memtest86plus/boot/bootsect.S

368 lines
7.4 KiB
ArmAsm

// SPDX-License-Identifier: GPL-2.0
//
// bootsect.S supports booting directly from the BIOS or via an intermediate
// bootloader that supports the Linux boot protocol. If booted directly from
// the BIOS, it is loaded at address 0x7c00. It then loads setup.S immediately
// after itself (address 0x7e00) and the main program code at segment MAIN_SEG,
// using BIOS interrupts to read the data from disk. When using an intermediate
// bootloader, it provides the first few bytes of the Linux boot header (at the
// end of the boot sector), with the remainder of the header being provided by
// setup.S.
//
// Copyright (C) 2020 Martin Whitaker.
//
// Derived from memtest86+ bootsect.S:
//
// bootsect.s Copyright (C) 1991, 1992 Linus Torvalds
//
// 1-Jan-96 Modified by Chris Brady for use as a boot loader for MemTest-86.
#define __ASSEMBLY__
#include "boot.h"
.section ".bootsect", "ax", @progbits
.code16
# The BIOS boot entry point. This will be located at 0x7c00.
.globl boot
boot:
# Initialise the segment registers and the stack.
ljmp $BOOT_SEG, $init
init:
movw %cs, %ax
movw %ax, %ds
movw %ax, %es
movw %ax, %ss
movw $BOOT_STACK_TOP, %ax
movw %ax, %sp
# Many BIOS's default disk parameter tables will not recognize
# multi-sector reads beyond the maximum sector number specified
# in the default diskette parameter tables - this may mean 7
# sectors in some cases.
#
# Since single sector reads are slow and out of the question,
# we must take care of this by creating new parameter tables
# (for the first disk) in RAM. We will set the maximum sector
# count to 18 - the most we will encounter on an HD 1.44.
#
# High doesn't hurt. Low does.
#
# Segments are as follows:
# ds=es=ss=cs = BOOT_SEG,
# fs = 0, gs = parameter table segment
pushw $0
popw %fs
movw $0x78, %bx # fs:bx is parameter table address
lgs %fs:(%bx),%si # gs:si is source
movw %dx, %di # es:di is destination
movw $6, %cx # copy 12 bytes
cld
rep movsw %gs:(%si), (%di)
movw %dx, %di
movb $18, 4(%di) # patch sector count
movw %di, %fs:(%bx)
movw %es, %fs:2(%bx)
movw %cs, %ax
movw %ax, %fs
movw %ax, %gs
xorb %ah, %ah # reset FDC
xorb %dl, %dl
int $0x13
# Load the setup sectors directly after the boot block.
# Note that 'es' is already set up.
load_setup:
xorw %dx, %dx # drive 0, head 0
movw $0x0002, %cx # sector 2, track 0
movw $0x0200, %bx # address = 512, in BOOT_SEG
movw $(0x0200 + SETUP_SECS), %ax # service 2, nr of sectors
# (assume all on head 0, track 0)
int $0x13 # read it
jnc load_setup_done # ok - continue
pushw %ax # dump error code
call print_nl
movw %sp, %bp
call print_hex
popw %ax
xorb %dl, %dl # reset FDC
xorb %ah, %ah
int $0x13
jmp load_setup
load_setup_done:
# Get disk drive parameters, specifically number of sectors/track.
# It seems that there is no BIOS call to get the number of sectors.
# Guess 18 sectors if sector 18 can be read, 15 if sector 15 can be
# read. Otherwise guess 9.
xorw %dx, %dx # drive 0, head 0
movw $0x0012, %cx # sector 18, track 0
movw $BOOT_STACK, %bx # use the bottom of the stack (es = cs)
movw $0x0201, %ax # service 2, 1 sector
int $0x13
jnc got_sectors
movb $0x0f, %cl # sector 15
movw $0x0201, %ax # service 2, 1 sector
int $0x13
jnc got_sectors
movb $0x09, %cl
got_sectors:
movw %cx, %cs:sectors
movw $BOOT_SEG, %ax
movw %ax, %es
# Print a message.
movb $0x03, %ah # read cursor pos
xorb %bh, %bh
int $0x10
leaw boot_msg, %bp
movw $(boot_msg_end - boot_msg), %cx
movw $0x0007, %bx # page 0, attribute 7 (normal)
movw $0x1301, %ax # write string, move cursor
int $0x10
# Load the main test program.
movw $MAIN_SEG, %ax
movw %ax, %es
call read_it
call kill_motor
call turn_off_cursor
call print_nl
# Fix up the Linux boot header to indicate we've loaded into low memory.
movl $LOW_LOAD_ADDR, code32_start
# After that (everything loaded), we jump to the setup code loaded
# directly after the boot block.
ljmp $SETUP_SEG, $0
# This subroutine loads the system at address 0x10000, making sure no 64KB
# boundaries are crossed. We try to load it as fast as possible, loading
# whole tracks whenever we can.
#
# in: es - starting address segment (normally 0x1000)
#
sread: .word 1 + SETUP_SECS # sectors read of current track
head: .word 0 # current head
track: .word 0 # current track
read_it:
movw %es, %ax
testw $0x0fff, %ax
die:
jne die # es must be at 64kB boundary
xorw %bx,%bx # bx is starting address within segment
rp_read:
movw %es, %ax
subw $MAIN_SEG, %ax # have we loaded all yet?
cmpw sys_size, %ax
jbe ok1_read
ret
ok1_read:
movw %cs:sectors, %ax
subw sread, %ax
movw %ax, %cx
shlw $9, %cx
addw %bx, %cx
jnc ok2_read
je ok2_read
xorw %ax, %ax
subw %bx, %ax
shrw $9, %ax
ok2_read:
call read_track
movw %ax, %cx
add sread, %ax
cmpw %cs:sectors, %ax
jne ok3_read
movw $1, %ax
subw head, %ax
jne ok4_read
incw track
ok4_read:
movw %ax, head
xorw %ax, %ax
ok3_read:
movw %ax, sread
shlw $9, %cx
addw %cx, %bx
jnc rp_read
movw %es, %ax
addb $0x10, %ah
movw %ax, %es
xorw %bx, %bx
jmp rp_read
read_track:
pusha
pusha
movw $0xe2e, %ax # loading... message 2e = .
movw $7, %bx
int $0x10
popa
movw track, %dx
movw sread, %cx
incw %cx
movb %dl, %ch
movw head, %dx
movb %dl, %dh
andw $0x0100, %dx
movb $2, %ah
pushw %dx # save for error dump
pushw %cx
pushw %bx
pushw %ax
int $0x13
jc bad_rt
addw $8, %sp
popa
ret
bad_rt:
pushw %ax # save error code
call print_all # ah = error, al = read
xorb %ah, %ah
xorb %dl, %dl
int $0x13
addw $10, %sp
popa
jmp read_track
# This subroutine is for debugging purposes. It will print out all of the
# registers. The assumption is that this is called from a routine, with a
# stack frame like:
# dx
# cx
# bx
# ax
# err
# ret <- sp
print_all:
movw $5, %cx # error code + 4 registers
movw %sp, %bp
print_loop:
pushw %cx # save count left
call print_nl # nl for readability
cmpb 5, %cl # see if register name is needed
jae no_reg
movw $(0xe05 + 'A' - 1), %ax
subb %cl, %al
int $0x10
movb $'X', %al
int $0x10
movb $':', %al
int $0x10
no_reg:
addw $2, %bp # next register
call print_hex # print it
popw %cx
loop print_loop
ret
print_nl:
movw $0xe0d, %ax # CR
int $0x10
movb $0x0a, %al # LF
int $0x10
ret
# This subroutine is for debugging purposes, and prints the word pointed to
# by ss:bp in hexadecimal.
print_hex:
movw $4, %cx # 4 hex digits
movw (%bp), %dx # load word into dx
print_digit:
rolw $4, %dx # rotate so that lowest 4 bits are used
movb $0xe, %ah
movb %dl, %al # mask off so we have only next nibble
andb $0xf, %al
addb $'0', %al # convert to 0-based digit
cmpb $'9', %al # check for overflow
jbe good_digit
addb $('A' - '0' - 10), %al
good_digit:
int $0x10
loop print_digit
ret
# This subroutine turns off the floppy drive motor, so that we enter the
# kernel in a known state, and don't have to worry about it later.
kill_motor:
pushw %dx
movw $0x3f2, %dx
xorb %al, %al
outb %al, %dx
popw %dx
ret
# This subroutine turns off the text display cursor.
turn_off_cursor:
movb $0x01, %ah
movb $0x00, %bh
movw $0x2000, %cx
int $0x10
ret
# Local variables.
sectors:
.word 0
boot_msg:
.ascii "Loading Memtest86+"
boot_msg_end:
# Emulate the Linux boot header, to allow loading by intermediate boot loaders.
.org 497
setup_sects:
.byte SETUP_SECS
root_flags:
.word 0
sys_size:
.long _sys_size
ram_size:
.word 0
vid_mode:
.word 0
root_dev:
.word 0
boot_flag:
.word 0xAA55