madwifi/ath_hal/ar5211/ar5211_keycache.c
2009-04-07 01:26:53 +00:00

179 lines
4.9 KiB
C

/*
* Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
* Copyright (c) 2002-2006 Atheros Communications, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* $Id: ar5211_keycache.c,v 1.4 2008/11/10 04:08:02 sam Exp $
*/
#include "opt_ah.h"
#include "ah.h"
#include "ah_internal.h"
#include "ar5211/ar5211.h"
#include "ar5211/ar5211reg.h"
/*
* Chips-specific key cache routines.
*/
#define AR_KEYTABLE_SIZE 128
#define KEY_XOR 0xaa
/*
* Return the size of the hardware key cache.
*/
uint32_t
ar5211GetKeyCacheSize(struct ath_hal *ah)
{
return AR_KEYTABLE_SIZE;
}
/*
* Return true if the specific key cache entry is valid.
*/
HAL_BOOL
ar5211IsKeyCacheEntryValid(struct ath_hal *ah, uint16_t entry)
{
if (entry < AR_KEYTABLE_SIZE) {
uint32_t val = OS_REG_READ(ah, AR_KEYTABLE_MAC1(entry));
if (val & AR_KEYTABLE_VALID)
return AH_TRUE;
}
return AH_FALSE;
}
/*
* Clear the specified key cache entry
*/
HAL_BOOL
ar5211ResetKeyCacheEntry(struct ath_hal *ah, uint16_t entry)
{
if (entry < AR_KEYTABLE_SIZE) {
OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
OS_REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), 0);
OS_REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
OS_REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
return AH_TRUE;
}
return AH_FALSE;
}
/*
* Sets the mac part of the specified key cache entry and mark it valid.
*/
HAL_BOOL
ar5211SetKeyCacheEntryMac(struct ath_hal *ah, uint16_t entry, const uint8_t *mac)
{
uint32_t macHi, macLo;
if (entry >= AR_KEYTABLE_SIZE) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: entry %u out of range\n",
__func__, entry);
return AH_FALSE;
}
/*
* Set MAC address -- shifted right by 1. MacLo is
* the 4 MSBs, and MacHi is the 2 LSBs.
*/
if (mac != AH_NULL) {
macHi = (mac[5] << 8) | mac[4];
macLo = (mac[3] << 24)| (mac[2] << 16)
| (mac[1] << 8) | mac[0];
macLo >>= 1;
macLo |= (macHi & 1) << 31; /* carry */
macHi >>= 1;
} else {
macLo = macHi = 0;
}
OS_REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
OS_REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
return AH_TRUE;
}
/*
* Sets the contents of the specified key cache entry.
*/
HAL_BOOL
ar5211SetKeyCacheEntry(struct ath_hal *ah, uint16_t entry,
const HAL_KEYVAL *k, const uint8_t *mac,
int xorKey)
{
uint32_t key0, key1, key2, key3, key4;
uint32_t keyType;
uint32_t xorMask= xorKey ?
(KEY_XOR << 24 | KEY_XOR << 16 | KEY_XOR << 8 | KEY_XOR) : 0;
if (entry >= AR_KEYTABLE_SIZE) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: entry %u out of range\n",
__func__, entry);
return AH_FALSE;
}
switch (k->kv_type) {
case HAL_CIPHER_AES_OCB:
keyType = AR_KEYTABLE_TYPE_AES;
break;
case HAL_CIPHER_WEP:
if (k->kv_len < 40 / NBBY) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: WEP key length %u too small\n",
__func__, k->kv_len);
return AH_FALSE;
}
if (k->kv_len <= 40 / NBBY)
keyType = AR_KEYTABLE_TYPE_40;
else if (k->kv_len <= 104 / NBBY)
keyType = AR_KEYTABLE_TYPE_104;
else
keyType = AR_KEYTABLE_TYPE_128;
break;
case HAL_CIPHER_CLR:
keyType = AR_KEYTABLE_TYPE_CLR;
break;
default:
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: cipher %u not supported\n",
__func__, k->kv_type);
return AH_FALSE;
}
key0 = LE_READ_4(k->kv_val+0) ^ xorMask;
key1 = (LE_READ_2(k->kv_val+4) ^ xorMask) & 0xffff;
key2 = LE_READ_4(k->kv_val+6) ^ xorMask;
key3 = (LE_READ_2(k->kv_val+10) ^ xorMask) & 0xffff;
key4 = LE_READ_4(k->kv_val+12) ^ xorMask;
if (k->kv_len <= 104 / NBBY)
key4 &= 0xff;
/*
* Note: WEP key cache hardware requires that each double-word
* pair be written in even/odd order (since the destination is
* a 64-bit register). Don't reorder these writes w/o
* understanding this!
*/
OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
OS_REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
return ar5211SetKeyCacheEntryMac(ah, entry, mac);
}