micropython/docs/library/pyb.CAN.rst

224 lines
8.8 KiB
ReStructuredText
Raw Normal View History

.. currentmodule:: pyb
.. _pyb.CAN:
2014-11-01 01:21:37 +03:00
class CAN -- controller area network communication bus
======================================================
CAN implements the standard CAN communications protocol. At
the physical level it consists of 2 lines: RX and TX. Note that
to connect the pyboard to a CAN bus you must use a CAN transceiver
to convert the CAN logic signals from the pyboard to the correct
voltage levels on the bus.
Example usage (works without anything connected)::
from pyb import CAN
2014-11-30 00:29:06 +03:00
can = CAN(1, CAN.LOOPBACK)
can.setfilter(0, CAN.LIST16, 0, (123, 124, 125, 126)) # set a filter to receive messages with id=123, 124, 125 and 126
can.send('message!', 123) # send a message with id 123
can.recv(0) # receive message on FIFO 0
Constructors
------------
.. class:: pyb.CAN(bus, ...)
Construct a CAN object on the given bus. *bus* can be 1-2, or ``'YA'`` or ``'YB'``.
With no additional parameters, the CAN object is created but not
initialised (it has the settings from the last initialisation of
the bus, if any). If extra arguments are given, the bus is initialised.
See :meth:`CAN.init` for parameters of initialisation.
The physical pins of the CAN busses are:
- ``CAN(1)`` is on ``YA``: ``(RX, TX) = (Y3, Y4) = (PB8, PB9)``
- ``CAN(2)`` is on ``YB``: ``(RX, TX) = (Y5, Y6) = (PB12, PB13)``
2014-11-30 00:29:06 +03:00
Class Methods
-------------
.. classmethod:: CAN.initfilterbanks(nr)
2014-11-30 00:29:06 +03:00
Reset and disable all filter banks and assign how many banks should be available for CAN(1).
2014-11-30 00:29:06 +03:00
STM32F405 has 28 filter banks that are shared between the two available CAN bus controllers.
This function configures how many filter banks should be assigned to each. *nr* is the number of banks
that will be assigned to CAN(1), the rest of the 28 are assigned to CAN(2).
2014-11-30 00:29:06 +03:00
At boot, 14 banks are assigned to each controller.
Methods
-------
.. method:: CAN.init(mode, extframe=False, prescaler=100, \*, sjw=1, bs1=6, bs2=8)
Initialise the CAN bus with the given parameters:
- *mode* is one of: NORMAL, LOOPBACK, SILENT, SILENT_LOOPBACK
- if *extframe* is True then the bus uses extended identifiers in the frames
(29 bits); otherwise it uses standard 11 bit identifiers
- *prescaler* is used to set the duration of 1 time quanta; the time quanta
will be the input clock (PCLK1, see :meth:`pyb.freq()`) divided by the prescaler
- *sjw* is the resynchronisation jump width in units of the time quanta;
it can be 1, 2, 3, 4
- *bs1* defines the location of the sample point in units of the time quanta;
it can be between 1 and 1024 inclusive
- *bs2* defines the location of the transmit point in units of the time quanta;
it can be between 1 and 16 inclusive
The time quanta tq is the basic unit of time for the CAN bus. tq is the CAN
prescaler value divided by PCLK1 (the frequency of internal peripheral bus 1);
see :meth:`pyb.freq()` to determine PCLK1.
A single bit is made up of the synchronisation segment, which is always 1 tq.
Then follows bit segment 1, then bit segment 2. The sample point is after bit
segment 1 finishes. The transmit point is after bit segment 2 finishes.
The baud rate will be 1/bittime, where the bittime is 1 + BS1 + BS2 multiplied
by the time quanta tq.
For example, with PCLK1=42MHz, prescaler=100, sjw=1, bs1=6, bs2=8, the value of
tq is 2.38 microseconds. The bittime is 35.7 microseconds, and the baudrate
is 28kHz.
See page 680 of the STM32F405 datasheet for more details.
.. method:: CAN.deinit()
Turn off the CAN bus.
.. method:: CAN.setfilter(bank, mode, fifo, params, \*, rtr)
2014-11-30 00:29:06 +03:00
Configure a filter bank:
- *bank* is the filter bank that is to be configured.
- *mode* is the mode the filter should operate in.
- *fifo* is which fifo (0 or 1) a message should be stored in, if it is accepted by this filter.
- *params* is an array of values the defines the filter. The contents of the array depends on the *mode* argument.
2014-11-30 00:29:06 +03:00
+-----------+---------------------------------------------------------+
|*mode* |contents of *params* array |
2014-11-30 00:29:06 +03:00
+===========+=========================================================+
|CAN.LIST16 |Four 16 bit ids that will be accepted |
+-----------+---------------------------------------------------------+
|CAN.LIST32 |Two 32 bit ids that will be accepted |
+-----------+---------------------------------------------------------+
|CAN.MASK16 |Two 16 bit id/mask pairs. E.g. (1, 3, 4, 4) |
| | | The first pair, 1 and 3 will accept all ids |
| | | that have bit 0 = 1 and bit 1 = 0. |
| | | The second pair, 4 and 4, will accept all ids |
| | | that have bit 2 = 1. |
+-----------+---------------------------------------------------------+
|CAN.MASK32 |As with CAN.MASK16 but with only one 32 bit id/mask pair.|
+-----------+---------------------------------------------------------+
- *rtr* is an array of booleans that states if a filter should accept a
remote transmission request message. If this argument is not given
then it defaults to ``False`` for all entries. The length of the array
depends on the *mode* argument.
+-----------+----------------------+
|*mode* |length of *rtr* array |
+===========+======================+
|CAN.LIST16 |4 |
+-----------+----------------------+
|CAN.LIST32 |2 |
+-----------+----------------------+
|CAN.MASK16 |2 |
+-----------+----------------------+
|CAN.MASK32 |1 |
+-----------+----------------------+
.. method:: CAN.clearfilter(bank)
2014-11-30 00:29:06 +03:00
Clear and disables a filter bank:
- *bank* is the filter bank that is to be cleared.
2014-11-30 00:29:06 +03:00
.. method:: CAN.any(fifo)
Return ``True`` if any message waiting on the FIFO, else ``False``.
.. method:: CAN.recv(fifo, \*, timeout=5000)
Receive data on the bus:
- *fifo* is an integer, which is the FIFO to receive on
- *timeout* is the timeout in milliseconds to wait for the receive.
Return value: A tuple containing four values.
- The id of the message.
- A boolean that indicates if the message is an RTR message.
- The FMI (Filter Match Index) value.
- An array containing the data.
.. method:: CAN.send(data, id, \*, timeout=0, rtr=False)
Send a message on the bus:
- *data* is the data to send (an integer to send, or a buffer object).
- *id* is the id of the message to be sent.
- *timeout* is the timeout in milliseconds to wait for the send.
- *rtr* is a boolean that specifies if the message shall be sent as
a remote transmission request. If *rtr* is True then only the length
of *data* is used to fill in the DLC slot of the frame; the actual
bytes in *data* are unused.
If timeout is 0 the message is placed in a buffer in one of three hardware
buffers and the method returns immediately. If all three buffers are in use
an exception is thrown. If timeout is not 0, the method waits until the
message is transmitted. If the message can't be transmitted within the
specified time an exception is thrown.
Return value: ``None``.
.. method:: CAN.rxcallback(fifo, fun)
Register a function to be called when a message is accepted into a empty fifo:
- *fifo* is the receiving fifo.
- *fun* is the function to be called when the fifo becomes non empty.
The callback function takes two arguments the first is the can object it self the second is
a integer that indicates the reason for the callback.
+--------+------------------------------------------------+
| Reason | |
+========+================================================+
| 0 | A message has been accepted into a empty FIFO. |
+--------+------------------------------------------------+
| 1 | The FIFO is full |
+--------+------------------------------------------------+
| 2 | A message has been lost due to a full FIFO |
+--------+------------------------------------------------+
Example use of rxcallback::
def cb0(bus, reason):
print('cb0')
if reason == 0:
print('pending')
if reason == 1:
print('full')
if reason == 2:
print('overflow')
can = CAN(1, CAN.LOOPBACK)
can.rxcallback(0, cb0)
Constants
---------
.. data:: CAN.NORMAL
.. data:: CAN.LOOPBACK
.. data:: CAN.SILENT
.. data:: CAN.SILENT_LOOPBACK
the mode of the CAN bus
2014-11-30 00:29:06 +03:00
.. data:: CAN.LIST16
.. data:: CAN.MASK16
.. data:: CAN.LIST32
.. data:: CAN.MASK32
the operation mode of a filter