memtest86plus/system/ehci.c

689 lines
25 KiB
C

// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2021-2022 Martin Whitaker.
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include "memrw32.h"
#include "memsize.h"
#include "pci.h"
#include "pmem.h"
#include "usb.h"
#include "string.h"
#include "unistd.h"
#include "ehci.h"
//------------------------------------------------------------------------------
// Constants
//------------------------------------------------------------------------------
// Values defined by the EHCI specification.
// Basic limits
#define EHCI_MAX_PFL_LENGTH 1024 // Maximum number of entries in periodic frame list
// Extended capability IDs
#define EHCI_EXT_CAP_OS_HANDOFF 0x01
// Host Controller Structural Parameters
#define EHCI_HCS_PPC 0x00000010 // Port Power Control
// USB Command register
#define EHCI_USBCMD_R_S 0x00000001 // Run/Stop
#define EHCI_USBCMD_HCR 0x00000002 // Host Controller Reset
#define EHCI_USBCMD_PSE 0x00000010 // Periodic Schedule Enable
#define EHCI_USBCMD_ASE 0x00000020 // Asynchronous Schedule Enable
#define EHCI_USBCMD_FLS_1024 (0 << 2) // Frame List Size = 1024
#define EHCI_USBCMD_FLS_512 (1 << 2) // Frame List Size = 512
#define EHCI_USBCMD_FLS_256 (2 << 2) // Frame List Size = 256
#define EHCI_USBCMD_ITC(n) ((n) << 16) // Interrupt Threshold Control = n (n = 1,2,4,8,16,32,64)
// USB Status register
#define EHCI_USBSTS_INT 0x00000001 // Interrupt
#define EHCI_USBSTS_ERR 0x00000002 // Error interrupt
#define EHCI_USBSTS_PCD 0x00000004 // Port Change Detect
#define EHCI_USBSTS_FLR 0x00000008 // Frame List Rollover
#define EHCI_USBSTS_HSE 0x00000010 // Host System Error
#define EHCI_USBSTS_AAI 0x00000020 // Asynchronous Advance Interrupt
#define EHCI_USBSTS_HCH 0x00001000 // Host Controller Halted
#define EHCI_USBSTS_ASE 0x00002000 // Asynchronous Schedule Empty
#define EHCI_USBSTS_PSS 0x00004000 // Periodic Schedule Status
#define EHCI_USBSTS_ASS 0x00008000 // Asynchronous Schedule Status
// Port Status and Control register
#define EHCI_PORT_SC_CCS 0x00000001 // Current Connect Status
#define EHCI_PORT_SC_CCSC 0x00000002 // Current Connect Status Change
#define EHCI_PORT_SC_PED 0x00000004 // Port Enable/Disable
#define EHCI_PORT_SC_PEDC 0x00000008 // Port Enable/Disable Change
#define EHCI_PORT_SC_OCA 0x00000010 // Over-Current Active
#define EHCI_PORT_SC_OCAC 0x00000020 // Over-Current Active Change
#define EHCI_PORT_SC_PR 0x00000100 // Port Reset
#define EHCI_PORT_SC_PP 0x00001000 // Port Power
#define EHCI_PORT_SC_PO 0x00002000 // Port Owner
#define EHCI_PORT_SC_LS_MASK 0x00000c00 // Line Status
#define EHCI_PORT_SC_LS_SE0 0x00000000 // Line Status is SE0
#define EHCI_PORT_SC_LS_K 0x00000400 // Line Status is K-state
#define EHCI_PORT_SC_LS_J 0x00000800 // Line Status is J-state
#define EHCI_PORT_SC_LS_U 0x00000c00 // Line Status is undefined
// Link Pointer
#define EHCI_LP_TERMINATE 0x00000001 // Terminate (T) bit
#define EHCI_LP_TYPE_ITD (0 << 1) // Type is Isochronous Transfer Descriptor
#define EHCI_LP_TYPE_QH (1 << 1) // Type is Queue Head
#define EHCI_LP_TYPE_SITD (2 << 1) // Type is Split Transaction Isochronous Transfer Descriptor
#define EHCI_LP_TYPE_FSTN (3 << 1) // Type is Frame Span Traversal Node
// Queue Element Transfer Descriptor data structure
// - status member (8 bits)
#define EHCI_QTD_PS 0x01 // Ping State
#define EHCI_QTD_STS 0x02 // Split Transaction State
#define EHCI_QTD_MMF 0x04 // Missed Micro-Frame
#define EHCI_QTD_TR_ERR 0x08 // Transaction Error
#define EHCI_QTD_BABBLE 0x10 // Babble Detected
#define EHCI_QTD_DB_ERR 0x20 // Data Buffer Error
#define EHCI_QTD_HALTED 0x40 // Halted
#define EHCI_QTD_ACTIVE 0x80 // Active
// - control member (8 bits)
#define EHCI_QTD_PID_OUT (0 << 0) // PID Code is OUT
#define EHCI_QTD_PID_IN (1 << 0) // PID Code is IN
#define EHCI_QTD_PID_SETUP (2 << 0) // PID Code is SETUP
#define EHCI_QTD_CERR(n) ((n) << 2) // Error Counter = n (n = 1..3)
#define EHCI_QTD_CPAGE(n) ((n) << 4) // Current Page = n (n = 0..7)
#define EHCI_QTD_IOC_N (0 << 7) // Interrupt On Completion is off
#define EHCI_QTD_IOC_Y (1 << 7) // Interrupt On Completion is on
// - data_length member (16 bits)
#define EHCI_QTD_DT(n) ((n) << 15) // Data Toggle = n (n = 0,1)
// Queue head data structure
#define EHCI_QH_HRL 0x00008000 // Head of Reclamation List flag
#define EHCI_QH_CTRL_EP 0x08000000 // Control Endpoint flag
#define EHCI_QH_DTC(n) ((n) << 14) // Data Toggle Control (n = 0,1)
#define EHCI_QH_HBPM(n) ((n) << 30) // High Bandwidth Pipe Multiplier = n (n = 1..3)
// Port Speed values
#define EHCI_FULL_SPEED 0
#define EHCI_LOW_SPEED 1
#define EHCI_HIGH_SPEED 2
// Values specific to this driver.
#define MAX_KEYBOARDS 8 // per host controller
#define WS_QHD_SIZE (1 + MAX_KEYBOARDS) // Queue Head Descriptors
#define WS_QTD_SIZE (3 + MAX_KEYBOARDS) // Queue Transfer Descriptors
#define MILLISEC 1000 // in microseconds
//------------------------------------------------------------------------------
// Types
//------------------------------------------------------------------------------
// Register sets defined by the EHCI specification.
typedef struct {
uint8_t cap_length;
uint8_t reserved;
uint16_t hci_version;
uint32_t hcs_params;
uint32_t hcc_params;
uint64_t port_route;
} ehci_cap_regs_t;
typedef volatile struct {
uint32_t usb_command;
uint32_t usb_status;
uint32_t usb_interrupt;
uint32_t fr_index;
uint32_t ctrl_ds_segment;
uint32_t periodic_list_base;
uint32_t async_list_addr;
uint32_t reserved[9];
uint32_t config_flag;
uint32_t port_sc[];
} ehci_op_regs_t;
// Data structures defined by the EHCI specification.
// NOTE: The ehci_qtd_t structure supports both the 32-bit and 64-bit variants. But we always allocate data
// buffers in the first 4GB, so we can simply initialise the buffer pointer extensions to zero.
typedef volatile struct {
uint32_t next_qtd_ptr;
uint32_t alt_next_qtd_ptr;
uint8_t status;
uint8_t control;
uint16_t data_length;
uint32_t buffer_ptr[5];
uint32_t ext_buffer_ptr[5];
uint32_t padding[3];
} ehci_qtd_t __attribute__ ((aligned (32)));
typedef volatile struct {
uint32_t next_qhd_ptr;
uint32_t epcc[2];
uint32_t current_qtd_ptr;
uint32_t next_qtd_ptr;
uint32_t alt_next_qtd_ptr;
uint8_t status;
uint8_t control;
uint16_t data_length;
uint32_t buffer_ptr[5];
uint32_t ext_buffer_ptr[5];
uint32_t padding[7];
} ehci_qhd_t __attribute__ ((aligned (32)));
// Data structures specific to this implementation.
typedef struct {
hcd_workspace_t base_ws;
// System memory data structures used by the host controller.
ehci_qhd_t qhd[WS_QHD_SIZE] __attribute__ ((aligned (32)));
ehci_qtd_t qtd[WS_QTD_SIZE] __attribute__ ((aligned (32)));
// Keyboard data transfer buffers.
hid_kbd_rpt_t kbd_rpt[MAX_KEYBOARDS];
// Saved keyboard reports.
hid_kbd_rpt_t prev_kbd_rpt[MAX_KEYBOARDS];
// Pointer to the host controller registers.
ehci_op_regs_t *op_regs;
// Number of keyboards detected.
int num_keyboards;
} workspace_t __attribute__ ((aligned (256)));
//------------------------------------------------------------------------------
// Private Functions
//------------------------------------------------------------------------------
static size_t num_pages(size_t size)
{
return (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
}
static int usb_to_ehci_speed(usb_speed_t usb_speed)
{
switch (usb_speed) {
case USB_SPEED_LOW:
return EHCI_LOW_SPEED;
case USB_SPEED_FULL:
return EHCI_FULL_SPEED;
case USB_SPEED_HIGH:
return EHCI_HIGH_SPEED;
default:
return 0;
}
}
static int num_ehci_ports(uint32_t hcs_params)
{
return (hcs_params >> 0) & 0xf;
}
static int num_ehci_companions(uint32_t hcs_params)
{
return (hcs_params >> 12) & 0xf;
}
static int ehci_ext_cap_ptr(uint32_t hcc_params)
{
return (hcc_params >> 8) & 0xff;
}
static bool reset_host_controller(ehci_op_regs_t *op_regs)
{
write32(&op_regs->usb_command, read32(&op_regs->usb_command) | EHCI_USBCMD_HCR);
usleep(1*MILLISEC); // some controllers need time to recover from reset
return wait_until_clr(&op_regs->usb_command, EHCI_USBCMD_HCR, 1000*MILLISEC);
}
static bool start_host_controller(ehci_op_regs_t *op_regs)
{
write32(&op_regs->usb_command, EHCI_USBCMD_R_S | EHCI_USBCMD_FLS_1024 | EHCI_USBCMD_ITC(8));
return wait_until_clr(&op_regs->usb_status, EHCI_USBSTS_HCH, 1000*MILLISEC);
}
static bool halt_host_controller(ehci_op_regs_t *op_regs)
{
write32(&op_regs->usb_command, read32(&op_regs->usb_command) & ~EHCI_USBCMD_R_S);
return wait_until_set(&op_regs->usb_status, EHCI_USBSTS_HCH, 1000*MILLISEC);
}
static void enable_periodic_schedule(ehci_op_regs_t *op_regs)
{
write32(&op_regs->usb_command, read32(&op_regs->usb_command) | EHCI_USBCMD_PSE);
}
static void enable_async_schedule(ehci_op_regs_t *op_regs)
{
write32(&op_regs->usb_command, read32(&op_regs->usb_command) | EHCI_USBCMD_ASE);
}
static bool disable_async_schedule(ehci_op_regs_t *op_regs)
{
write32(&op_regs->usb_command, read32(&op_regs->usb_command) & ~EHCI_USBCMD_ASE);
return wait_until_clr(&op_regs->usb_status, EHCI_USBSTS_ASS, 1000*MILLISEC);
}
static bool reset_ehci_port(ehci_op_regs_t *op_regs, int port_idx)
{
uint32_t port_status = read32(&op_regs->port_sc[port_idx]) & ~EHCI_PORT_SC_PED;
flush32(&op_regs->port_sc[port_idx], port_status | EHCI_PORT_SC_PR);
usleep(50*MILLISEC); // USB port reset time
write32(&op_regs->port_sc[port_idx], port_status & ~EHCI_PORT_SC_PR);
return wait_until_clr(&op_regs->port_sc[port_idx], EHCI_PORT_SC_PR, 5*MILLISEC);
}
static void disable_ehci_port(ehci_op_regs_t *op_regs, int port_idx)
{
uint32_t port_status = read32(&op_regs->port_sc[port_idx]);
write32(&op_regs->port_sc[port_idx], port_status & ~EHCI_PORT_SC_PED);
(void)wait_until_clr(&op_regs->port_sc[port_idx], EHCI_PORT_SC_PED, 1000*MILLISEC);
}
static void release_ehci_port(ehci_op_regs_t *op_regs, int port_idx)
{
uint32_t port_status = read32(&op_regs->port_sc[port_idx]);
write32(&op_regs->port_sc[port_idx], port_status | EHCI_PORT_SC_PO);
}
static void build_ehci_qtd(ehci_qtd_t *this_qtd, const ehci_qtd_t *final_qtd, uint8_t control, uint16_t dt,
const void *buffer, size_t length)
{
memset((void *)this_qtd, 0, sizeof(ehci_qtd_t));
if (this_qtd != final_qtd) {
this_qtd->next_qtd_ptr = (uintptr_t)(this_qtd + 1);
this_qtd->alt_next_qtd_ptr = (uintptr_t)(final_qtd);
} else {
this_qtd->next_qtd_ptr = EHCI_LP_TERMINATE;
this_qtd->alt_next_qtd_ptr = EHCI_LP_TERMINATE;
}
this_qtd->status = EHCI_QTD_ACTIVE;
this_qtd->control = EHCI_QTD_CPAGE(0) | EHCI_QTD_CERR(3) | control;
this_qtd->data_length = dt | (length & 0x7fff);
this_qtd->buffer_ptr[0] = (uintptr_t)buffer;
}
static void build_ehci_qhd(ehci_qhd_t *qhd, const ehci_qtd_t *qtd, const usb_ep_t *ep, bool is_interrupt)
{
memset((void *)qhd, 0, sizeof(ehci_qhd_t));
uint32_t endpoint_speed = usb_to_ehci_speed(ep->device_speed);
uint32_t parent_addr = (ep->driver_data >> 0) & 0x7f;
uint32_t parent_port = (ep->driver_data >> 8) & 0x7f;
qhd->next_qhd_ptr = (uintptr_t)qhd | EHCI_LP_TYPE_QH;
qhd->epcc[0] = ep->max_packet_size << 16
| EHCI_QH_DTC(1)
| endpoint_speed << 12
| ep->endpoint_num << 8
| ep->device_id << 0;
qhd->epcc[1] = EHCI_QH_HBPM(1)
| parent_port << 23
| parent_addr << 16;
if (ep->device_speed < USB_SPEED_HIGH && ep->endpoint_num == 0) {
qhd->epcc[0] |= EHCI_QH_CTRL_EP;
}
if (is_interrupt) {
qhd->epcc[1] |= 0x01; // s_mask
if (ep->device_speed < USB_SPEED_HIGH) {
qhd->epcc[1] |= 0x1c << 8; // c_mask
}
} else {
qhd->epcc[0] |= EHCI_QH_HRL;
}
qhd->next_qtd_ptr = (uintptr_t)qtd;
}
static bool do_async_transfer(const workspace_t *ws, int num_tds)
{
// Rely on the controller to timeout if the device doesn't respond.
bool ok = true;
enable_async_schedule(ws->op_regs);
for (int td_idx = 0; td_idx < num_tds; td_idx++) {
const ehci_qtd_t *qtd = &ws->qtd[td_idx];
while (qtd->status & EHCI_QTD_ACTIVE) {
usleep(10);
}
if (qtd->status & (EHCI_QTD_HALTED | EHCI_QTD_DB_ERR | EHCI_QTD_BABBLE | EHCI_QTD_TR_ERR | EHCI_QTD_MMF | EHCI_QTD_PS)) {
ok = false;
break;
}
}
disable_async_schedule(ws->op_regs);
return ok;
}
//------------------------------------------------------------------------------
// Driver Methods
//------------------------------------------------------------------------------
static bool reset_root_hub_port(const usb_hcd_t *hcd, int port_num)
{
const workspace_t *ws = (const workspace_t *)hcd->ws;
return reset_ehci_port(ws->op_regs, port_num - 1);
}
static bool assign_address(const usb_hcd_t *hcd, const usb_hub_t *hub, int port_num,
usb_speed_t device_speed, int device_id, usb_ep_t *ep0)
{
// Store the extra information needed by build_ehci_qhd().
ep0->driver_data = port_num << 8;
if (hub->level > 0) {
ep0->driver_data |= hub->ep0->device_id;
}
if (!assign_usb_address(hcd, hub, port_num, device_speed, device_id, ep0)) {
return false;
}
return true;
}
static bool setup_request(const usb_hcd_t *hcd, const usb_ep_t *ep, const usb_setup_pkt_t *setup_pkt)
{
workspace_t *ws = (workspace_t *)hcd->ws;
build_ehci_qtd(&ws->qtd[0], &ws->qtd[1], EHCI_QTD_PID_SETUP, EHCI_QTD_DT(0), setup_pkt, sizeof(usb_setup_pkt_t));
build_ehci_qtd(&ws->qtd[1], &ws->qtd[1], EHCI_QTD_PID_IN, EHCI_QTD_DT(1), 0, 0);
build_ehci_qhd(&ws->qhd[0], &ws->qtd[0], ep, false);
return do_async_transfer(ws, 2);
}
static bool get_data_request(const usb_hcd_t *hcd, const usb_ep_t *ep, const usb_setup_pkt_t *setup_pkt,
const void *buffer, size_t length)
{
workspace_t *ws = (workspace_t *)hcd->ws;
build_ehci_qtd(&ws->qtd[0], &ws->qtd[2], EHCI_QTD_PID_SETUP, EHCI_QTD_DT(0), setup_pkt, sizeof(usb_setup_pkt_t));
build_ehci_qtd(&ws->qtd[1], &ws->qtd[2], EHCI_QTD_PID_IN, EHCI_QTD_DT(1), buffer, length);
build_ehci_qtd(&ws->qtd[2], &ws->qtd[2], EHCI_QTD_PID_OUT, EHCI_QTD_DT(1), 0, 0);
build_ehci_qhd(&ws->qhd[0], &ws->qtd[0], ep, false);
return do_async_transfer(ws, 3);
}
static void poll_keyboards(const usb_hcd_t *hcd)
{
workspace_t *ws = (workspace_t *)hcd->ws;
for (int kbd_idx = 0; kbd_idx < ws->num_keyboards; kbd_idx++) {
ehci_qtd_t *kbd_qtd = &ws->qtd[3 + kbd_idx];
uint8_t status = kbd_qtd->status;
if (status & EHCI_QTD_ACTIVE) continue;
hid_kbd_rpt_t *kbd_rpt = &ws->kbd_rpt[kbd_idx];
uint8_t error_mask = EHCI_QTD_HALTED | EHCI_QTD_DB_ERR | EHCI_QTD_BABBLE | EHCI_QTD_TR_ERR | EHCI_QTD_MMF | EHCI_QTD_PS;
if (~status & error_mask) {
hid_kbd_rpt_t *prev_kbd_rpt = &ws->prev_kbd_rpt[kbd_idx];
process_usb_keyboard_report(hcd, kbd_rpt, prev_kbd_rpt);
*prev_kbd_rpt = *kbd_rpt;
}
build_ehci_qtd(kbd_qtd, kbd_qtd, EHCI_QTD_PID_IN, EHCI_QTD_DT(1), kbd_rpt, sizeof(hid_kbd_rpt_t));
ehci_qhd_t *kbd_qhd = &ws->qhd[1 + kbd_idx];
kbd_qhd->next_qtd_ptr = (uintptr_t)kbd_qtd;
}
}
//------------------------------------------------------------------------------
// Driver Method Table
//------------------------------------------------------------------------------
static const hcd_methods_t methods = {
.reset_root_hub_port = reset_root_hub_port,
.allocate_slot = NULL,
.release_slot = NULL,
.assign_address = assign_address,
.configure_hub_ep = NULL,
.configure_kbd_ep = NULL,
.setup_request = setup_request,
.get_data_request = get_data_request,
.poll_keyboards = poll_keyboards
};
//------------------------------------------------------------------------------
// Public Functions
//------------------------------------------------------------------------------
bool ehci_init(int bus, int dev, int func, uintptr_t base_addr, usb_hcd_t *hcd)
{
ehci_cap_regs_t *cap_regs = (ehci_cap_regs_t *)base_addr;
// Walk the extra capabilities list.
int ext_cap_ptr = ehci_ext_cap_ptr(read32(&cap_regs->hcc_params));
while (ext_cap_ptr != 0) {
uint8_t ext_cap_id = pci_config_read8(bus, dev, func, ext_cap_ptr + 0);
if (ext_cap_id == EHCI_EXT_CAP_OS_HANDOFF) {
// Take ownership from the SMM if necessary.
int timer = 1000;
pci_config_write8(bus, dev, func, ext_cap_ptr + 3, 1);
while (pci_config_read8(bus, dev, func, ext_cap_ptr + 2) & 1) {
if (timer == 0) return false;
usleep(1*MILLISEC);
timer--;
}
}
ext_cap_ptr = pci_config_read8(bus, dev, func, ext_cap_ptr + 1);
}
ehci_op_regs_t *op_regs = (ehci_op_regs_t *)(base_addr + cap_regs->cap_length);
// Ensure the controller is halted and then reset it.
if (!halt_host_controller(op_regs)) return false;
if (!reset_host_controller(op_regs)) return false;
// Allocate and initialise a periodic frame list. This needs to be aligned on a 4K page boundary. Some controllers
// don't support a programmable list length, so we just use the default length.
pm_map[0].end -= num_pages(EHCI_MAX_PFL_LENGTH * sizeof(uint32_t));
uintptr_t pfl_addr = pm_map[0].end << PAGE_SHIFT;
uint32_t *pfl = (uint32_t *)pfl_addr;
for (int i = 0; i < EHCI_MAX_PFL_LENGTH; i++) {
pfl[i] = EHCI_LP_TERMINATE;
}
// Allocate and initialise a workspace for this controller. This needs to be permanently mapped into virtual memory,
// so allocate it in the first segment.
// TODO: check for segment overflow.
pm_map[0].end -= num_pages(sizeof(workspace_t));
uintptr_t workspace_addr = pm_map[0].end << PAGE_SHIFT;
workspace_t *ws = (workspace_t *)workspace_addr;
memset(ws, 0, sizeof(workspace_t));
ws->op_regs = op_regs;
// Initialise the driver object for this controller.
hcd->methods = &methods;
hcd->ws = &ws->base_ws;
// Initialise the host controller.
write32(&op_regs->fr_index, 0);
write32(&op_regs->ctrl_ds_segment, 0);
write32(&op_regs->periodic_list_base, pfl_addr);
write32(&op_regs->async_list_addr, (uintptr_t)(ws->qhd));
if (!start_host_controller(op_regs)) {
pm_map[0].end += num_pages(sizeof(workspace_t));
pm_map[0].end += num_pages(EHCI_MAX_PFL_LENGTH * sizeof(uint32_t));
return false;
}
flush32(&op_regs->config_flag, 1);
uint32_t hcs_params = read32(&cap_regs->hcs_params);
// Construct a hub descriptor for the root hub.
usb_hub_t root_hub;
root_hub.ep0 = NULL;
root_hub.level = 0;
root_hub.route = 0;
root_hub.num_ports = num_ehci_ports(hcs_params);
root_hub.power_up_delay = 10; // 20ms
// Power up all the ports.
if (hcs_params & EHCI_HCS_PPC) {
bool port_power_changed = false;
for (int port_idx = 0; port_idx < root_hub.num_ports; port_idx++) {
uint32_t port_status = read32(&op_regs->port_sc[port_idx]);
if (~port_status & EHCI_PORT_SC_PP) {
flush32(&op_regs->port_sc[port_idx], port_status | EHCI_PORT_SC_PP);
port_power_changed = true;
}
}
if (port_power_changed) {
usleep(20*MILLISEC); // EHCI maximum port power-up time
}
}
usleep(100*MILLISEC); // USB maximum device attach time
bool i_have_companions = (num_ehci_companions(hcs_params) > 0);
// Scan the ports, looking for hubs and keyboards.
usb_ep_t keyboards[MAX_KEYBOARDS];
int num_keyboards = 0;
int num_ls_devices = 0;
int num_hs_devices = 0;
for (int port_idx = 0; port_idx < root_hub.num_ports; port_idx++) {
// If we've filled the keyboard info table, abort now.
if (num_keyboards >= MAX_KEYBOARDS) break;
uint32_t port_status = read32(&op_regs->port_sc[port_idx]);
// Check the port is powered up.
if (~port_status & EHCI_PORT_SC_PP) continue;
// Check if anything is connected to this port.
if (~port_status & EHCI_PORT_SC_CCS) continue;
// Check for low speed device.
if ((port_status & EHCI_PORT_SC_LS_MASK) == EHCI_PORT_SC_LS_K) {
if (i_have_companions) {
release_ehci_port(op_regs, port_idx);
}
num_ls_devices++;
continue;
}
// Reset the port.
if (!reset_ehci_port(op_regs, port_idx)) continue;
usleep(10*MILLISEC); // USB reset recovery time
port_status = read32(&op_regs->port_sc[port_idx]);
// Check for full speed device.
if (~port_status & EHCI_PORT_SC_PED) {
if (i_have_companions) {
release_ehci_port(op_regs, port_idx);
}
num_ls_devices++;
continue;
}
num_hs_devices++;
// Look for keyboards attached directly or indirectly to this port.
if (find_attached_usb_keyboards(hcd, &root_hub, 1 + port_idx, USB_SPEED_HIGH, num_hs_devices,
&num_hs_devices, keyboards, MAX_KEYBOARDS, &num_keyboards)) {
continue;
}
// If we didn't find any keyboard interfaces, we can disable the port.
disable_ehci_port(op_regs, port_idx);
}
print_usb_info(" Found %i low/full speed device%s, %i high speed device%s, %i keyboard%s",
num_ls_devices, num_ls_devices != 1 ? "s" : "",
num_hs_devices, num_hs_devices != 1 ? "s" : "",
num_keyboards, num_keyboards != 1 ? "s" : "");
if (num_ls_devices > 0 && i_have_companions) {
print_usb_info(" Handed over low/full speed devices to companion controllers");
}
if (num_keyboards == 0) {
// Halt the host controller.
(void)halt_host_controller(op_regs);
// Deallocate the workspace for this controller.
pm_map[0].end += num_pages(sizeof(workspace_t));
// Deallocate the periodic frame list.
pm_map[0].end += num_pages(EHCI_MAX_PFL_LENGTH * sizeof(uint32_t));
return false;
}
ws->num_keyboards = num_keyboards;
// Initialise the interrupt QHD and QTD for each keyboard interface and find the minimum interval.
int min_interval = EHCI_MAX_PFL_LENGTH;
uint32_t first_qhd_ptr = EHCI_LP_TERMINATE;
for (int kbd_idx = 0; kbd_idx < num_keyboards; kbd_idx++) {
usb_ep_t *kbd = &keyboards[kbd_idx];
ehci_qhd_t *kbd_qhd = &ws->qhd[1 + kbd_idx];
ehci_qtd_t *kbd_qtd = &ws->qtd[3 + kbd_idx];
hid_kbd_rpt_t *kbd_rpt = &ws->kbd_rpt[kbd_idx];
build_ehci_qtd(kbd_qtd, kbd_qtd, EHCI_QTD_PID_IN, EHCI_QTD_DT(0), kbd_rpt, sizeof(hid_kbd_rpt_t));
build_ehci_qhd(kbd_qhd, kbd_qtd, kbd, true);
kbd_qhd->next_qhd_ptr = first_qhd_ptr;
first_qhd_ptr = (uintptr_t)kbd_qhd | EHCI_LP_TYPE_QH;
if (kbd->interval < min_interval) {
min_interval = kbd->interval;
}
}
// Initialise the periodic frame list and enable the periodic schedule.
for (int i = 0; i < EHCI_MAX_PFL_LENGTH; i += min_interval) {
pfl[i] = first_qhd_ptr;
}
enable_periodic_schedule(op_regs);
return true;
}