micropython/ports/stm32/rfcore.c

424 lines
14 KiB
C
Raw Normal View History

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2019 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <string.h>
#include "py/mperrno.h"
#include "py/mphal.h"
#include "rtc.h"
#include "rfcore.h"
#if defined(STM32WB)
// Define to 1 to print traces of HCI packets
#define HCI_TRACE (0)
#define IPCC_CH_BLE (0x01) // BLE HCI command and response
#define IPCC_CH_SYS (0x02) // system HCI command and response
#define IPCC_CH_MM (0x08) // release buffer
#define IPCC_CH_HCI_ACL (0x20) // HCI ACL outgoing data
#define OGF_VENDOR (0x3f)
#define OCF_WRITE_CONFIG (0x0c)
#define OCF_SET_TX_POWER (0x0f)
#define OCF_BLE_INIT (0x66)
#define HCI_OPCODE(ogf, ocf) ((ogf) << 10 | (ocf))
typedef struct _tl_list_node_t {
volatile struct _tl_list_node_t *next;
volatile struct _tl_list_node_t *prev;
uint8_t body[0];
} tl_list_node_t;
typedef struct _parse_hci_info_t {
int (*cb_fun)(void *, const uint8_t *, size_t);
void *cb_env;
bool was_hci_reset_evt;
} parse_hci_info_t;
static volatile uint32_t ipcc_mem_dev_info_tab[8];
static volatile uint32_t ipcc_mem_ble_tab[4];
static volatile uint32_t ipcc_mem_sys_tab[2];
static volatile uint32_t ipcc_mem_memmgr_tab[7];
static volatile uint32_t ipcc_mem_sys_cmd_buf[272 / 4];
static volatile tl_list_node_t ipcc_mem_sys_queue;
static volatile tl_list_node_t ipcc_mem_memmgr_free_buf_queue;
static volatile uint32_t ipcc_mem_memmgr_ble_spare_evt_buf[272 / 4];
static volatile uint32_t ipcc_mem_memmgr_sys_spare_evt_buf[272 / 4];
static volatile uint32_t ipcc_mem_memmgr_evt_pool[6 * 272 / 4];
static volatile uint32_t ipcc_mem_ble_cmd_buf[272 / 4];
static volatile uint32_t ipcc_mem_ble_cs_buf[272 / 4];
static volatile tl_list_node_t ipcc_mem_ble_evt_queue;
static volatile uint32_t ipcc_mem_ble_hci_acl_data_buf[272 / 4];
/******************************************************************************/
// Transport layer linked list
STATIC void tl_list_init(volatile tl_list_node_t *n) {
n->next = n;
n->prev = n;
}
STATIC volatile tl_list_node_t *tl_list_unlink(volatile tl_list_node_t *n) {
volatile tl_list_node_t *next = n->next;
volatile tl_list_node_t *prev = n->prev;
prev->next = next;
next->prev = prev;
return next;
}
STATIC void tl_list_append(volatile tl_list_node_t *head, volatile tl_list_node_t *n) {
n->next = head;
n->prev = head->prev;
head->prev->next = n;
head->prev = n;
}
/******************************************************************************/
// IPCC interface
STATIC uint32_t get_ipccdba(void) {
return *(uint32_t *)(OPTION_BYTE_BASE + 0x68) & 0x3fff;
}
STATIC volatile void **get_buffer_table(void) {
return (volatile void **)(SRAM2A_BASE + get_ipccdba());
}
void ipcc_init(uint32_t irq_pri) {
// Setup buffer table pointers
volatile void **tab = get_buffer_table();
tab[0] = &ipcc_mem_dev_info_tab[0];
tab[1] = &ipcc_mem_ble_tab[0];
tab[3] = &ipcc_mem_sys_tab[0];
tab[4] = &ipcc_mem_memmgr_tab[0];
// Start IPCC peripheral
__HAL_RCC_IPCC_CLK_ENABLE();
// Enable wanted IRQs
IPCC->C1CR = 0;//IPCC_C1CR_RXOIE;
IPCC->C1MR = 0xffffffff;
NVIC_SetPriority(IPCC_C1_RX_IRQn, irq_pri);
HAL_NVIC_EnableIRQ(IPCC_C1_RX_IRQn);
// Device info table will be populated by FUS/WS
// Populate system table
tl_list_init(&ipcc_mem_sys_queue);
ipcc_mem_sys_tab[0] = (uint32_t)&ipcc_mem_sys_cmd_buf[0];
ipcc_mem_sys_tab[1] = (uint32_t)&ipcc_mem_sys_queue;
// Populate memory manager table
tl_list_init(&ipcc_mem_memmgr_free_buf_queue);
ipcc_mem_memmgr_tab[0] = (uint32_t)&ipcc_mem_memmgr_ble_spare_evt_buf[0];
ipcc_mem_memmgr_tab[1] = (uint32_t)&ipcc_mem_memmgr_sys_spare_evt_buf[0];
ipcc_mem_memmgr_tab[2] = (uint32_t)&ipcc_mem_memmgr_evt_pool[0];
ipcc_mem_memmgr_tab[3] = sizeof(ipcc_mem_memmgr_evt_pool);
ipcc_mem_memmgr_tab[4] = (uint32_t)&ipcc_mem_memmgr_free_buf_queue;
ipcc_mem_memmgr_tab[5] = 0;
ipcc_mem_memmgr_tab[6] = 0;
// Populate BLE table
tl_list_init(&ipcc_mem_ble_evt_queue);
ipcc_mem_ble_tab[0] = (uint32_t)&ipcc_mem_ble_cmd_buf[0];
ipcc_mem_ble_tab[1] = (uint32_t)&ipcc_mem_ble_cs_buf[0];
ipcc_mem_ble_tab[2] = (uint32_t)&ipcc_mem_ble_evt_queue;
ipcc_mem_ble_tab[3] = (uint32_t)&ipcc_mem_ble_hci_acl_data_buf[0];
}
STATIC int ipcc_wait_ack(unsigned int ch, uint32_t timeout_ms) {
uint32_t t0 = mp_hal_ticks_ms();
while (IPCC->C1TOC2SR & ch) {
if (mp_hal_ticks_ms() - t0 > timeout_ms) {
printf("ipcc_wait_ack: timeout\n");
return -MP_ETIMEDOUT;
}
}
// C2 cleared IPCC flag
return 0;
}
STATIC int ipcc_wait_msg(unsigned int ch, uint32_t timeout_ms) {
uint32_t t0 = mp_hal_ticks_ms();
while (!(IPCC->C2TOC1SR & ch)) {
if (mp_hal_ticks_ms() - t0 > timeout_ms) {
printf("ipcc_wait_msg: timeout\n");
return -MP_ETIMEDOUT;
}
}
// C2 set IPCC flag
return 0;
}
/******************************************************************************/
// Transport layer HCI interface
STATIC void tl_parse_hci_msg(const uint8_t *buf, parse_hci_info_t *parse) {
const char *kind;
size_t len = 3 + buf[2];
switch (buf[0]) {
case 0x02: {
// Standard BT HCI ACL packet
kind = "HCI_ACL";
if (parse != NULL) {
parse->cb_fun(parse->cb_env, buf, len);
}
break;
}
case 0x04: {
// Standard BT HCI event packet
kind = "HCI_EVT";
if (parse != NULL) {
bool fix = false;
if (buf[1] == 0x0e && len == 7 && buf[3] == 0x01 && buf[4] == 0x63 && buf[5] == 0x0c && buf[6] == 0x01) {
len -= 1;
fix = true;
}
parse->cb_fun(parse->cb_env, buf, len);
if (fix) {
len += 1;
uint8_t data = 0x00; // success
parse->cb_fun(parse->cb_env, &data, 1);
}
// Check for successful HCI_Reset event
parse->was_hci_reset_evt = buf[1] == 0x0e && buf[2] == 0x04 && buf[3] == 0x01
&& buf[4] == 0x03 && buf[5] == 0x0c && buf[6] == 0x00;
}
break;
}
case 0x11: {
// Response packet
// assert(buf[1] == 0x0e);
kind = "VEND_RESP";
//uint16_t cmd = buf[4] | buf[5] << 8;
//uint8_t status = buf[6];
break;
}
case 0x12: {
// Event packet
// assert(buf[1] == 0xff);
kind = "VEND_EVT";
//uint16_t evt = buf[3] | buf[4] << 8;
break;
}
default:
kind = "HCI_UNKNOWN";
break;
}
#if HCI_TRACE
printf("[% 8d] %s(%02x", mp_hal_ticks_ms(), kind, buf[0]);
for (int i = 1; i < len; ++i) {
printf(":%02x", buf[i]);
}
printf(")\n");
#else
(void)kind;
#endif
}
STATIC void tl_check_msg(volatile tl_list_node_t *head, unsigned int ch, parse_hci_info_t *parse) {
if (IPCC->C2TOC1SR & ch) {
// Message available on CH2
volatile tl_list_node_t *cur = head->next;
bool free = false;
while (cur != head) {
tl_parse_hci_msg((uint8_t *)cur->body, parse);
volatile tl_list_node_t *next = tl_list_unlink(cur);
if ((void *)&ipcc_mem_memmgr_evt_pool[0] <= (void *)cur
&& (void *)cur < (void *)&ipcc_mem_memmgr_evt_pool[MP_ARRAY_SIZE(ipcc_mem_memmgr_evt_pool)]) {
// Place memory back in free pool
tl_list_append(&ipcc_mem_memmgr_free_buf_queue, cur);
free = true;
}
cur = next;
}
if (free) {
// Notify change in free pool
IPCC->C1SCR = IPCC_CH_MM << 16;
}
// Clear receive channel
IPCC->C1SCR = ch;
}
}
STATIC void tl_hci_cmd(uint8_t *cmd, unsigned int ch, uint8_t hdr, uint16_t opcode, size_t len, const uint8_t *buf) {
tl_list_node_t *n = (tl_list_node_t *)cmd;
n->next = n;
n->prev = n;
cmd[8] = hdr;
cmd[9] = opcode;
cmd[10] = opcode >> 8;
cmd[11] = len;
memcpy(&cmd[12], buf, len);
// IPCC indicate
IPCC->C1SCR = ch << 16;
}
STATIC void tl_sys_wait_resp(const uint8_t *buf, unsigned int ch) {
if (ipcc_wait_ack(ch, 250) == 0) {
tl_parse_hci_msg(buf, NULL);
}
}
STATIC void tl_sys_hci_cmd_resp(uint16_t opcode, size_t len, const uint8_t *buf) {
tl_hci_cmd((uint8_t *)&ipcc_mem_sys_cmd_buf, IPCC_CH_SYS, 0x10, opcode, len, buf);
tl_sys_wait_resp((uint8_t *)&ipcc_mem_sys_cmd_buf, IPCC_CH_SYS);
}
STATIC void tl_ble_hci_cmd_resp(uint16_t opcode, size_t len, const uint8_t *buf) {
tl_hci_cmd((uint8_t *)&ipcc_mem_ble_cmd_buf[0], IPCC_CH_BLE, 0x01, opcode, len, buf);
ipcc_wait_msg(IPCC_CH_BLE, 250);
tl_check_msg(&ipcc_mem_ble_evt_queue, IPCC_CH_BLE, NULL);
}
/******************************************************************************/
// RF core interface
void rfcore_init(void) {
// Ensure LSE is running
rtc_init_finalise();
// Select LSE as RF wakeup source
RCC->CSR = (RCC->CSR & ~RCC_CSR_RFWKPSEL) | 1 << RCC_CSR_RFWKPSEL_Pos;
// Initialise IPCC and shared memory structures
ipcc_init(IRQ_PRI_SDIO);
// Boot the second core
__SEV();
__WFE();
PWR->CR4 |= PWR_CR4_C2BOOT;
}
static const struct {
uint8_t *pBleBufferAddress; // unused
uint32_t BleBufferSize; // unused
uint16_t NumAttrRecord;
uint16_t NumAttrServ;
uint16_t AttrValueArrSize;
uint8_t NumOfLinks;
uint8_t ExtendedPacketLengthEnable;
uint8_t PrWriteListSize;
uint8_t MblockCount;
uint16_t AttMtu;
uint16_t SlaveSca;
uint8_t MasterSca;
uint8_t LsSource; // 0=LSE 1=internal RO
uint32_t MaxConnEventLength;
uint16_t HsStartupTime;
uint8_t ViterbiEnable;
uint8_t LlOnly; // 0=LL+Host, 1=LL only
uint8_t HwVersion;
} ble_init_params = {
0,
0,
0, // NumAttrRecord
0, // NumAttrServ
0, // AttrValueArrSize
1, // NumOfLinks
1, // ExtendedPacketLengthEnable
0, // PrWriteListSize
0x79, // MblockCount
0, // AttMtu
0, // SlaveSca
0, // MasterSca
1, // LsSource
0xffffffff, // MaxConnEventLength
0x148, // HsStartupTime
0, // ViterbiEnable
1, // LlOnly
0, // HwVersion
};
void rfcore_ble_init(void) {
// Clear any outstanding messages from ipcc_init
tl_check_msg(&ipcc_mem_sys_queue, IPCC_CH_SYS, NULL);
tl_check_msg(&ipcc_mem_ble_evt_queue, IPCC_CH_BLE, NULL);
// Configure and reset the BLE controller
tl_sys_hci_cmd_resp(HCI_OPCODE(OGF_VENDOR, OCF_BLE_INIT), sizeof(ble_init_params), (const uint8_t *)&ble_init_params);
tl_ble_hci_cmd_resp(HCI_OPCODE(0x03, 0x0003), 0, NULL);
}
void rfcore_ble_hci_cmd(size_t len, const uint8_t *src) {
#if HCI_TRACE
printf("[% 8d] HCI_CMD(%02x", mp_hal_ticks_ms(), src[0]);
for (int i = 1; i < len; ++i) {
printf(":%02x", src[i]);
}
printf(")\n");
#endif
tl_list_node_t *n;
uint32_t ch;
if (src[0] == 0x01) {
n = (tl_list_node_t *)&ipcc_mem_ble_cmd_buf[0];
ch = IPCC_CH_BLE;
} else if (src[0] == 0x02) {
n = (tl_list_node_t *)&ipcc_mem_ble_hci_acl_data_buf[0];
ch = IPCC_CH_HCI_ACL;
} else {
printf("** UNEXPECTED HCI HDR: 0x%02x **\n", src[0]);
return;
}
n->next = n;
n->prev = n;
memcpy(n->body, src, len);
// IPCC indicate
IPCC->C1SCR = ch << 16;
}
void rfcore_ble_check_msg(int (*cb)(void *, const uint8_t *, size_t), void *env) {
parse_hci_info_t parse = { cb, env, false };
tl_check_msg(&ipcc_mem_ble_evt_queue, IPCC_CH_BLE, &parse);
// Intercept HCI_Reset events and reconfigure the controller following the reset
if (parse.was_hci_reset_evt) {
uint8_t buf[8];
buf[0] = 0; // config offset
buf[1] = 6; // config length
mp_hal_get_mac(MP_HAL_MAC_BDADDR, &buf[2]);
#define SWAP_UINT8(a, b) { uint8_t temp = a; a = b; b = temp; \
}
SWAP_UINT8(buf[2], buf[7]);
SWAP_UINT8(buf[3], buf[6]);
SWAP_UINT8(buf[4], buf[5]);
tl_ble_hci_cmd_resp(HCI_OPCODE(OGF_VENDOR, OCF_WRITE_CONFIG), 8, buf); // set BDADDR
tl_ble_hci_cmd_resp(HCI_OPCODE(OGF_VENDOR, OCF_SET_TX_POWER), 2, (const uint8_t *)"\x00\x06"); // 0 dBm
}
}
#endif // defined(STM32WB)