// SPDX-License-Identifier: GPL-2.0 // Copyright (C) 2020-2022 Martin Whitaker. // // Derived from an extract of memtest86+ test.c: // // MemTest86+ V5 Specific code (GPL V2.0) // By Samuel DEMEULEMEESTER, sdemeule@memtest.org // http://www.canardpc.com - http://www.memtest.org // Thanks to Passmark for calculate_chunk() and various comments ! // ---------------------------------------------------- // test.c - MemTest-86 Version 3.4 // // Released under version 2 of the Gnu Public License. // By Chris Brady #include #include #include "display.h" #include "error.h" #include "test.h" #include "test_funcs.h" #include "test_helper.h" //------------------------------------------------------------------------------ // Public Functions //------------------------------------------------------------------------------ int test_modulo_n(int my_cpu, int iterations, testword_t pattern1, testword_t pattern2, int n, int offset) { int ticks = 0; if (my_cpu == master_cpu) { display_test_pattern_values(pattern1, offset); } // Write every nth location with pattern1. for (int i = 0; i < vm_map_size; i++) { testword_t *start, *end; calculate_chunk(&start, &end, my_cpu, i, sizeof(testword_t)); end -= n; // avoids pointer overflow when incrementing p testword_t *p = start + offset; // we assume each chunk has at least 'n' words, so this won't overflow testword_t *pe = start; bool at_end = false; do { // take care to avoid pointer overflow if ((end - pe) >= SPIN_SIZE) { pe += SPIN_SIZE - 1; } else { at_end = true; pe = end; } ticks++; if (my_cpu < 0) { continue; } test_addr[my_cpu] = (uintptr_t)p; do { write_word(p, pattern1); } while (p <= (pe - n) && (p += n)); // test before increment in case pointer overflows do_tick(my_cpu); BAILOUT; } while (!at_end && ++pe); // advance pe to next start point } // Write the rest of memory "iteration" times with pattern2. for (int i = 0; i < iterations; i++) { for (int j = 0; j < vm_map_size; j++) { testword_t *start, *end; calculate_chunk(&start, &end, my_cpu, j, sizeof(testword_t)); int k = 0; testword_t *p = start; testword_t *pe = start; bool at_end = false; do { // take care to avoid pointer overflow if ((end - pe) >= SPIN_SIZE) { pe += SPIN_SIZE - 1; } else { at_end = true; pe = end; } ticks++; if (my_cpu < 0) { continue; } test_addr[my_cpu] = (uintptr_t)p; do { if (k != offset) { write_word(p, pattern2); } k++; if (k == n) { k = 0; } } while (p++ < pe); // test before increment in case pointer overflows do_tick(my_cpu); BAILOUT; } while (!at_end && ++pe); // advance pe to next start point } } flush_caches(my_cpu); // Now check every nth location. for (int i = 0; i < vm_map_size; i++) { testword_t *start, *end; calculate_chunk(&start, &end, my_cpu, i, sizeof(testword_t)); end -= n; // avoids pointer overflow when incrementing p testword_t *p = start + offset; // we assume each chunk has at least 'offset' words, so this won't overflow testword_t *pe = start; bool at_end = false; do { // take care to avoid pointer overflow if ((end - pe) >= SPIN_SIZE) { pe += SPIN_SIZE - 1; } else { at_end = true; pe = end; } ticks++; if (my_cpu < 0) { continue; } test_addr[my_cpu] = (uintptr_t)p; do { testword_t actual = read_word(p); if (unlikely(actual != pattern1)) { data_error(p, pattern1, actual, true); } } while (p <= (pe - n) && (p += n)); // test before increment in case pointer overflows do_tick(my_cpu); BAILOUT; } while (!at_end && ++pe); // advance pe to next start point } return ticks; }