const machine_pwm_obj_t *self, mp_int_t duty_ns);
/* common code for both soft and hard implementations *************************/
STATIC mp_obj_t machine_pwm_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
enum { ARG_id, ARG_pin, ARG_freq, ARG_period, ARG_duty, ARG_pulse_width, ARG_mode };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_id, MP_ARG_OBJ, {.u_obj = MP_OBJ_NEW_SMALL_INT(-1)} },
{ MP_QSTR_pin, MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_freq, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_period, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_duty, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_pulse_width, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_mode, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_freq, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_duty, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_duty_u16, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_duty_ns, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_invert, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_id, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
};
STATIC void mp_machine_pwm_init_helper(const machine_pwm_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_pin, ARG_freq, ARG_duty, ARG_duty_u16, ARG_duty_ns, ARG_invert, ARG_id };
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
self->p_config->defer_start = true;
if (args[ARG_freq].u_int != -1) {
mp_machine_pwm_freq_set(self, args[ARG_freq].u_int);
}
if (args[ARG_duty].u_int != -1) {
mp_machine_pwm_duty_set(self, args[ARG_duty].u_int);
}
if (args[ARG_duty_u16].u_int != -1) {
mp_machine_pwm_duty_set_u16(self, args[ARG_duty_u16].u_int);
}
if (args[ARG_duty_ns].u_int != -1) {
mp_machine_pwm_duty_set_ns(self, args[ARG_duty_ns].u_int);
}
if (args[ARG_invert].u_int != -1) {
self->p_config->mode = args[ARG_invert].u_int ? MODE_LOW_HIGH : MODE_HIGH_LOW;
}
self->p_config->defer_start = false;
machine_hard_pwm_start(self);
}
STATIC mp_obj_t mp_machine_pwm_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
enum { ARG_pin, ARG_freq, ARG_duty, ARG_duty_u16, ARG_duty_ns, ARG_invert, ARG_id };
// parse args
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
if (args[ARG_id].u_obj == MP_OBJ_NEW_SMALL_INT(-1)) {
// TODO: implement soft PWM
// return machine_soft_pwm_make_new(args);
return mp_const_none;
} else {
// hardware peripheral id given
return machine_hard_pwm_make_new(args);
}
}
STATIC mp_obj_t machine_pwm_init(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_INIT_pin };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_pin, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }
};
// parse args
mp_obj_t self = pos_args[0];
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// dispatch to specific implementation
if (mp_obj_get_type(self) == &machine_pwm_type) {
machine_hard_pwm_init(self, args);
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(machine_pwm_init_obj, 1, machine_pwm_init);
STATIC mp_obj_t machine_pwm_deinit(mp_obj_t self) {
// dispatch to specific implementation
if (mp_obj_get_type(self) == &machine_pwm_type) {
machine_hard_pwm_deinit(self);
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(machine_pwm_deinit_obj, machine_pwm_deinit);
STATIC mp_obj_t machine_pwm_freq(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_FREQ_freq };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_freq, MP_ARG_INT, {.u_int = -1} },
};
mp_obj_t self = pos_args[0];
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
if (mp_obj_get_type(self) == &machine_pwm_type) {
machine_hard_pwm_freq(self, args);
} else {
// soft pwm
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(mp_machine_pwm_freq_obj, 1, machine_pwm_freq);
STATIC mp_obj_t machine_pwm_period(size_t n_args, const mp_obj_t *args) {
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(mp_machine_pwm_period_obj, 1, 2, machine_pwm_period);
STATIC mp_obj_t machine_pwm_duty(size_t n_args, const mp_obj_t *args) {
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(mp_machine_pwm_duty_obj, 1, 2, machine_pwm_duty);
STATIC const mp_rom_map_elem_t machine_pwm_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&machine_pwm_init_obj) },
{ MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&machine_pwm_deinit_obj) },
{ MP_ROM_QSTR(MP_QSTR_freq), MP_ROM_PTR(&mp_machine_pwm_freq_obj) },
{ MP_ROM_QSTR(MP_QSTR_period), MP_ROM_PTR(&mp_machine_pwm_period_obj) },
{ MP_ROM_QSTR(MP_QSTR_duty), MP_ROM_PTR(&mp_machine_pwm_duty_obj) },
{ MP_ROM_QSTR(MP_QSTR_FREQ_16MHZ), MP_ROM_INT(NRF_PWM_CLK_16MHz) },
{ MP_ROM_QSTR(MP_QSTR_FREQ_8MHZ), MP_ROM_INT(NRF_PWM_CLK_8MHz) },
{ MP_ROM_QSTR(MP_QSTR_FREQ_4MHZ), MP_ROM_INT(NRF_PWM_CLK_4MHz) },
{ MP_ROM_QSTR(MP_QSTR_FREQ_2MHZ), MP_ROM_INT(NRF_PWM_CLK_2MHz) },
{ MP_ROM_QSTR(MP_QSTR_FREQ_1MHZ), MP_ROM_INT(NRF_PWM_CLK_1MHz) },
{ MP_ROM_QSTR(MP_QSTR_FREQ_500KHZ), MP_ROM_INT(NRF_PWM_CLK_500kHz) },
{ MP_ROM_QSTR(MP_QSTR_FREQ_250KHZ), MP_ROM_INT(NRF_PWM_CLK_250kHz) },
{ MP_ROM_QSTR(MP_QSTR_FREQ_125KHZ), MP_ROM_INT(NRF_PWM_CLK_125kHz) },
{ MP_ROM_QSTR(MP_QSTR_MODE_LOW_HIGH), MP_ROM_INT(MODE_LOW_HIGH) },
{ MP_ROM_QSTR(MP_QSTR_MODE_HIGH_LOW), MP_ROM_INT(MODE_HIGH_LOW) },
};
STATIC MP_DEFINE_CONST_DICT(machine_pwm_locals_dict, machine_pwm_locals_dict_table);
/* code for hard implementation ***********************************************/
STATIC mp_obj_t machine_hard_pwm_make_new(mp_arg_val_t *args) {
enum { ARG_id, ARG_pin, ARG_freq, ARG_period, ARG_duty, ARG_pulse_width, ARG_mode };
// get static peripheral object
int pwm_id = hard_pwm_find(args[ARG_id].u_obj);
if (pwm_id < 0) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid or missing PWM id"));
}
const machine_hard_pwm_obj_t *self = &machine_hard_pwm_obj[pwm_id];
// check if PWM pin is set
// check if the PWM pin is given.
int pwm_pin;
if (args[ARG_pin].u_obj != MP_OBJ_NULL) {
self->p_config->pwm_pin = mp_hal_get_pin_obj(args[ARG_pin].u_obj)->pin;
pwm_pin = mp_hal_get_pin_obj(args[ARG_pin].u_obj)->pin;
} else {
mp_raise_ValueError(MP_ERROR_TEXT("Pin missing"));
}
if (args[ARG_freq].u_obj != MP_OBJ_NULL) {
self->p_config->freq = mp_obj_get_int(args[ARG_freq].u_obj);
} else {
self->p_config->freq = 2; // 4 MHz by default.
int pwm_id = -1;
if (args[ARG_id].u_int != -1) {
// get static peripheral object
if (args[ARG_id].u_int >= 0 && args[ARG_id].u_int < MP_ARRAY_SIZE(machine_hard_pwm_obj)) {
pwm_id = args[ARG_id].u_int;
}
if (args[ARG_period].u_obj != MP_OBJ_NULL) {
self->p_config->period = mp_obj_get_int(args[ARG_period].u_obj);
} else {
mp_raise_ValueError(MP_ERROR_TEXT("PWM period must be within 16000 cycles"));
pwm_id = hard_pwm_find(pwm_pin);
}
if (args[ARG_duty].u_obj != MP_OBJ_NULL) {
self->p_config->duty = mp_obj_get_int(args[ARG_duty].u_obj);
} else {
self->p_config->duty = 50; // 50% by default.
if (pwm_id < 0) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid PWM id"));
}
if (args[ARG_pulse_width].u_obj != MP_OBJ_NULL) {
self->p_config->pulse_width = mp_obj_get_int(args[ARG_pulse_width].u_obj);
} else {
self->p_config->pulse_width = 0;
}
if (args[ARG_mode].u_obj != MP_OBJ_NULL) {
self->p_config->mode = mp_obj_get_int(args[ARG_mode].u_obj);
} else {
const machine_pwm_obj_t *self = &machine_hard_pwm_obj[pwm_id];
self->p_config->pwm_pin = pwm_pin;
self->p_config->defer_start = false;
self->p_config->duty_mode = DUTY_NOT_SET;
self->p_config->duty = 0;
self->p_config->freq = 0;
self->p_config->freq_div = -1;
self->p_config->mode = MODE_HIGH_LOW;
}
// start the PWM running for this channel
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, all_args + n_args);
mp_machine_pwm_init_helper(self, n_args, all_args, &kw_args);
return MP_OBJ_FROM_PTR(self);
}
STATIC void machine_hard_pwm_init(mp_obj_t self_in, mp_arg_val_t *args) {
machine_hard_pwm_obj_t *self = self_in;
void pwm_deinit_all(void) {
for (int i = 0; i < MP_ARRAY_SIZE(machine_hard_pwm_obj); i++) {
mp_machine_pwm_deinit(&machine_hard_pwm_obj[i]);
}
}
STATIC void mp_machine_pwm_deinit(const machine_pwm_obj_t *self) {
pwm_used[self->p_pwm->drv_inst_idx] = 0;
nrfx_pwm_stop(self->p_pwm, true);
nrfx_pwm_uninit(self->p_pwm);
}
STATIC mp_obj_t mp_machine_pwm_freq_get(const machine_pwm_obj_t *self) {
return MP_OBJ_NEW_SMALL_INT(self->p_config->freq);
}
STATIC void mp_machine_pwm_freq_set(const machine_pwm_obj_t *self, mp_int_t freq) {
uint8_t div = 0;
if (freq > (PWM_MAX_BASE_FREQ / 3) || freq <= (PWM_MIN_BASE_FREQ / PWM_MAX_PERIOD)) {
mp_raise_ValueError(MP_ERROR_TEXT("frequency out of range"));
}
for (div = 0; div < 8; div++) {
if (PWM_MAX_BASE_FREQ / (1 << div) / freq < PWM_MAX_PERIOD) {
break;
}
}
self->p_config->freq_div = div;
self->p_config->freq = freq;
machine_hard_pwm_start(self);
}
STATIC mp_obj_t mp_machine_pwm_duty_get(const machine_pwm_obj_t *self) {
if (self->p_config->duty_mode == DUTY_PERCENT) {
return MP_OBJ_NEW_SMALL_INT(self->p_config->duty);
} else if (self->p_config->duty_mode == DUTY_U16) {
return MP_OBJ_NEW_SMALL_INT(self->p_config->duty * 100 / 65536);
} else {
return MP_OBJ_NEW_SMALL_INT(-1);
}
}
STATIC void mp_machine_pwm_duty_set(const machine_pwm_obj_t *self, mp_int_t duty) {
self->p_config->duty = duty;
self->p_config->duty_mode = DUTY_PERCENT;
machine_hard_pwm_start(self);
}
STATIC mp_obj_t mp_machine_pwm_duty_get_u16(const machine_pwm_obj_t *self) {
if (self->p_config->duty_mode == DUTY_U16) {
return MP_OBJ_NEW_SMALL_INT(self->p_config->duty);
} else if (self->p_config->duty_mode == DUTY_PERCENT) {
return MP_OBJ_NEW_SMALL_INT(self->p_config->duty * 65536 / 100);
} else {
return MP_OBJ_NEW_SMALL_INT(-1);
}
}
STATIC void mp_machine_pwm_duty_set_u16(const machine_pwm_obj_t *self, mp_int_t duty) {
self->p_config->duty = duty;
self->p_config->duty_mode = DUTY_U16;
machine_hard_pwm_start(self);
}
STATIC mp_obj_t mp_machine_pwm_duty_get_ns(const machine_pwm_obj_t *self) {
if (self->p_config->duty_mode == DUTY_NS) {
return MP_OBJ_NEW_SMALL_INT(self->p_config->duty);
} else {
return MP_OBJ_NEW_SMALL_INT(-1);
}
}
STATIC void mp_machine_pwm_duty_set_ns(const machine_pwm_obj_t *self, mp_int_t duty) {
self->p_config->duty = duty;
self->p_config->duty_mode = DUTY_NS;
machine_hard_pwm_start(self);
}
/* code for hard implementation ***********************************************/
STATIC void machine_hard_pwm_start(const machine_pwm_obj_t *self) {
nrfx_pwm_config_t config;
// check if ready to go
if (self->p_config->defer_start == true || self->p_config->freq_div < 0 || self->p_config->duty_mode == DUTY_NOT_SET) {
return; // Not ready yet.
}
pwm_used[self->p_pwm->drv_inst_idx] = 1;
config.output_pins[0] = self->p_config->pwm_pin;
config.output_pins[1] = NRFX_PWM_PIN_NOT_USED;
config.output_pins[2] = NRFX_PWM_PIN_NOT_USED;
config.output_pins[3] = NRFX_PWM_PIN_NOT_USED;
uint32_t tick_freq = PWM_MAX_BASE_FREQ / (1 << self->p_config->freq_div);
uint32_t period = tick_freq / self->p_config->freq;
config.irq_priority = 6;
config.base_clock = self->p_config->freq;
config.base_clock = self->p_config->freq_div;
config.count_mode = NRF_PWM_MODE_UP;
config.top_value = self->p_config->period;
config.top_value = period;
config.load_mode = NRF_PWM_LOAD_INDIVIDUAL;
config.step_mode = NRF_PWM_STEP_AUTO;
nrfx_pwm_stop(self->p_pwm, true);
nrfx_pwm_uninit(self->p_pwm);
nrfx_pwm_init(self->p_pwm, &config, NULL, NULL);
uint16_t pulse_width = ((self->p_config->period * self->p_config->duty) / 100);
// If manual pulse width has been set, override duty-cycle.
if (self->p_config->pulse_width > 0) {
pulse_width = self->p_config->pulse_width;
uint16_t pulse_width;
if (self->p_config->duty_mode == DUTY_PERCENT) {
pulse_width = ((period * self->p_config->duty) / 100);
} else if (self->p_config->duty_mode == DUTY_U16) {
pulse_width = ((period * self->p_config->duty) / 65536);
}
if (self->p_config->duty_mode == DUTY_NS) {
pulse_width = (uint64_t)self->p_config->duty * tick_freq / 1000000000ULL;
}
// TODO: Move DMA buffer to global memory.
volatile static uint16_t pwm_seq[4];
if (self->p_config->mode == MODE_HIGH_LOW) {
pwm_seq[0] = self->p_config->period - pulse_width;
pwm_seq[1] = self->p_config->period - pulse_width;
pwm_seq[0] = 0x8000 | pulse_width;
} else {
pwm_seq[0] = self->p_config->period - pulse_width;
pwm_seq[1] = self->p_config->period - pulse_width;
pwm_seq[0] = pulse_width;
}
pwm_seq[2] = self->p_config->period - pulse_width;
pwm_seq[3] = self->p_config->period - pulse_width;
// Outputs 1..3 are not used for now
// pwm_seq[1] = 0x8000 | pulse_width;
// pwm_seq[2] = 0x8000 | pulse_width;
// pwm_seq[3] = 0x8000 | pulse_width;
const nrf_pwm_sequence_t pwm_sequence = {
.values.p_raw = (const uint16_t *)&pwm_seq,
@ -328,26 +367,4 @@ STATIC void machine_hard_pwm_init(mp_obj_t self_in, mp_arg_val_t *args) {
0);
}
STATIC void machine_hard_pwm_deinit(mp_obj_t self_in) {
machine_hard_pwm_obj_t *self = self_in;
(void)self;
nrfx_pwm_stop(self->p_pwm, true);
nrfx_pwm_uninit(self->p_pwm);
}
STATIC mp_obj_t machine_hard_pwm_freq(mp_obj_t self_in, mp_arg_val_t *args) {
machine_hard_pwm_obj_t *self = self_in;
(void)self;
return mp_const_none;
}
MP_DEFINE_CONST_OBJ_TYPE(
machine_pwm_type,
MP_QSTR_PWM,
MP_TYPE_FLAG_NONE,
make_new, machine_pwm_make_new,
print, machine_pwm_print,
locals_dict, &machine_pwm_locals_dict
);
#endif // MICROPY_PY_MACHINE_HW_PWM

View File

@ -25,5 +25,6 @@
*/
void pwm_init0(void);
void pwm_deinit_all(void);
extern const mp_obj_type_t machine_pwm_type;

View File

@ -196,6 +196,14 @@
#define MICROPY_PY_MACHINE_SOFT_PWM (0)
#endif
#define MICROPY_PY_MACHINE_PWM_INIT (1)
#define MICROPY_PY_MACHINE_PWM_DUTY (1)
#define MICROPY_PY_MACHINE_PWM_DUTY_U16_NS (1)
#if MICROPY_PY_MACHINE_HW_PWM
#define MICROPY_PY_MACHINE_PWM_INCLUDEFILE "ports/nrf/modules/machine/pwm.c"
#endif
#ifndef MICROPY_PY_MACHINE_TIMER_NRF
#define MICROPY_PY_MACHINE_TIMER_NRF (1)
#endif