madwifi/net80211/ieee80211_input.c

4396 lines
126 KiB
C

/*-
* Copyright (c) 2001 Atsushi Onoe
* Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL") version 2 as published by the Free
* Software Foundation.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* $Id$
*/
#ifndef EXPORT_SYMTAB
#define EXPORT_SYMTAB
#endif
/*
* IEEE 802.11 input handling.
*/
#if !defined(AUTOCONF_INCLUDED) && !defined(CONFIG_LOCALVERSION)
#include <linux/config.h>
#endif
#include <linux/version.h>
#include <linux/module.h>
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/random.h>
#include <linux/if_vlan.h>
#include <net/iw_handler.h> /* wireless_send_event(..) */
#include <linux/wireless.h> /* SIOCGIWTHRSPY */
#include <linux/if_arp.h> /* ARPHRD_ETHER */
#include <net80211/if_llc.h>
#include <net80211/if_ethersubr.h>
#include <net80211/if_media.h>
#include <net80211/if_athproto.h>
#include <net80211/ieee80211_var.h>
#ifdef IEEE80211_DEBUG
#define BUF_LEN 192
/*
* Decide if a received management frame should be
* printed when debugging is enabled. This filters some
* of the less interesting frames that come frequently
* (e.g. beacons).
*/
static __inline int
doprint(struct ieee80211vap *vap, int subtype)
{
switch (subtype) {
case IEEE80211_FC0_SUBTYPE_BEACON:
return (vap->iv_ic->ic_flags & IEEE80211_F_SCAN);
case IEEE80211_FC0_SUBTYPE_PROBE_REQ:
return (vap->iv_opmode == IEEE80211_M_IBSS);
}
return 1;
}
/*
* Emit a debug message about discarding a frame or information
* element. One format is for extracting the mac address from
* the frame header; the other is for when a header is not
* available or otherwise appropriate.
*/
#define IEEE80211_DISCARD(_vap, _m, _wh, _type, _fmt, ...) do { \
if ((_vap)->iv_debug & (_m)) \
ieee80211_discard_frame(_vap, _wh, _type, _fmt, __VA_ARGS__);\
} while (0)
#define IEEE80211_DISCARD_IE(_vap, _m, _wh, _type, _fmt, ...) do { \
if ((_vap)->iv_debug & (_m)) \
ieee80211_discard_ie(_vap, _wh, _type, _fmt, __VA_ARGS__);\
} while (0)
#define IEEE80211_DISCARD_MAC(_vap, _m, _mac, _type, _fmt, ...) do { \
if ((_vap)->iv_debug & (_m)) \
ieee80211_discard_mac(_vap, _mac, _type, _fmt, __VA_ARGS__);\
} while (0)
static const u_int8_t *ieee80211_getbssid(struct ieee80211vap *,
const struct ieee80211_frame *);
static void ieee80211_discard_frame(struct ieee80211vap *,
const struct ieee80211_frame *, const char *, const char *, ...);
static void ieee80211_discard_ie(struct ieee80211vap *,
const struct ieee80211_frame *, const char *, const char *, ...);
static void ieee80211_discard_mac(struct ieee80211vap *,
const u_int8_t mac[IEEE80211_ADDR_LEN], const char *,
const char *, ...);
#else
#define IEEE80211_DISCARD(_vap, _m, _wh, _type, _fmt, ...)
#define IEEE80211_DISCARD_IE(_vap, _m, _wh, _type, _fmt, ...)
#define IEEE80211_DISCARD_MAC(_vap, _m, _mac, _type, _fmt, ...)
#endif /* IEEE80211_DEBUG */
static struct sk_buff *ieee80211_defrag(struct ieee80211_node *,
struct sk_buff *, int);
static void ieee80211_deliver_data(struct ieee80211_node *, struct sk_buff *);
static struct sk_buff *ieee80211_decap(struct ieee80211vap *,
struct sk_buff *, int);
static void ieee80211_send_error(struct ieee80211_node *, const u_int8_t *,
int, int);
static void ieee80211_recv_pspoll(struct ieee80211_node *, struct sk_buff *);
static int accept_data_frame(struct ieee80211vap *, struct ieee80211_node *,
struct ieee80211_key *, struct sk_buff *, struct ether_header *);
#ifdef ATH_SUPERG_FF
static int athff_decap(struct sk_buff *);
#endif
#ifdef USE_HEADERLEN_RESV
static __be16 ath_eth_type_trans(struct sk_buff *, struct net_device *);
#endif
#if WIRELESS_EXT >= 16
/**
* Given a node and the RSSI value of a just received frame from the node, this
* function checks if to raise an iwspy event because we iwspy the node and RSSI
* exceeds threshold (if active).
*
* @param vap: VAP
* @param ni: sender node
* @param rssi: RSSI value of received frame
*/
static void
iwspy_event(struct ieee80211vap *vap, struct ieee80211_node *ni, u_int rssi)
{
if (vap->iv_spy.thr_low && vap->iv_spy.num && ni && (rssi <
vap->iv_spy.thr_low || rssi > vap->iv_spy.thr_high)) {
int i;
for (i = 0; i < vap->iv_spy.num; i++) {
if (IEEE80211_ADDR_EQ(ni->ni_macaddr,
&(vap->iv_spy.mac[i * IEEE80211_ADDR_LEN]))) {
union iwreq_data wrq;
struct iw_thrspy thr;
IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
"%s: we spy " MAC_FMT
", threshold is active and rssi exceeds"
" it -> raise an iwspy event\n",
__func__, MAC_ADDR(ni->ni_macaddr));
memset(&wrq, 0, sizeof(wrq));
wrq.data.length = 1;
memset(&thr, 0, sizeof(struct iw_thrspy));
memcpy(thr.addr.sa_data, ni->ni_macaddr,
IEEE80211_ADDR_LEN);
thr.addr.sa_family = ARPHRD_ETHER;
set_quality(&thr.qual, rssi, vap->iv_ic->ic_channoise);
set_quality(&thr.low, vap->iv_spy.thr_low, vap->iv_ic->ic_channoise);
set_quality(&thr.high, vap->iv_spy.thr_high, vap->iv_ic->ic_channoise);
wireless_send_event(vap->iv_dev,
SIOCGIWTHRSPY, &wrq, (char *)&thr);
break;
}
}
}
}
#else
#define iwspy_event(_vap, _ni, _rssi)
#endif /* WIRELESS_EXT >= 16 */
/*
* Process a received frame. The node associated with the sender
* should be supplied. If nothing was found in the node table then
* the caller is assumed to supply a reference to ic_bss instead.
* The RSSI and a timestamp are also supplied. The RSSI data is used
* during AP scanning to select a AP to associate with; it can have
* any units so long as values have consistent units and higher values
* mean ``better signal''. The receive timestamp is currently not used
* by the 802.11 layer.
*
* Context: softIRQ (tasklet)
*/
int
ieee80211_input(struct ieee80211vap *vap, struct ieee80211_node *ni_or_null,
struct sk_buff *skb, int rssi, u_int64_t rtsf)
{
#define HAS_SEQ(type) ((type & 0x4) == 0)
struct ieee80211_node *ni = ni_or_null;
struct ieee80211com *ic = vap->iv_ic;
struct net_device *dev = vap->iv_dev;
struct ieee80211_frame *wh;
struct ieee80211_key *key;
struct ether_header *eh;
#ifdef ATH_SUPERG_FF
struct llc *llc;
#endif
int hdrlen;
u_int8_t dir, type = -1, subtype;
u_int8_t *bssid;
u_int16_t rxseq;
if ((vap->iv_dev->flags & (IFF_RUNNING | IFF_UP)) !=
(IFF_RUNNING | IFF_UP)) {
ieee80211_dev_kfree_skb(&skb);
return -1;
}
/* Initialize ni as in the previous API. */
if (ni_or_null == NULL) {
/* This function does not 'own' vap->iv_bss, so we cannot
* guarantee its existence during the following call, hence
* briefly grab our own reference. */
ni = ieee80211_ref_node(vap->iv_bss);
}
KASSERT(skb != NULL, ("null skb"));
KASSERT(ni != NULL, ("null node"));
ni->ni_inact = ni->ni_inact_reload;
/* In monitor mode, send everything directly to bpf.
* Also do not process frames w/o i_addr2 any further.
* XXX: may want to include the CRC. */
if (vap->iv_opmode == IEEE80211_M_MONITOR)
goto out;
if (skb->len < sizeof(struct ieee80211_frame_min)) {
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
ni->ni_macaddr, NULL,
"too short (1): len %u", skb->len);
vap->iv_stats.is_rx_tooshort++;
goto out;
}
/* Bit of a cheat here, we use a pointer for a 3-address
* frame format but don't reference fields past outside
* ieee80211_frame_min w/o first validating the data is
* present. */
wh = (struct ieee80211_frame *)skb->data;
if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
IEEE80211_FC0_VERSION_0) {
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
ni->ni_macaddr, NULL, "wrong version %x", wh->i_fc[0]);
vap->iv_stats.is_rx_badversion++;
goto err;
}
dir = wh->i_fc[1] & IEEE80211_FC1_DIR_MASK;
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
switch (vap->iv_opmode) {
case IEEE80211_M_STA:
bssid = wh->i_addr2;
if (!IEEE80211_ADDR_EQ(bssid, vap->iv_bssid)) {
/* not interested in */
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT,
bssid, NULL, "%s", "not to bss");
vap->iv_stats.is_rx_wrongbss++;
goto out;
}
iwspy_event(vap, ni, rssi);
break;
case IEEE80211_M_IBSS:
case IEEE80211_M_AHDEMO:
if (dir != IEEE80211_FC1_DIR_NODS)
bssid = wh->i_addr1;
else if (type == IEEE80211_FC0_TYPE_CTL)
bssid = wh->i_addr1;
else {
if (skb->len < sizeof(struct ieee80211_frame)) {
IEEE80211_DISCARD_MAC(vap,
IEEE80211_MSG_ANY, ni->ni_macaddr,
NULL, "too short (2): len %u",
skb->len);
vap->iv_stats.is_rx_tooshort++;
goto out;
}
bssid = wh->i_addr3;
}
/* Do not try to find a node reference if the packet really did come from the BSS */
if (type == IEEE80211_FC0_TYPE_DATA && ni == vap->iv_bss &&
!IEEE80211_ADDR_EQ(vap->iv_bss->ni_macaddr, wh->i_addr2)) {
/* Try to find sender in local node table. */
ni = ieee80211_find_node(vap->iv_bss->ni_table, wh->i_addr2);
if (ni == NULL) {
/*
* Fake up a node for this newly discovered
* member of the IBSS. This should probably
* done after an ACL check.
*/
ni = ieee80211_fakeup_adhoc_node(vap,
wh->i_addr2);
if (ni == NULL) {
/* NB: stat kept for alloc failure */
goto err;
}
}
}
iwspy_event(vap, ni, rssi);
break;
case IEEE80211_M_HOSTAP:
if (dir != IEEE80211_FC1_DIR_NODS)
bssid = wh->i_addr1;
else if (type == IEEE80211_FC0_TYPE_CTL)
bssid = wh->i_addr1;
else {
if (skb->len < sizeof(struct ieee80211_frame)) {
IEEE80211_DISCARD_MAC(vap,
IEEE80211_MSG_ANY, ni->ni_macaddr,
NULL, "too short (2): len %u",
skb->len);
vap->iv_stats.is_rx_tooshort++;
goto out;
}
bssid = wh->i_addr3;
}
/*
* Validate the bssid.
*/
#ifdef ATH_SUPERG_XR
if (!IEEE80211_ADDR_EQ(bssid, vap->iv_bssid) &&
!IEEE80211_ADDR_EQ(bssid, dev->broadcast)) {
/*
* allow MGT frames to vap->iv_xrvap.
* this will allow roaming between XR and normal vaps
* without station dis associating from previous vap.
*/
if (!(vap->iv_xrvap &&
IEEE80211_ADDR_EQ(bssid, vap->iv_xrvap->iv_bssid) &&
type == IEEE80211_FC0_TYPE_MGT &&
ni != vap->iv_bss)) {
/* not interested in */
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT,
bssid, NULL, "%s", "not to bss or xrbss");
vap->iv_stats.is_rx_wrongbss++;
goto out;
}
}
#else
if (!IEEE80211_ADDR_EQ(bssid, vap->iv_bssid) &&
!IEEE80211_ADDR_EQ(bssid, dev->broadcast)) {
/* not interested in */
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT,
bssid, NULL, "%s", "not to bss");
vap->iv_stats.is_rx_wrongbss++;
goto out;
}
#endif
break;
case IEEE80211_M_WDS:
if (skb->len < sizeof(struct ieee80211_frame_addr4)) {
IEEE80211_DISCARD_MAC(vap,
IEEE80211_MSG_ANY, ni->ni_macaddr,
NULL, "too short (3): len %u",
skb->len);
vap->iv_stats.is_rx_tooshort++;
goto out;
}
bssid = wh->i_addr1;
if (!IEEE80211_ADDR_EQ(bssid, vap->iv_bssid) &&
!IEEE80211_ADDR_EQ(bssid, dev->broadcast)) {
/* not interested in */
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT,
bssid, NULL, "%s", "not to bss");
vap->iv_stats.is_rx_wrongbss++;
goto out;
}
if (!IEEE80211_ADDR_EQ(wh->i_addr2, vap->wds_mac)) {
/* not interested in */
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT,
wh->i_addr2, NULL, "%s", "not from DS");
vap->iv_stats.is_rx_wrongbss++;
goto out;
}
break;
default:
/* XXX catch bad values */
goto out;
}
/* since ieee80211_input() can be called multiple times for
* flooding VAPs when we don't know which VAP needs the packet -
* we don't want to update the wrong state when ni is assigned
* to the bss node to accomodate this case. */
if (IEEE80211_ADDR_EQ(wh->i_addr2, ni->ni_macaddr)) {
ni->ni_rssi = rssi;
ni->ni_rtsf = rtsf;
ni->ni_last_rx = jiffies;
}
if (HAS_SEQ(type)) {
u_int8_t tid;
if (IEEE80211_QOS_HAS_SEQ(wh)) {
tid = ((struct ieee80211_qosframe *)wh)->
i_qos[0] & IEEE80211_QOS_TID;
if (TID_TO_WME_AC(tid) >= WME_AC_VI)
ic->ic_wme.wme_hipri_traffic++;
tid++;
} else
tid = 0;
rxseq = le16toh(*(__le16 *)wh->i_seq);
if ((wh->i_fc[1] & IEEE80211_FC1_RETRY) &&
IEEE80211_SEQ_LEQ(rxseq, ni->ni_rxseqs[tid])) {
/* duplicate, discard */
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT,
bssid, "duplicate",
"seqno <%u,%u> fragno <%u,%u> tid %u",
rxseq >> IEEE80211_SEQ_SEQ_SHIFT,
ni->ni_rxseqs[tid] >>
IEEE80211_SEQ_SEQ_SHIFT,
rxseq & IEEE80211_SEQ_FRAG_MASK,
ni->ni_rxseqs[tid] &
IEEE80211_SEQ_FRAG_MASK,
tid);
vap->iv_stats.is_rx_dup++;
IEEE80211_NODE_STAT(ni, rx_dup);
goto out;
}
ni->ni_rxseqs[tid] = rxseq;
}
}
switch (type) {
case IEEE80211_FC0_TYPE_DATA:
hdrlen = ieee80211_hdrsize(wh);
if (skb->len < hdrlen) {
IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY,
wh, "data", "too short: len %u, expecting %u",
skb->len, hdrlen);
vap->iv_stats.is_rx_tooshort++;
goto out; /* XXX */
}
switch (vap->iv_opmode) {
case IEEE80211_M_STA:
if ((dir != IEEE80211_FC1_DIR_FROMDS) &&
(!((vap->iv_flags_ext & IEEE80211_FEXT_WDS) &&
(dir == IEEE80211_FC1_DIR_DSTODS)))) {
IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY,
wh, "data", "invalid dir 0x%x", dir);
vap->iv_stats.is_rx_wrongdir++;
goto out;
}
if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
/* Discard multicast if IFF_MULTICAST not set */
if ((0 != memcmp(wh->i_addr3, dev->broadcast, ETH_ALEN)) &&
(0 == (dev->flags & IFF_MULTICAST))) {
IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT,
wh, NULL, "%s", "multicast disabled.");
printk(KERN_ERR "CONFIG ERROR: multicast flag "
"cleared on radio, but multicast was used.\n");
vap->iv_stats.is_rx_mcastdisabled++;
goto out;
}
/* Discard echos of our own multicast or broadcast */
if (IEEE80211_ADDR_EQ(wh->i_addr3, vap->iv_myaddr)) {
/*
* In IEEE802.11 network, multicast packet
* sent from me is broadcasted from AP.
* It should be silently discarded for
* SIMPLEX interface.
*
* NB: Linux has no IFF_ flag to indicate
* if an interface is SIMPLEX or not;
* so we always assume it to be true.
*/
IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT,
wh, NULL, "%s", "multicast echo");
vap->iv_stats.is_rx_mcastecho++;
goto out;
}
/*
* if it is brodcasted by me on behalf of
* a station behind me, drop it.
*/
if (vap->iv_flags_ext & IEEE80211_FEXT_WDS) {
struct ieee80211_node_table *nt;
struct ieee80211_node *ni_wds;
nt = &ic->ic_sta;
ni_wds = ieee80211_find_wds_node(nt, wh->i_addr3);
if (ni_wds) {
ieee80211_unref_node(&ni_wds);
IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT,
wh, NULL, "%s",
"multicast echo originated from node behind me");
vap->iv_stats.is_rx_mcastecho++;
goto out;
}
}
}
break;
case IEEE80211_M_IBSS:
case IEEE80211_M_AHDEMO:
if (dir != IEEE80211_FC1_DIR_NODS) {
IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY,
wh, "data", "invalid dir 0x%x", dir);
vap->iv_stats.is_rx_wrongdir++;
goto out;
}
/* XXX no power-save support */
break;
case IEEE80211_M_HOSTAP:
if ((dir != IEEE80211_FC1_DIR_TODS) &&
(dir != IEEE80211_FC1_DIR_DSTODS)) {
IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY,
wh, "data", "invalid dir 0x%x", dir);
vap->iv_stats.is_rx_wrongdir++;
goto out;
}
/* check if source STA is associated */
if (ni == vap->iv_bss) {
IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT,
wh, "data", "%s", "unknown src");
/* NB: caller deals with reference */
if (vap->iv_state == IEEE80211_S_RUN)
ieee80211_send_error(ni, wh->i_addr2,
IEEE80211_FC0_SUBTYPE_DEAUTH,
IEEE80211_REASON_NOT_AUTHED);
vap->iv_stats.is_rx_notassoc++;
goto err;
}
if (ni->ni_associd == 0) {
IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT,
wh, "data", "%s", "unassoc src");
IEEE80211_SEND_MGMT(ni,
IEEE80211_FC0_SUBTYPE_DISASSOC,
IEEE80211_REASON_NOT_ASSOCED);
vap->iv_stats.is_rx_notassoc++;
goto err;
}
/*
* If we're a 4 address packet, make sure we have an entry in
* the node table for the packet source address (addr4).
* If not, add one.
*/
/* XXX: Useless node mgmt API; make better */
if (dir == IEEE80211_FC1_DIR_DSTODS) {
struct ieee80211_node_table *nt;
struct ieee80211_frame_addr4 *wh4;
struct ieee80211_node *ni_wds;
if (!(vap->iv_flags_ext & IEEE80211_FEXT_WDS)) {
IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT,
wh, "data", "%s", "4 addr not allowed");
goto err;
}
wh4 = (struct ieee80211_frame_addr4 *)skb->data;
nt = &ic->ic_sta;
ni_wds = ieee80211_find_wds_node(nt, wh4->i_addr4);
/* Last call increments ref count if !NULL */
if ((ni_wds != NULL) && (ni_wds != ni)) {
/*
* node with source address (addr4) moved
* to another WDS capable station. remove the
* reference to the previous station and add
* reference to the new one
*/
(void) ieee80211_remove_wds_addr(nt, wh4->i_addr4);
ieee80211_add_wds_addr(nt, ni, wh4->i_addr4, 0);
}
if (ni_wds == NULL)
ieee80211_add_wds_addr(nt, ni, wh4->i_addr4, 0);
else
ieee80211_unref_node(&ni_wds);
}
/*
* Check for power save state change.
*/
if (!(ni->ni_flags & IEEE80211_NODE_UAPSD)) {
if ((wh->i_fc[1] & IEEE80211_FC1_PWR_MGT) ^
(ni->ni_flags & IEEE80211_NODE_PWR_MGT))
ieee80211_node_pwrsave(ni, wh->i_fc[1] & IEEE80211_FC1_PWR_MGT);
} else if (ni->ni_flags & IEEE80211_NODE_PS_CHANGED) {
int pwr_save_changed = 0;
IEEE80211_LOCK_IRQ(ic);
if ((*(__le16 *)(&wh->i_seq[0])) == ni->ni_pschangeseq) {
ni->ni_flags &= ~IEEE80211_NODE_PS_CHANGED;
pwr_save_changed = 1;
}
IEEE80211_UNLOCK_IRQ(ic);
if (pwr_save_changed)
ieee80211_node_pwrsave(ni, wh->i_fc[1] & IEEE80211_FC1_PWR_MGT);
}
break;
case IEEE80211_M_WDS:
if (dir != IEEE80211_FC1_DIR_DSTODS) {
IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY,
wh, "data", "invalid dir 0x%x", dir);
vap->iv_stats.is_rx_wrongdir++;
goto out;
}
break;
default:
/* XXX here to keep compiler happy */
goto out;
}
/* These frames have no further meaning. */
if ((subtype == IEEE80211_FC0_SUBTYPE_NULL) ||
(subtype == IEEE80211_FC0_SUBTYPE_QOS_NULL))
goto out;
/*
* Handle privacy requirements. Note that we
* must not be preempted from here until after
* we (potentially) call ieee80211_crypto_demic;
* otherwise we may violate assumptions in the
* crypto cipher modules used to do delayed update
* of replay sequence numbers.
*/
if (wh->i_fc[1] & IEEE80211_FC1_PROT) {
if ((vap->iv_flags & IEEE80211_F_PRIVACY) == 0) {
/*
* Discard encrypted frames when privacy is off.
*/
IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT,
wh, "WEP", "%s", "PRIVACY off");
vap->iv_stats.is_rx_noprivacy++;
IEEE80211_NODE_STAT(ni, rx_noprivacy);
goto out;
}
key = ieee80211_crypto_decap(ni, skb, hdrlen);
if (key == NULL) {
/* NB: stats+msgs handled in crypto_decap */
IEEE80211_NODE_STAT(ni, rx_wepfail);
goto out;
}
wh = (struct ieee80211_frame *)skb->data;
wh->i_fc[1] &= ~IEEE80211_FC1_PROT;
} else
key = NULL;
/* Next up, any fragmentation. */
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
skb = ieee80211_defrag(ni, skb, hdrlen);
if (skb == NULL) {
/* Fragment dropped or frame not complete yet */
goto out;
}
}
wh = NULL; /* no longer valid, catch any uses */
/* Next strip any MSDU crypto. bits. */
if (key != NULL &&
!ieee80211_crypto_demic(vap, key, skb, hdrlen, 0)) {
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT,
ni->ni_macaddr, "data", "%s", "demic error");
IEEE80211_NODE_STAT(ni, rx_demicfail);
goto out;
}
/* Finally, strip the 802.11 header. */
skb = ieee80211_decap(vap, skb, hdrlen);
if (skb == NULL) {
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT,
ni->ni_macaddr, "data", "%s", "decap error");
vap->iv_stats.is_rx_decap++;
IEEE80211_NODE_STAT(ni, rx_decap);
goto err;
}
eh = (struct ether_header *)skb->data;
if (!accept_data_frame(vap, ni, key, skb, eh))
goto out;
vap->iv_devstats.rx_packets++;
vap->iv_devstats.rx_bytes += skb->len;
IEEE80211_NODE_STAT(ni, rx_data);
IEEE80211_NODE_STAT_ADD(ni, rx_bytes, skb->len);
ic->ic_lastdata = jiffies;
#ifdef ATH_SUPERG_FF
/* check for FF */
llc = (struct llc *)(skb->data + sizeof(struct ether_header));
if (ntohs(llc->llc_snap.ether_type) == (u_int16_t)ATH_ETH_TYPE) {
struct sk_buff *skb1 = NULL;
struct ether_header *eh_tmp;
struct athl2p_tunnel_hdr *ath_hdr;
unsigned int frame_len;
/* NB: assumes linear (i.e., non-fragmented) skb */
/* get to the tunneled headers */
ath_hdr = (struct athl2p_tunnel_hdr *)
skb_pull(skb, sizeof(struct ether_header) + LLC_SNAPFRAMELEN);
/* ignore invalid frames */
if (ath_hdr == NULL)
goto err;
/* only implementing FF now. drop all others. */
if (ath_hdr->proto != ATH_L2TUNNEL_PROTO_FF) {
IEEE80211_DISCARD_MAC(vap,
IEEE80211_MSG_SUPG | IEEE80211_MSG_INPUT,
eh->ether_shost, "fast-frame",
"bad atheros tunnel prot %u",
ath_hdr->proto);
vap->iv_stats.is_rx_badathtnl++;
goto err;
}
vap->iv_stats.is_rx_ffcnt++;
/* move past the tunneled header, with alignment */
skb_pull(skb, roundup(sizeof(struct athl2p_tunnel_hdr) - 2, 4) + 2);
eh_tmp = (struct ether_header *)skb->data;
/* ether_type must be length as FF frames are always LLC/SNAP encap'd */
frame_len = ntohs(eh_tmp->ether_type);
skb1 = skb_copy(skb, GFP_ATOMIC);
if (skb1 == NULL)
goto err;
ieee80211_skb_copy_noderef(skb, skb1);
/* we now have 802.3 MAC hdr followed by 802.2 LLC/SNAP; convert to EthernetII.
* Note that the frame is at least IEEE80211_MIN_LEN, due to the driver code. */
athff_decap(skb);
/* remove second frame from end of first */
skb_trim(skb, sizeof(struct ether_header) + frame_len - LLC_SNAPFRAMELEN);
/* prepare second tunneled frame */
skb_pull(skb1, roundup(sizeof(struct ether_header) + frame_len, 4));
/* Fail if there is no space left for at least the necessary headers */
if (athff_decap(skb1)) {
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT,
ni->ni_macaddr, "data", "%s", "Decapsulation error");
vap->iv_stats.is_rx_decap++;
IEEE80211_NODE_STAT(ni, rx_decap);
ieee80211_dev_kfree_skb(&skb1); /* This is a copy! */
goto err;
}
/* Deliver the frames. */
ieee80211_deliver_data(ni, skb);
ieee80211_deliver_data(ni, skb1);
} else {
/* Assume non-atheros LLC type. */
ieee80211_deliver_data(ni, skb);
}
#else /* !ATH_SUPERG_FF */
ieee80211_deliver_data(ni, skb);
#endif
if (ni_or_null == NULL)
ieee80211_unref_node(&ni);
/* XXX: Why doesn't this use 'goto out'?
* If it did, then the SKB would be accessed after we
* have given it to ieee80211_deliver_data and we get
* crashes/errors. */
return IEEE80211_FC0_TYPE_DATA;
case IEEE80211_FC0_TYPE_MGT:
/* WDS opmode does not support management frames. */
if (vap->iv_opmode == IEEE80211_M_WDS) {
vap->iv_stats.is_rx_mgtdiscard++;
goto out;
}
IEEE80211_NODE_STAT(ni, rx_mgmt);
if (dir != IEEE80211_FC1_DIR_NODS) {
vap->iv_stats.is_rx_wrongdir++;
goto err;
}
if (skb->len < sizeof(struct ieee80211_frame)) {
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
ni->ni_macaddr, "mgt", "too short: len %u",
skb->len);
vap->iv_stats.is_rx_tooshort++;
goto out;
}
#ifdef IEEE80211_DEBUG
if ((ieee80211_msg_debug(vap) && doprint(vap, subtype)) ||
ieee80211_msg_dumppkts(vap)) {
ieee80211_note(vap,
"received %s from " MAC_FMT " rssi %d\n",
ieee80211_mgt_subtype_name[subtype >>
IEEE80211_FC0_SUBTYPE_SHIFT],
MAC_ADDR(wh->i_addr2), rssi);
}
#endif
if (wh->i_fc[1] & IEEE80211_FC1_PROT) {
if (subtype != IEEE80211_FC0_SUBTYPE_AUTH) {
/*
* Only shared key auth frames with a challenge
* should be encrypted, discard all others.
*/
IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT,
wh, ieee80211_mgt_subtype_name[subtype >>
IEEE80211_FC0_SUBTYPE_SHIFT],
"%s", "WEP set but not permitted");
vap->iv_stats.is_rx_mgtdiscard++; /* XXX */
goto out;
}
if ((vap->iv_flags & IEEE80211_F_PRIVACY) == 0) {
/*
* Discard encrypted frames when privacy is off.
*/
IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT,
wh, "mgt", "%s", "WEP set but PRIVACY off");
vap->iv_stats.is_rx_noprivacy++;
goto out;
}
hdrlen = ieee80211_hdrsize(wh);
key = ieee80211_crypto_decap(ni, skb, hdrlen);
if (key == NULL) {
/* NB: stats+msgs handled in crypto_decap */
goto out;
}
wh = (struct ieee80211_frame *)skb->data;
wh->i_fc[1] &= ~IEEE80211_FC1_PROT;
}
ic->ic_recv_mgmt(vap, ni_or_null, skb, subtype, rssi, rtsf);
goto out;
case IEEE80211_FC0_TYPE_CTL:
IEEE80211_NODE_STAT(ni, rx_ctrl);
vap->iv_stats.is_rx_ctl++;
if (vap->iv_opmode == IEEE80211_M_HOSTAP)
if (subtype == IEEE80211_FC0_SUBTYPE_PS_POLL)
ieee80211_recv_pspoll(ni, skb);
goto out;
default:
IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY,
wh, NULL, "bad frame type 0x%x", type);
/* should not come here */
break;
}
err:
vap->iv_devstats.rx_errors++;
out:
ieee80211_dev_kfree_skb(&skb);
if (ni_or_null == NULL)
ieee80211_unref_node(&ni);
return type;
#undef HAS_SEQ
}
EXPORT_SYMBOL(ieee80211_input);
/*
* Deliver a received skb to all VAPs, free the skb.
*
* Context: softIRQ (tasklet)
*/
int
ieee80211_input_all(struct ieee80211com *ic,
struct sk_buff *skb, int rssi, u_int64_t rtsf)
{
struct ieee80211vap *vap, *first_vap = NULL;
int type; /* Used to determine when to blink LEDs. */
for (vap = TAILQ_FIRST(&ic->ic_vaps); vap;
vap = TAILQ_NEXT(vap, iv_next)) {
struct sk_buff *tskb;
/* Check if the interface is up and running */
if ((vap->iv_dev->flags & (IFF_RUNNING | IFF_UP)) !=
(IFF_RUNNING | IFF_UP))
continue;
/* The first VAP will get a special treatment - it will
get the original skb to avoid unneeded skb copying */
if (!first_vap) {
first_vap = vap;
continue;
}
/* Other VAPs get a copy of the skb */
tskb = skb_copy(skb, GFP_ATOMIC);
if (!tskb) {
/* XXX: Brilliant OOM handling. */
vap->iv_devstats.tx_dropped++;
continue;
}
ieee80211_input(vap, NULL, tskb, rssi, rtsf);
}
/* Process the first VAP now. Any VAP should return a valid type
unless something is very wrong (invalid packet etc). */
if (first_vap)
type = ieee80211_input(first_vap, NULL, skb, rssi, rtsf);
else {
/* No active VAPs, just free the skb */
ieee80211_dev_kfree_skb(&skb);
type = -1;
}
return type;
}
EXPORT_SYMBOL(ieee80211_input_all);
/*
* Determines whether a frame should be accepted, based on information
* about the frame's origin and encryption, and policy for this vap.
*/
static int accept_data_frame(struct ieee80211vap *vap,
struct ieee80211_node *ni, struct ieee80211_key *key,
struct sk_buff *skb, struct ether_header *eh)
{
#define IS_EAPOL(eh) ((eh)->ether_type == __constant_htons(ETHERTYPE_PAE))
#define PAIRWISE_SET(vap) ((vap)->iv_nw_keys[0].wk_cipher != &ieee80211_cipher_none)
if (IS_EAPOL(eh)) {
/* encrypted eapol is always OK */
if (key)
return 1;
/* cleartext eapol is OK if we don't have pairwise keys yet */
if (!PAIRWISE_SET(vap))
return 1;
/* cleartext eapol is OK if configured to allow it */
if (!IEEE80211_VAP_DROPUNENC_EAPOL(vap))
return 1;
/* cleartext eapol is OK if other unencrypted is OK */
if (!(vap->iv_flags & IEEE80211_F_DROPUNENC))
return 1;
/* not OK */
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT,
eh->ether_shost, "data",
"unauthorized port: ether type 0x%x len %u",
ntohs(eh->ether_type), skb->len);
vap->iv_stats.is_rx_unauth++;
vap->iv_devstats.rx_errors++;
IEEE80211_NODE_STAT(ni, rx_unauth);
return 0;
}
if (!ieee80211_node_is_authorized(ni)) {
/*
* Deny any non-PAE frames received prior to
* authorization. For open/shared-key
* authentication the port is mark authorized
* after authentication completes. For 802.1x
* the port is not marked authorized by the
* authenticator until the handshake has completed.
*/
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT,
eh->ether_shost, "data",
"unauthorized port: ether type 0x%x len %u",
ntohs(eh->ether_type), skb->len);
vap->iv_stats.is_rx_unauth++;
vap->iv_devstats.rx_errors++;
IEEE80211_NODE_STAT(ni, rx_unauth);
return 0;
} else {
/*
* When denying unencrypted frames, discard
* any non-PAE frames received without encryption.
*/
if ((vap->iv_flags & IEEE80211_F_DROPUNENC) && key == NULL) {
IEEE80211_NODE_STAT(ni, rx_unencrypted);
return 0;
}
}
return 1;
#undef IS_EAPOL
#undef PAIRWISE_SET
}
/*
* This function reassemble fragments using the skb of the 1st fragment,
* if large enough. If not, a new skb is allocated to hold incoming
* fragments.
*
* Fragments are copied at the end of the previous fragment. A different
* strategy could have been used, where a non-linear skb is allocated and
* fragments attached to that skb.
*/
static struct sk_buff *
ieee80211_defrag(struct ieee80211_node *ni, struct sk_buff *skb, int hdrlen)
{
struct ieee80211_frame *wh = (struct ieee80211_frame *)skb->data;
u_int16_t rxseq, last_rxseq;
u_int8_t fragno, last_fragno;
u_int8_t more_frag = wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG;
rxseq = le16_to_cpu(*(__le16 *)wh->i_seq) >> IEEE80211_SEQ_SEQ_SHIFT;
fragno = le16_to_cpu(*(__le16 *)wh->i_seq) & IEEE80211_SEQ_FRAG_MASK;
/* Quick way out, if there's nothing to defragment */
if (!more_frag && fragno == 0 && ni->ni_rxfrag == NULL)
return skb;
/*
* Remove frag to ensure it doesn't get reaped by timer.
*/
if (ni->ni_table == NULL) {
/*
* Should never happen. If the node is orphaned (not in
* the table) then input packets should not reach here.
* Otherwise, a concurrent request that yanks the table
* should be blocked by other interlocking and/or by first
* shutting the driver down. Regardless, be defensive
* here and just bail
*/
/* XXX need msg+stat */
ieee80211_dev_kfree_skb(&skb);
return NULL;
}
/*
* Update the time stamp. As a side effect, it
* also makes sure that the timer will not change
* ni->ni_rxfrag for at least 1 second, or in
* other words, for the remaining of this function.
* XXX HUGE HORRIFIC HACK
*/
ni->ni_rxfragstamp = jiffies;
/*
* Validate that fragment is in order and
* related to the previous ones.
*/
if (ni->ni_rxfrag) {
struct ieee80211_frame *lwh;
lwh = (struct ieee80211_frame *)ni->ni_rxfrag->data;
last_rxseq = le16_to_cpu(*(__le16 *)lwh->i_seq) >>
IEEE80211_SEQ_SEQ_SHIFT;
last_fragno = le16_to_cpu(*(__le16 *)lwh->i_seq) &
IEEE80211_SEQ_FRAG_MASK;
if (rxseq != last_rxseq
|| fragno != last_fragno + 1
|| (!IEEE80211_ADDR_EQ(wh->i_addr1, lwh->i_addr1))
|| (!IEEE80211_ADDR_EQ(wh->i_addr2, lwh->i_addr2))
|| (ni->ni_rxfrag->end - ni->ni_rxfrag->tail <
skb->len)) {
/*
* Unrelated fragment or no space for it,
* clear current fragments
*/
ieee80211_dev_kfree_skb(&ni->ni_rxfrag);
}
}
/* If this is the first fragment */
if (ni->ni_rxfrag == NULL && fragno == 0) {
ni->ni_rxfrag = skb;
/* If more frags are coming */
if (more_frag) {
if (skb_is_nonlinear(skb)) {
/*
* We need a continous buffer to
* assemble fragments
*/
ni->ni_rxfrag = skb_copy(skb, GFP_ATOMIC);
if (ni->ni_rxfrag) {
ieee80211_skb_copy_noderef(skb, ni->ni_rxfrag);
ieee80211_dev_kfree_skb(&skb);
}
}
/*
* Check that we have enough space to hold
* incoming fragments
* XXX 4-address/QoS frames?
*/
else if ((skb_end_pointer(skb) - skb->head) <
(ni->ni_vap->iv_dev->mtu + hdrlen)) {
ni->ni_rxfrag = skb_copy_expand(skb, 0,
(ni->ni_vap->iv_dev->mtu + hdrlen) -
(skb_end_pointer(skb) - skb->head),
GFP_ATOMIC);
if (ni->ni_rxfrag)
ieee80211_skb_copy_noderef(skb, ni->ni_rxfrag);
ieee80211_dev_kfree_skb(&skb);
}
}
} else {
if (ni->ni_rxfrag) {
struct ieee80211_frame *lwh = (struct ieee80211_frame *)
ni->ni_rxfrag->data;
/*
* We know we have enough space to copy,
* we've verified that before
*/
/* Copy current fragment at end of previous one */
memcpy(skb_tail_pointer(ni->ni_rxfrag),
skb->data + hdrlen, skb->len - hdrlen);
/* Update tail and length */
skb_put(ni->ni_rxfrag, skb->len - hdrlen);
/* Keep a copy of last sequence and fragno */
*(__le16 *)lwh->i_seq = *(__le16 *)wh->i_seq;
}
/* we're done with the fragment */
ieee80211_dev_kfree_skb(&skb);
}
if (more_frag) {
/* More to come */
skb = NULL;
} else {
/* Last fragment received, we're done! */
skb = ni->ni_rxfrag;
ni->ni_rxfrag = NULL;
}
return skb;
}
static void
ieee80211_deliver_data(struct ieee80211_node *ni, struct sk_buff *skb)
{
struct ieee80211vap *vap = ni->ni_vap;
struct net_device *dev = vap->iv_dev;
struct ether_header *eh = (struct ether_header *)skb->data;
struct ieee80211_node *tni;
int ret;
#ifdef ATH_SUPERG_XR
/*
* if it is a XR vap, send the data to associated normal net
* device. XR vap has a net device which is not registered with
* OS.
*/
if (vap->iv_xrvap && vap->iv_flags & IEEE80211_F_XR)
dev = vap->iv_xrvap->iv_dev;
#endif
/* perform as a bridge within the vap */
/* XXX intra-vap bridging only */
if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
(vap->iv_flags & IEEE80211_F_NOBRIDGE) == 0) {
struct sk_buff *skb1 = NULL;
if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
/* Create a SKB for the BSS to send out. */
skb1 = skb_copy(skb, GFP_ATOMIC);
if (skb1)
SKB_NI(skb1) = ieee80211_ref_node(vap->iv_bss);
}
else {
/* Check if destination is associated with the
* same VAP and authorized to receive traffic.
* Beware of traffic destined for the VAP itself;
* sending it will not work; just let it be
* delivered normally. */
struct ieee80211_node *ni1 = ieee80211_find_node(
&vap->iv_ic->ic_sta, eh->ether_dhost);
if (ni1 != NULL) {
if ((ni1->ni_vap == vap) &&
(ni1 != vap->iv_bss) &&
ieee80211_node_is_authorized(ni1)) {
skb1 = skb;
skb = NULL;
}
/* XXX: statistic? */
ieee80211_unref_node(&ni1);
}
}
if (skb1 != NULL) {
skb1->dev = dev;
skb_reset_mac_header(skb1);
skb_set_network_header(skb1, sizeof(struct ether_header));
skb1->protocol = __constant_htons(ETH_P_802_2);
/* This SKB is being emitted to the physical/parent
* device, which maintains node references. However,
* there is kernel code in between which does not.
* Therefore, the ref. is cleaned if the SKB is
* dropped. */
tni = SKB_NI(skb1);
/* XXX: Insert vlan tag before queuing it? */
if (dev_queue_xmit(skb1) == NET_XMIT_DROP) {
vap->iv_devstats.tx_dropped++;
if (tni != NULL)
ieee80211_unref_node(&tni);
}
/* SKB is no longer ours, either way after dev_queue_xmit. */
skb1 = NULL;
}
}
if (skb != NULL) {
vap->iv_devstats.rx_packets++;
vap->iv_devstats.rx_bytes += skb->len;
dev->last_rx = jiffies;
skb->dev = dev;
#ifdef USE_HEADERLEN_RESV
skb->protocol = ath_eth_type_trans(skb, dev);
#else
skb->protocol = eth_type_trans(skb, dev);
#endif
tni = SKB_NI(skb);
if ((ni->ni_vlan != 0) && (vap->iv_vlgrp != NULL))
/* Attach VLAN tag. */
ret = vlan_hwaccel_rx(skb,
vap->iv_vlgrp, ni->ni_vlan);
else
ret = netif_rx(skb);
if (ret == NET_RX_DROP)
vap->iv_devstats.rx_dropped++;
if (tni != NULL)
ieee80211_unref_node(&tni);
skb = NULL; /* SKB is no longer ours */
}
}
/* This function removes the 802.11 header, including LLC/SNAP headers and
* replaces it with an Ethernet II header. */
static struct sk_buff *
ieee80211_decap(struct ieee80211vap *vap, struct sk_buff *skb, int hdrlen)
{
const struct llc snap_hdr = {.llc_dsap = LLC_SNAP_LSAP,
.llc_ssap = LLC_SNAP_LSAP,
.llc_snap.control = LLC_UI,
.llc_snap.org_code = {0x0, 0x0, 0x0}};
struct ieee80211_qosframe_addr4 wh; /* Max size address frames */
struct ether_header *eh;
struct llc *llc;
__be16 ether_type = 0;
memcpy(&wh, skb->data, hdrlen); /* Make a copy of the variably sized .11 header */
llc = (struct llc *)skb_pull(skb, hdrlen);
/* XXX: For some unknown reason some APs think they are from DEC and
* use an OUI of 00-00-f8. This should be killed as soon as sanity is
* restored. */
if ((skb->len >= LLC_SNAPFRAMELEN) && (memcmp(&snap_hdr, llc, 5) == 0) &&
((llc->llc_snap.org_code[2] == 0x0) ||
(llc->llc_snap.org_code[2] == 0xf8))) {
ether_type = llc->llc_un.type_snap.ether_type;
skb_pull(skb, LLC_SNAPFRAMELEN);
llc = NULL;
}
eh = (struct ether_header *)skb_push(skb, sizeof(struct ether_header));
switch (wh.i_fc[1] & IEEE80211_FC1_DIR_MASK) {
case IEEE80211_FC1_DIR_NODS:
IEEE80211_ADDR_COPY(eh->ether_dhost, wh.i_addr1);
IEEE80211_ADDR_COPY(eh->ether_shost, wh.i_addr2);
break;
case IEEE80211_FC1_DIR_TODS:
IEEE80211_ADDR_COPY(eh->ether_dhost, wh.i_addr3);
IEEE80211_ADDR_COPY(eh->ether_shost, wh.i_addr2);
break;
case IEEE80211_FC1_DIR_FROMDS:
IEEE80211_ADDR_COPY(eh->ether_dhost, wh.i_addr1);
IEEE80211_ADDR_COPY(eh->ether_shost, wh.i_addr3);
break;
case IEEE80211_FC1_DIR_DSTODS:
IEEE80211_ADDR_COPY(eh->ether_dhost, wh.i_addr3);
IEEE80211_ADDR_COPY(eh->ether_shost, wh.i_addr4);
break;
}
if (llc != NULL)
eh->ether_type = htons(skb->len - sizeof(*eh));
else
eh->ether_type = ether_type;
return skb;
}
/*
* Install received rate set information in the node's state block.
*/
int
ieee80211_setup_rates(struct ieee80211_node *ni,
const u_int8_t *rates, const u_int8_t *xrates, int flags)
{
struct ieee80211_rateset *rs = &ni->ni_rates;
memset(rs, 0, sizeof(*rs));
rs->rs_nrates = rates[1];
memcpy(rs->rs_rates, rates + 2, rs->rs_nrates);
if (xrates != NULL) {
u_int8_t nxrates;
/*
* Tack on 11g extended supported rate element.
*/
nxrates = xrates[1];
if (rs->rs_nrates + nxrates > IEEE80211_RATE_MAXSIZE) {
struct ieee80211vap *vap = ni->ni_vap;
nxrates = IEEE80211_RATE_MAXSIZE - rs->rs_nrates;
IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE, ni,
"extended rate set too large;"
" only using %u of %u rates",
nxrates, xrates[1]);
vap->iv_stats.is_rx_rstoobig++;
}
memcpy(rs->rs_rates + rs->rs_nrates, xrates+2, nxrates);
rs->rs_nrates += nxrates;
}
return ieee80211_fix_rate(ni, flags);
}
static void
ieee80211_auth_open(struct ieee80211_node *ni, struct ieee80211_frame *wh,
int rssi, u_int64_t rtsf, u_int16_t seq, u_int16_t status)
{
struct ieee80211vap *vap = ni->ni_vap;
unsigned int tmpnode = 0;
if (ni->ni_authmode == IEEE80211_AUTH_SHARED) {
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_AUTH,
ni->ni_macaddr, "open auth",
"bad sta auth mode %u", ni->ni_authmode);
vap->iv_stats.is_rx_bad_auth++; /* XXX maybe a unique error? */
if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
if (ni == vap->iv_bss) {
ni = ieee80211_dup_bss(vap, wh->i_addr2, 0);
if (ni == NULL)
return;
tmpnode = 1;
}
IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_AUTH,
(seq + 1) | (IEEE80211_STATUS_ALG << 16));
if (tmpnode)
ieee80211_unref_node(&ni);
return;
}
}
switch (vap->iv_opmode) {
case IEEE80211_M_IBSS:
if (vap->iv_state != IEEE80211_S_RUN ||
seq != IEEE80211_AUTH_OPEN_REQUEST) {
vap->iv_stats.is_rx_bad_auth++;
return;
}
ieee80211_new_state(vap, IEEE80211_S_AUTH,
wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK);
break;
case IEEE80211_M_AHDEMO:
case IEEE80211_M_WDS:
/* should not come here */
break;
case IEEE80211_M_HOSTAP:
if (vap->iv_state != IEEE80211_S_RUN ||
seq != IEEE80211_AUTH_OPEN_REQUEST) {
vap->iv_stats.is_rx_bad_auth++;
return;
}
/* always accept open authentication requests */
if (ni == vap->iv_bss) {
ni = ieee80211_dup_bss(vap, wh->i_addr2, 0);
if (ni == NULL)
return;
tmpnode = 1;
}
IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_AUTH, seq + 1);
IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_AUTH,
ni, "station authenticated (%s)", "open");
/*
* When 802.1x is not in use mark the port
* authorized at this point so traffic can flow.
*/
if (ni->ni_authmode != IEEE80211_AUTH_8021X)
ieee80211_node_authorize(ni);
if (tmpnode)
ieee80211_unref_node(&ni);
break;
case IEEE80211_M_STA:
if (vap->iv_state != IEEE80211_S_AUTH ||
seq != IEEE80211_AUTH_OPEN_RESPONSE) {
vap->iv_stats.is_rx_bad_auth++;
return;
}
if (status != 0) {
IEEE80211_NOTE(vap,
IEEE80211_MSG_DEBUG | IEEE80211_MSG_AUTH, ni,
"open auth failed (reason %d)", status);
vap->iv_stats.is_rx_auth_fail++;
ieee80211_new_state(vap, IEEE80211_S_SCAN,
IEEE80211_SCAN_FAIL_STATUS);
} else
ieee80211_new_state(vap, IEEE80211_S_ASSOC, 0);
break;
case IEEE80211_M_MONITOR:
break;
}
}
/*
* Send a management frame error response to the specified
* station. If ni is associated with the station then use
* it; otherwise allocate a temporary node suitable for
* transmitting the frame and then free the reference so
* it will go away as soon as the frame has been transmitted.
*/
static void
ieee80211_send_error(struct ieee80211_node *ni,
const u_int8_t *mac, int subtype, int arg)
{
struct ieee80211vap *vap = ni->ni_vap;
int istmp;
if (ni == vap->iv_bss) {
ni = ieee80211_dup_bss(vap, mac, 1);
if (ni == NULL) {
/* XXX msg */
return;
}
istmp = 1;
} else
istmp = 0;
IEEE80211_SEND_MGMT(ni, subtype, arg);
if (istmp)
ieee80211_unref_node(&ni);
}
static int
alloc_challenge(struct ieee80211_node *ni)
{
if (ni->ni_challenge == NULL)
MALLOC(ni->ni_challenge, u_int32_t*, IEEE80211_CHALLENGE_LEN,
M_DEVBUF, M_NOWAIT);
if (ni->ni_challenge == NULL) {
IEEE80211_NOTE(ni->ni_vap,
IEEE80211_MSG_DEBUG | IEEE80211_MSG_AUTH, ni,
"%s", "shared key challenge alloc failed");
/* XXX statistic */
}
return (ni->ni_challenge != NULL);
}
/* XXX TODO: add statistics */
static void
ieee80211_auth_shared(struct ieee80211_node *ni, struct ieee80211_frame *wh,
u_int8_t *frm, u_int8_t *efrm, int rssi, u_int64_t rtsf,
u_int16_t seq, u_int16_t status)
{
struct ieee80211vap *vap = ni->ni_vap;
u_int8_t *challenge;
int allocbs = 0, estatus = 0;
/*
* NB: this can happen as we allow pre-shared key
* authentication to be enabled w/o wep being turned
* on so that configuration of these can be done
* in any order. It may be better to enforce the
* ordering in which case this check would just be
* for sanity/consistency.
*/
if ((vap->iv_flags & IEEE80211_F_PRIVACY) == 0) {
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_AUTH,
ni->ni_macaddr, "shared key auth",
"%s", " PRIVACY is disabled");
estatus = IEEE80211_STATUS_ALG;
goto bad;
}
/*
* Pre-shared key authentication is evil; accept
* it only if explicitly configured (it is supported
* mainly for compatibility with clients like OS X).
*/
if (ni->ni_authmode != IEEE80211_AUTH_AUTO &&
ni->ni_authmode != IEEE80211_AUTH_SHARED) {
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_AUTH,
ni->ni_macaddr, "shared key auth",
"bad sta auth mode %u", ni->ni_authmode);
vap->iv_stats.is_rx_bad_auth++; /* XXX maybe a unique error? */
estatus = IEEE80211_STATUS_ALG;
goto bad;
}
challenge = NULL;
if (frm + 1 < efrm) {
if ((frm[1] + 2) > (efrm - frm)) {
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_AUTH,
ni->ni_macaddr, "shared key auth",
"ie %d/%d too long",
frm[0], (frm[1] + 2) - (efrm - frm));
vap->iv_stats.is_rx_bad_auth++;
estatus = IEEE80211_STATUS_CHALLENGE;
goto bad;
}
if (*frm == IEEE80211_ELEMID_CHALLENGE)
challenge = frm;
frm += frm[1] + 2;
}
switch (seq) {
case IEEE80211_AUTH_SHARED_CHALLENGE:
case IEEE80211_AUTH_SHARED_RESPONSE:
if (challenge == NULL) {
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_AUTH,
ni->ni_macaddr, "shared key auth",
"%s", "no challenge");
vap->iv_stats.is_rx_bad_auth++;
estatus = IEEE80211_STATUS_CHALLENGE;
goto bad;
}
if (challenge[1] != IEEE80211_CHALLENGE_LEN) {
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_AUTH,
ni->ni_macaddr, "shared key auth",
"bad challenge len %d", challenge[1]);
vap->iv_stats.is_rx_bad_auth++;
estatus = IEEE80211_STATUS_CHALLENGE;
goto bad;
}
default:
break;
}
switch (vap->iv_opmode) {
case IEEE80211_M_MONITOR:
case IEEE80211_M_AHDEMO:
case IEEE80211_M_IBSS:
case IEEE80211_M_WDS:
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_AUTH,
ni->ni_macaddr, "shared key auth",
"bad operating mode %u", vap->iv_opmode);
return;
case IEEE80211_M_HOSTAP:
if (vap->iv_state != IEEE80211_S_RUN) {
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_AUTH,
ni->ni_macaddr, "shared key auth",
"bad state %u", vap->iv_state);
estatus = IEEE80211_STATUS_ALG; /* XXX */
goto bad;
}
switch (seq) {
case IEEE80211_AUTH_SHARED_REQUEST:
if (ni == vap->iv_bss) {
ni = ieee80211_dup_bss(vap, wh->i_addr2, 0);
if (ni == NULL) {
/* NB: no way to return an error */
return;
}
allocbs = 1;
}
ni->ni_rssi = rssi;
ni->ni_rtsf = rtsf;
ni->ni_last_rx = jiffies;
if (!alloc_challenge(ni)) {
if (allocbs)
ieee80211_unref_node(&ni);
/* NB: don't return error so they rexmit */
return;
}
get_random_bytes(ni->ni_challenge,
IEEE80211_CHALLENGE_LEN);
IEEE80211_NOTE(vap,
IEEE80211_MSG_DEBUG | IEEE80211_MSG_AUTH, ni,
"shared key %sauth request", allocbs ? "" : "re");
break;
case IEEE80211_AUTH_SHARED_RESPONSE:
if (ni == vap->iv_bss) {
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_AUTH,
ni->ni_macaddr, "shared key response",
"%s", "unknown station");
/* NB: don't send a response */
return;
}
if (ni->ni_challenge == NULL) {
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_AUTH,
ni->ni_macaddr, "shared key response",
"%s", "no challenge recorded");
vap->iv_stats.is_rx_bad_auth++;
estatus = IEEE80211_STATUS_CHALLENGE;
goto bad;
}
if (memcmp(ni->ni_challenge, &challenge[2],
challenge[1]) != 0) {
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_AUTH,
ni->ni_macaddr, "shared key response",
"%s", "challenge mismatch");
vap->iv_stats.is_rx_auth_fail++;
estatus = IEEE80211_STATUS_CHALLENGE;
goto bad;
}
IEEE80211_NOTE(vap,
IEEE80211_MSG_DEBUG | IEEE80211_MSG_AUTH, ni,
"station authenticated (%s)", "shared key");
ieee80211_node_authorize(ni);
break;
default:
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_AUTH,
ni->ni_macaddr, "shared key auth",
"bad seq %d", seq);
vap->iv_stats.is_rx_bad_auth++;
estatus = IEEE80211_STATUS_SEQUENCE;
goto bad;
}
IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_AUTH, seq + 1);
break;
case IEEE80211_M_STA:
if (vap->iv_state != IEEE80211_S_AUTH)
return;
switch (seq) {
case IEEE80211_AUTH_SHARED_PASS:
if (ni->ni_challenge != NULL) {
FREE(ni->ni_challenge, M_DEVBUF);
ni->ni_challenge = NULL;
}
if (status != 0) {
IEEE80211_NOTE_MAC(vap,
IEEE80211_MSG_DEBUG | IEEE80211_MSG_AUTH,
ieee80211_getbssid(vap, wh),
"shared key auth failed (reason %d)",
status);
vap->iv_stats.is_rx_auth_fail++;
/* XXX IEEE80211_SCAN_FAIL_STATUS */
goto bad;
}
ieee80211_new_state(vap, IEEE80211_S_ASSOC, 0);
break;
case IEEE80211_AUTH_SHARED_CHALLENGE:
if (!alloc_challenge(ni))
goto bad;
/* XXX could optimize by passing recvd challenge */
memcpy(ni->ni_challenge, &challenge[2], challenge[1]);
IEEE80211_SEND_MGMT(ni,
IEEE80211_FC0_SUBTYPE_AUTH, seq + 1);
break;
default:
IEEE80211_DISCARD(vap, IEEE80211_MSG_AUTH,
wh, "shared key auth", "bad seq %d", seq);
vap->iv_stats.is_rx_bad_auth++;
goto bad;
}
break;
}
if (allocbs)
ieee80211_unref_node(&ni);
return;
bad:
/* Send an error response; but only when operating as an AP. */
if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
/* XXX hack to workaround calling convention */
ieee80211_send_error(ni, wh->i_addr2,
IEEE80211_FC0_SUBTYPE_AUTH,
(seq + 1) | (estatus<<16));
/* Remove node state if it exists and isn't just a
* temporary copy of the bss (dereferenced later) */
if (!allocbs && (ni != vap->iv_bss))
ieee80211_node_leave(ni);
} else if (vap->iv_opmode == IEEE80211_M_STA) {
/*
* Kick the state machine. This short-circuits
* using the mgt frame timeout to trigger the
* state transition.
*/
if (vap->iv_state == IEEE80211_S_AUTH)
ieee80211_new_state(vap, IEEE80211_S_SCAN, 0);
}
if (allocbs)
ieee80211_unref_node(&ni);
}
/* Verify the existence and length of __elem or get out. */
#define IEEE80211_VERIFY_ELEMENT(__elem, __maxlen) do { \
if ((__elem) == NULL) { \
IEEE80211_DISCARD(vap, IEEE80211_MSG_ELEMID, \
wh, ieee80211_mgt_subtype_name[subtype >> \
IEEE80211_FC0_SUBTYPE_SHIFT], \
"%s", "no " #__elem); \
vap->iv_stats.is_rx_elem_missing++; \
return 0; \
} \
if ((__elem)[1] > (__maxlen)) { \
IEEE80211_DISCARD(vap, IEEE80211_MSG_ELEMID, \
wh, ieee80211_mgt_subtype_name[subtype >> \
IEEE80211_FC0_SUBTYPE_SHIFT], \
"bad " #__elem " len %d", (__elem)[1]); \
vap->iv_stats.is_rx_elem_toobig++; \
return 0; \
} \
} while (0)
#define IEEE80211_VERIFY_LENGTH(_len, _minlen) do { \
if ((_len) < (_minlen)) { \
IEEE80211_DISCARD(vap, IEEE80211_MSG_ELEMID, \
wh, ieee80211_mgt_subtype_name[subtype >> \
IEEE80211_FC0_SUBTYPE_SHIFT], \
"%s", "ie too short"); \
vap->iv_stats.is_rx_elem_toosmall++; \
return 0; \
} \
} while (0)
#ifdef IEEE80211_DEBUG
static void
ieee80211_ssid_mismatch(struct ieee80211vap *vap, const char *tag,
u_int8_t mac[IEEE80211_ADDR_LEN], u_int8_t *ssid)
{
printk("[" MAC_FMT "] discard %s frame, ssid mismatch: ",
MAC_ADDR(mac), tag);
ieee80211_print_essid(ssid + 2, ssid[1]);
printk("\n");
}
#define IEEE80211_VERIFY_SSID(_ni, _ssid) do { \
if ((_ssid)[1] != 0 && \
((_ssid)[1] != (_ni)->ni_esslen || \
memcmp((_ssid) + 2, (_ni)->ni_essid, (_ssid)[1]) != 0)) { \
if (ieee80211_msg_input(vap)) \
ieee80211_ssid_mismatch(vap, \
ieee80211_mgt_subtype_name[subtype >> \
IEEE80211_FC0_SUBTYPE_SHIFT], \
wh->i_addr2, _ssid); \
vap->iv_stats.is_rx_ssidmismatch++; \
return 0; \
} \
} while (0)
#else /* !IEEE80211_DEBUG */
#define IEEE80211_VERIFY_SSID(_ni, _ssid) do { \
if ((_ssid)[1] != 0 && \
((_ssid)[1] != (_ni)->ni_esslen || \
memcmp((_ssid) + 2, (_ni)->ni_essid, (_ssid)[1]) != 0)) { \
vap->iv_stats.is_rx_ssidmismatch++; \
return 0; \
} \
} while (0)
#endif /* !IEEE80211_DEBUG */
/* unaligned little endian access */
#define LE_READ_2(p) \
((u_int16_t) \
((((const u_int8_t *)(p))[0] ) | \
(((const u_int8_t *)(p))[1] << 8)))
#define LE_READ_4(p) \
((u_int32_t) \
((((const u_int8_t *)(p))[0] ) | \
(((const u_int8_t *)(p))[1] << 8) | \
(((const u_int8_t *)(p))[2] << 16) | \
(((const u_int8_t *)(p))[3] << 24)))
static __inline int
iswpaoui(const u_int8_t *frm)
{
return frm[1] > 3 && LE_READ_4(frm+2) == ((WPA_OUI_TYPE<<24)|WPA_OUI);
}
static __inline int
iswmeoui(const u_int8_t *frm)
{
return frm[1] > 3 && LE_READ_4(frm+2) == ((WME_OUI_TYPE<<24)|WME_OUI);
}
static __inline int
iswmeparam(const u_int8_t *frm)
{
return frm[1] > 5 && LE_READ_4(frm+2) == ((WME_OUI_TYPE<<24)|WME_OUI) &&
frm[6] == WME_PARAM_OUI_SUBTYPE;
}
static __inline int
iswmeinfo(const u_int8_t *frm)
{
return frm[1] > 5 && LE_READ_4(frm+2) == ((WME_OUI_TYPE<<24)|WME_OUI) &&
frm[6] == WME_INFO_OUI_SUBTYPE;
}
static __inline int
isatherosoui(const u_int8_t *frm)
{
return frm[1] > 3 && LE_READ_4(frm+2) == ((ATH_OUI_TYPE<<24)|ATH_OUI);
}
/*
* Convert a WPA cipher selector OUI to an internal
* cipher algorithm. Where appropriate we also
* record any key length.
*/
static int
wpa_cipher(u_int8_t *sel, u_int8_t *keylen)
{
#define WPA_SEL(x) (((x) << 24) | WPA_OUI)
u_int32_t w = LE_READ_4(sel);
switch (w) {
case WPA_SEL(WPA_CSE_NULL):
return IEEE80211_CIPHER_NONE;
case WPA_SEL(WPA_CSE_WEP40):
if (keylen)
*keylen = 40 / NBBY;
return IEEE80211_CIPHER_WEP;
case WPA_SEL(WPA_CSE_WEP104):
if (keylen)
*keylen = 104 / NBBY;
return IEEE80211_CIPHER_WEP;
case WPA_SEL(WPA_CSE_TKIP):
return IEEE80211_CIPHER_TKIP;
case WPA_SEL(WPA_CSE_CCMP):
return IEEE80211_CIPHER_AES_CCM;
}
return 32; /* NB: so 1<< is discarded */
#undef WPA_SEL
}
/*
* Convert a WPA key management/authentication algorithm
* to an internal code.
*/
static int
wpa_keymgmt(u_int8_t *sel)
{
#define WPA_SEL(x) (((x)<<24)|WPA_OUI)
u_int32_t w = LE_READ_4(sel);
switch (w) {
case WPA_SEL(WPA_ASE_8021X_UNSPEC):
return WPA_ASE_8021X_UNSPEC;
case WPA_SEL(WPA_ASE_8021X_PSK):
return WPA_ASE_8021X_PSK;
case WPA_SEL(WPA_ASE_NONE):
return WPA_ASE_NONE;
}
return 0; /* NB: so is discarded */
#undef WPA_SEL
}
/*
* Parse a WPA information element to collect parameters
* and validate the parameters against what has been
* configured for the system.
*/
static int
ieee80211_parse_wpa(struct ieee80211vap *vap, u_int8_t *frm,
struct ieee80211_rsnparms *rsn_parm, const struct ieee80211_frame *wh)
{
u_int8_t len = frm[1];
u_int32_t w;
int n;
/*
* Check the length once for fixed parts: OUI, type,
* version, mcast cipher, and 2 selector counts.
* Other, variable-length data, must be checked separately.
*/
if (!(vap->iv_flags & IEEE80211_F_WPA1)) {
IEEE80211_DISCARD_IE(vap,
IEEE80211_MSG_ELEMID | IEEE80211_MSG_WPA,
wh, "WPA", "vap not WPA, flags 0x%x", vap->iv_flags);
return IEEE80211_REASON_IE_INVALID;
}
if (len < 14) {
IEEE80211_DISCARD_IE(vap,
IEEE80211_MSG_ELEMID | IEEE80211_MSG_WPA,
wh, "WPA", "too short, len %u", len);
return IEEE80211_REASON_IE_INVALID;
}
frm += 6, len -= 4; /* NB: len is payload only */
/* NB: iswapoui already validated the OUI and type */
w = LE_READ_2(frm);
if (w != WPA_VERSION) {
IEEE80211_DISCARD_IE(vap,
IEEE80211_MSG_ELEMID | IEEE80211_MSG_WPA,
wh, "WPA", "bad version %u", w);
return IEEE80211_REASON_IE_INVALID;
}
frm += 2;
len -= 2;
/* multicast/group cipher */
w = wpa_cipher(frm, &rsn_parm->rsn_mcastkeylen);
if (w != rsn_parm->rsn_mcastcipher) {
IEEE80211_DISCARD_IE(vap,
IEEE80211_MSG_ELEMID | IEEE80211_MSG_WPA,
wh, "WPA", "mcast cipher mismatch; got %u, expected %u",
w, rsn_parm->rsn_mcastcipher);
return IEEE80211_REASON_IE_INVALID;
}
frm += 4;
len -= 4;
/* unicast ciphers */
n = LE_READ_2(frm);
frm += 2;
len -= 2;
if (len < n*4+2) {
IEEE80211_DISCARD_IE(vap,
IEEE80211_MSG_ELEMID | IEEE80211_MSG_WPA,
wh, "WPA", "ucast cipher data too short; len %u, n %u",
len, n);
return IEEE80211_REASON_IE_INVALID;
}
w = 0;
for (; n > 0; n--) {
w |= 1 << wpa_cipher(frm, &rsn_parm->rsn_ucastkeylen);
frm += 4;
len -= 4;
}
w &= rsn_parm->rsn_ucastcipherset;
if (w == 0) {
IEEE80211_DISCARD_IE(vap,
IEEE80211_MSG_ELEMID | IEEE80211_MSG_WPA,
wh, "WPA", "%s", "ucast cipher set empty");
return IEEE80211_REASON_IE_INVALID;
}
if (w & (1 << IEEE80211_CIPHER_TKIP))
rsn_parm->rsn_ucastcipher = IEEE80211_CIPHER_TKIP;
else
rsn_parm->rsn_ucastcipher = IEEE80211_CIPHER_AES_CCM;
/* key management algorithms */
n = LE_READ_2(frm);
frm += 2;
len -= 2;
if (len < n * 4) {
IEEE80211_DISCARD_IE(vap,
IEEE80211_MSG_ELEMID | IEEE80211_MSG_WPA,
wh, "WPA", "key mgmt alg data too short; len %u, n %u",
len, n);
return IEEE80211_REASON_IE_INVALID;
}
w = 0;
for (; n > 0; n--) {
w |= wpa_keymgmt(frm);
frm += 4;
len -= 4;
}
w &= rsn_parm->rsn_keymgmtset;
if (w == 0) {
IEEE80211_DISCARD_IE(vap,
IEEE80211_MSG_ELEMID | IEEE80211_MSG_WPA,
wh, "WPA", "%s", "no acceptable key mgmt alg");
return IEEE80211_REASON_IE_INVALID;
}
if (w & WPA_ASE_8021X_UNSPEC)
rsn_parm->rsn_keymgmt = WPA_ASE_8021X_UNSPEC;
else
rsn_parm->rsn_keymgmt = WPA_ASE_8021X_PSK;
if (len > 2) /* optional capabilities */
rsn_parm->rsn_caps = LE_READ_2(frm);
return 0;
}
/*
* Convert an RSN cipher selector OUI to an internal
* cipher algorithm. Where appropriate we also
* record any key length.
*/
static int
rsn_cipher(u_int8_t *sel, u_int8_t *keylen)
{
#define RSN_SEL(x) (((x) << 24) | RSN_OUI)
u_int32_t w = LE_READ_4(sel);
switch (w) {
case RSN_SEL(RSN_CSE_NULL):
return IEEE80211_CIPHER_NONE;
case RSN_SEL(RSN_CSE_WEP40):
if (keylen)
*keylen = 40 / NBBY;
return IEEE80211_CIPHER_WEP;
case RSN_SEL(RSN_CSE_WEP104):
if (keylen)
*keylen = 104 / NBBY;
return IEEE80211_CIPHER_WEP;
case RSN_SEL(RSN_CSE_TKIP):
return IEEE80211_CIPHER_TKIP;
case RSN_SEL(RSN_CSE_CCMP):
return IEEE80211_CIPHER_AES_CCM;
case RSN_SEL(RSN_CSE_WRAP):
return IEEE80211_CIPHER_AES_OCB;
}
return 32; /* NB: so 1<< is discarded */
#undef RSN_SEL
}
/*
* Convert an RSN key management/authentication algorithm
* to an internal code.
*/
static int
rsn_keymgmt(u_int8_t *sel)
{
#define RSN_SEL(x) (((x) << 24) | RSN_OUI)
u_int32_t w = LE_READ_4(sel);
switch (w) {
case RSN_SEL(RSN_ASE_8021X_UNSPEC):
return RSN_ASE_8021X_UNSPEC;
case RSN_SEL(RSN_ASE_8021X_PSK):
return RSN_ASE_8021X_PSK;
case RSN_SEL(RSN_ASE_NONE):
return RSN_ASE_NONE;
}
return 0; /* NB: so is discarded */
#undef RSN_SEL
}
/*
* Parse a WPA/RSN information element to collect parameters
* and validate the parameters against what has been
* configured for the system.
*/
static int
ieee80211_parse_rsn(struct ieee80211vap *vap, u_int8_t *frm,
struct ieee80211_rsnparms *rsn_parm, const struct ieee80211_frame *wh)
{
u_int8_t len = frm[1];
u_int32_t w;
int n;
/*
* Check the length once for fixed parts:
* version, mcast cipher, and 2 selector counts.
* Other, variable-length data, must be checked separately.
*/
if (!(vap->iv_flags & IEEE80211_F_WPA2)) {
IEEE80211_DISCARD_IE(vap,
IEEE80211_MSG_ELEMID | IEEE80211_MSG_WPA,
wh, "RSN", "vap not RSN, flags 0x%x", vap->iv_flags);
return IEEE80211_REASON_IE_INVALID;
}
if (len < 10) {
IEEE80211_DISCARD_IE(vap,
IEEE80211_MSG_ELEMID | IEEE80211_MSG_WPA,
wh, "RSN", "too short, len %u", len);
return IEEE80211_REASON_IE_INVALID;
}
frm += 2;
w = LE_READ_2(frm);
if (w != RSN_VERSION) {
IEEE80211_DISCARD_IE(vap,
IEEE80211_MSG_ELEMID | IEEE80211_MSG_WPA,
wh, "RSN", "bad version %u", w);
return IEEE80211_REASON_IE_INVALID;
}
frm += 2;
len -= 2;
/* multicast/group cipher */
w = rsn_cipher(frm, &rsn_parm->rsn_mcastkeylen);
if (w != rsn_parm->rsn_mcastcipher) {
IEEE80211_DISCARD_IE(vap,
IEEE80211_MSG_ELEMID | IEEE80211_MSG_WPA,
wh, "RSN", "mcast cipher mismatch; got %u, expected %u",
w, rsn_parm->rsn_mcastcipher);
return IEEE80211_REASON_IE_INVALID;
}
frm += 4;
len -= 4;
/* unicast ciphers */
n = LE_READ_2(frm);
frm += 2;
len -= 2;
if (len < n * 4 + 2) {
IEEE80211_DISCARD_IE(vap,
IEEE80211_MSG_ELEMID | IEEE80211_MSG_WPA,
wh, "RSN", "ucast cipher data too short; len %u, n %u",
len, n);
return IEEE80211_REASON_IE_INVALID;
}
w = 0;
for (; n > 0; n--) {
w |= 1 << rsn_cipher(frm, &rsn_parm->rsn_ucastkeylen);
frm += 4;
len -= 4;
}
w &= rsn_parm->rsn_ucastcipherset;
if (w == 0) {
IEEE80211_DISCARD_IE(vap,
IEEE80211_MSG_ELEMID | IEEE80211_MSG_WPA,
wh, "RSN", "%s", "ucast cipher set empty");
return IEEE80211_REASON_IE_INVALID;
}
if (w & (1<<IEEE80211_CIPHER_TKIP))
rsn_parm->rsn_ucastcipher = IEEE80211_CIPHER_TKIP;
else
rsn_parm->rsn_ucastcipher = IEEE80211_CIPHER_AES_CCM;
/* key management algorithms */
n = LE_READ_2(frm);
frm += 2;
len -= 2;
if (len < n * 4) {
IEEE80211_DISCARD_IE(vap,
IEEE80211_MSG_ELEMID | IEEE80211_MSG_WPA,
wh, "RSN", "key mgmt alg data too short; len %u, n %u",
len, n);
return IEEE80211_REASON_IE_INVALID;
}
w = 0;
for (; n > 0; n--) {
w |= rsn_keymgmt(frm);
frm += 4;
len -= 4;
}
w &= rsn_parm->rsn_keymgmtset;
if (w == 0) {
IEEE80211_DISCARD_IE(vap,
IEEE80211_MSG_ELEMID | IEEE80211_MSG_WPA,
wh, "RSN", "%s", "no acceptable key mgmt alg");
return IEEE80211_REASON_IE_INVALID;
}
if (w & RSN_ASE_8021X_UNSPEC)
rsn_parm->rsn_keymgmt = RSN_ASE_8021X_UNSPEC;
else
rsn_parm->rsn_keymgmt = RSN_ASE_8021X_PSK;
/* optional RSN capabilities */
if (len > 2)
rsn_parm->rsn_caps = LE_READ_2(frm);
/* XXX PMKID */
return 0;
}
/* Record information element for later use. */
void
ieee80211_saveie(u_int8_t **iep, const u_int8_t *ie)
{
if ((*iep == NULL) || (ie == NULL) || ((*iep)[1] != ie[1])) {
if (*iep != NULL)
FREE(*iep, M_DEVBUF);
*iep = NULL;
if (ie != NULL)
MALLOC(*iep, void*, ie[1] + 2, M_DEVBUF, M_NOWAIT);
}
if ((*iep != NULL) && (ie != NULL))
memcpy(*iep, ie, ie[1] + 2);
}
EXPORT_SYMBOL(ieee80211_saveie);
static int
ieee80211_parse_wmeie(u_int8_t *frm, const struct ieee80211_frame *wh,
struct ieee80211_node *ni)
{
u_int len = frm[1];
if (len != 7) {
IEEE80211_DISCARD_IE(ni->ni_vap,
IEEE80211_MSG_ELEMID | IEEE80211_MSG_WME,
wh, "WME IE", "too short, len %u", len);
return -1;
}
ni->ni_uapsd = frm[WME_CAPINFO_IE_OFFSET];
if (ni->ni_uapsd) {
ni->ni_flags |= IEEE80211_NODE_UAPSD;
switch (WME_UAPSD_MAXSP(ni->ni_uapsd)) {
case 1:
ni->ni_uapsd_maxsp = 2; break;
case 2:
ni->ni_uapsd_maxsp = 4; break;
case 3:
ni->ni_uapsd_maxsp = 6; break;
default:
ni->ni_uapsd_maxsp = WME_UAPSD_NODE_MAXQDEPTH;
}
}
IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_POWER, ni,
"UAPSD bit settings from STA: %02x", ni->ni_uapsd);
return 1;
}
static int
ieee80211_parse_wmeparams(struct ieee80211vap *vap, u_int8_t *frm,
const struct ieee80211_frame *wh, u_int8_t *qosinfo)
{
#define MS(_v, _f) (((_v) & _f) >> _f##_S)
struct ieee80211_wme_state *wme = &vap->iv_ic->ic_wme;
u_int len = frm[1], qosinfo_count;
int i;
*qosinfo = 0;
if (len < sizeof(struct ieee80211_wme_param)-2) {
IEEE80211_DISCARD_IE(vap,
IEEE80211_MSG_ELEMID | IEEE80211_MSG_WME,
wh, "WME", "too short, len %u", len);
return -1;
}
*qosinfo = frm[__offsetof(struct ieee80211_wme_param, param_qosInfo)];
qosinfo_count = *qosinfo & WME_QOSINFO_COUNT;
/* XXX do proper check for wraparound */
if (qosinfo_count == wme->wme_wmeChanParams.cap_info_count)
return 0;
frm += __offsetof(struct ieee80211_wme_param, params_acParams);
for (i = 0; i < WME_NUM_AC; i++) {
struct wmeParams *wmep =
&wme->wme_wmeChanParams.cap_wmeParams[i];
/* NB: ACI not used */
wmep->wmep_acm = MS(frm[0], WME_PARAM_ACM);
wmep->wmep_aifsn = MS(frm[0], WME_PARAM_AIFSN);
wmep->wmep_logcwmin = MS(frm[1], WME_PARAM_LOGCWMIN);
wmep->wmep_logcwmax = MS(frm[1], WME_PARAM_LOGCWMAX);
wmep->wmep_txopLimit = LE_READ_2(frm + 2);
frm += 4;
}
wme->wme_wmeChanParams.cap_info_count = qosinfo_count;
return 1;
#undef MS
}
static void
ieee80211_parse_athParams(struct ieee80211_node *ni, u_int8_t *ie)
{
#ifdef ATH_SUPERG_DYNTURBO
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211com *ic = ni->ni_ic;
#endif /* ATH_SUPERG_DYNTURBO */
struct ieee80211_ie_athAdvCap *athIe =
(struct ieee80211_ie_athAdvCap *)ie;
ni->ni_ath_flags = athIe->athAdvCap_capability;
if (ni->ni_ath_flags & IEEE80211_ATHC_COMP)
ni->ni_ath_defkeyindex = LE_READ_2(&athIe->athAdvCap_defKeyIndex);
#if 0
/* NB: too noisy */
IEEE80211_NOTE(vap, IEEE80211_MSG_SUPG, ni,
"recv ath params: caps 0x%x flags 0x%x defkeyix %u",
athIe->athAdvCap_capability, ni->ni_ath_flags,
ni->ni_ath_defkeyindex);
#endif
#ifdef ATH_SUPERG_DYNTURBO
if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_ATHC_TURBOP)) {
u_int16_t curflags, newflags;
/*
* Check for turbo mode switch. Calculate flags
* for the new mode and effect the switch.
*/
newflags = curflags = ic->ic_bsschan->ic_flags;
/* NB: ATHC_BOOST is not in ic_ath_cap, so get it from the ie */
if (athIe->athAdvCap_capability & IEEE80211_ATHC_BOOST)
newflags |= IEEE80211_CHAN_TURBO;
else
newflags &= ~IEEE80211_CHAN_TURBO;
if (newflags != curflags)
ieee80211_dturbo_switch(ic, newflags);
}
#endif /* ATH_SUPERG_DYNTURBO */
}
static void
forward_mgmt_to_app(struct ieee80211vap *vap, int subtype, struct sk_buff *skb,
struct ieee80211_frame *wh)
{
struct net_device *dev = vap->iv_dev;
int filter_type = 0;
switch (subtype) {
case IEEE80211_FC0_SUBTYPE_BEACON:
filter_type = IEEE80211_FILTER_TYPE_BEACON;
break;
case IEEE80211_FC0_SUBTYPE_PROBE_REQ:
filter_type = IEEE80211_FILTER_TYPE_PROBE_REQ;
break;
case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
filter_type = IEEE80211_FILTER_TYPE_PROBE_RESP;
break;
case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
filter_type = IEEE80211_FILTER_TYPE_ASSOC_REQ;
break;
case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
filter_type = IEEE80211_FILTER_TYPE_ASSOC_RESP;
break;
case IEEE80211_FC0_SUBTYPE_AUTH:
filter_type = IEEE80211_FILTER_TYPE_AUTH;
break;
case IEEE80211_FC0_SUBTYPE_DEAUTH:
filter_type = IEEE80211_FILTER_TYPE_DEAUTH;
break;
case IEEE80211_FC0_SUBTYPE_DISASSOC:
filter_type = IEEE80211_FILTER_TYPE_DISASSOC;
break;
default:
break;
}
if (filter_type && ((vap->app_filter & filter_type) == filter_type)) {
struct sk_buff *skb1;
skb1 = skb_copy(skb, GFP_ATOMIC);
if (skb1 == NULL)
return;
/* We duplicate the reference after skb_copy */
ieee80211_skb_copy_noderef(skb, skb1);
skb1->dev = dev;
skb_reset_mac_header(skb1);
skb1->ip_summed = CHECKSUM_NONE;
skb1->pkt_type = PACKET_OTHERHOST;
skb1->protocol = __constant_htons(0x0019); /* ETH_P_80211_RAW */
vap->iv_devstats.rx_packets++;
vap->iv_devstats.rx_bytes += skb1->len;
if (SKB_NI(skb1) != NULL)
ieee80211_unref_node(&SKB_NI(skb1));
if (netif_rx(skb1) == NET_RX_DROP)
vap->iv_devstats.rx_dropped++;
}
}
void
ieee80211_saveath(struct ieee80211_node *ni, u_int8_t *ie)
{
const struct ieee80211_ie_athAdvCap *athIe =
(const struct ieee80211_ie_athAdvCap *)ie;
ieee80211_saveie(&ni->ni_ath_ie, ie);
if (athIe != NULL) {
ni->ni_ath_flags = athIe->athAdvCap_capability;
if (ni->ni_ath_flags & IEEE80211_ATHC_COMP)
ni->ni_ath_defkeyindex = LE_READ_2(&athIe->athAdvCap_defKeyIndex);
} else {
ni->ni_ath_flags = 0;
ni->ni_ath_defkeyindex = IEEE80211_INVAL_DEFKEY;
}
}
/*
* Structure to be passed through ieee80211_iterate_nodes() to count_nodes()
*/
struct count_nodes_arg {
const int k;
const int *subset;
int count;
struct ieee80211_node *new;
};
/* Count nodes which don't support at least one of arg->subset. */
static void
count_nodes(void *_arg, struct ieee80211_node *ni)
{
struct count_nodes_arg *arg = (struct count_nodes_arg *)_arg;
int i;
if (ni->ni_suppchans == NULL)
return;
if (ni == arg->new)
return;
for (i = 0; i < arg->k; i++)
if (isclr(ni->ni_suppchans, arg->subset[i])) {
arg->count++;
return;
}
}
/* Structure to be passed through combinations() to channel_combination() */
struct channel_combination_arg {
struct ieee80211com *ic;
struct ieee80211_node *new;
int *best;
int benefit;
};
#ifdef IEEE80211_DEBUG
/* sprintf() set[] array consisting of k integers */
static const char*
ints_sprintf(const int k, const int set[])
{
static char buf[915]; /* 0-255: 10*2 + 90*3 + 156*4 + '\0' */
char *ptr = buf;
int i;
for (i = 0; i < k; i++)
ptr += snprintf(ptr, buf + sizeof(buf) - ptr, "%d ", set[i]);
return buf;
}
#endif
/* Action done for each combination of channels that are not supported by
* currently joining station. */
static void
channel_combination(const int k, const int subset[], void *_arg)
{
struct channel_combination_arg *arg =
(struct channel_combination_arg *)_arg;
struct ieee80211com *ic = arg->ic;
struct count_nodes_arg cn_arg = { k, subset, 0, arg->new };
int permil, allowed;
int sta_assoc = ic->ic_sta_assoc; /* make > 0 check consistent
* with / operation */
ieee80211_iterate_nodes(&arg->ic->ic_sta,
&count_nodes, (void*)&cn_arg);
/* The following two sanity checks can theoretically fail due to lack
* of locking, but since it is not fatal, we will just print a debug
* msg and neglect it */
if (cn_arg.count == 0) {
IEEE80211_NOTE(arg->new->ni_vap, IEEE80211_MSG_ANY, arg->new,
"%s", "ic_chan_nodes incosistency (incorrect "
"uncommon channel count)");
return;
}
if (sta_assoc == 0) {
IEEE80211_NOTE(arg->new->ni_vap, IEEE80211_MSG_ANY, arg->new,
"%s", "no STAs associated, so there should be "
"no \"uncommon\" channels");
return;
}
permil = 1000 * cn_arg.count / sta_assoc;
allowed = ic->ic_sc_slcg * k;
/* clamp it to provide more sensible output */
if (allowed > 1000)
allowed = 1000;
IEEE80211_NOTE(arg->new->ni_vap, IEEE80211_MSG_ASSOC|IEEE80211_MSG_DOTH,
arg->new, "Making channels %savailable would require "
"kicking out %d stations,", ints_sprintf(k, subset),
cn_arg.count);
IEEE80211_NOTE(arg->new->ni_vap, IEEE80211_MSG_ASSOC|IEEE80211_MSG_DOTH,
arg->new, "what is %d permils of all associated STAs "
"(slcg permits < %d).", permil, allowed);
if (permil > allowed)
return;
if (allowed - permil > arg->benefit) {
memcpy(arg->best, subset, k * sizeof(*subset));
arg->benefit = allowed - permil;
}
}
/* Enumerate all combinations of k-element subset of n-element set via a
* callback function. */
static void
combinations(int n, int set[], int k,
void (*callback)(const int, const int [], void *), void *arg)
{
int subset[k], pos[k], i;
for (i = 0; i < k; i++)
pos[i] = 0;
i = 0;
forward:
if (i > 0) {
while (set[pos[i]] < subset[i - 1] && pos[i] < n)
pos[i]++;
if (pos[i] == n)
goto backward;
}
subset[i] = set[pos[i]];
set[pos[i]] = set[n - 1];
n--;
i++;
if (i == k) {
callback(k, subset, arg);
} else {
pos[i] = 0;
goto forward;
}
backward:
i--;
if (i < 0)
return;
set[pos[i]] = subset[i];
n++;
pos[i]++;
if (pos[i] == n)
goto backward;
goto forward;
}
static __inline int
find_worse_nodes(struct ieee80211com *ic, struct ieee80211_node *new)
{
int i, tmp1, tmp2;
u_int16_t n_common, n_uncommon;
u_int16_t cn_total = ic->ic_cn_total;
u_int16_t to_gain;
if (cn_total == 0)
/* should not happen */
return 1;
n_common = n_uncommon = 0;
CHANNEL_FOREACH(i, ic, tmp1, tmp2) {
if (isset(new->ni_suppchans_new, i)) {
if (ic->ic_chan_nodes[i] == ic->ic_cn_total) {
n_common++;
} else {
n_uncommon++;
}
}
}
to_gain = ic->ic_sc_mincom - n_common + 1;
IEEE80211_NOTE(new->ni_vap, IEEE80211_MSG_ASSOC | IEEE80211_MSG_DOTH,
new, "By accepting STA we would need to gain at least "
"%d common channels.", to_gain);
IEEE80211_NOTE(new->ni_vap, IEEE80211_MSG_ASSOC | IEEE80211_MSG_DOTH,
new, "%d channels supported by the joining STA are "
"not commonly supported by others.", n_uncommon);
if (to_gain > n_uncommon) {
IEEE80211_NOTE(new->ni_vap, IEEE80211_MSG_ASSOC |
IEEE80211_MSG_DOTH, new, "%s",
"Even disassociating all the nodes will not "
"be enough.");
return 0;
}
{
int uncommon[n_uncommon];
int best[to_gain];
struct channel_combination_arg arg = { ic, new, best, -1 };
int j = 0;
CHANNEL_FOREACH(i, ic, tmp1, tmp2)
if (isset(new->ni_suppchans_new, i) &&
(ic->ic_chan_nodes[i] !=
ic->ic_cn_total)) {
if (j == n_uncommon)
/* silent assert */
break;
uncommon[j++] = i;
}
combinations(n_uncommon, uncommon, to_gain,
&channel_combination, &arg);
if (arg.benefit < 0) {
IEEE80211_NOTE(new->ni_vap, IEEE80211_MSG_ASSOC |
IEEE80211_MSG_DOTH, new, "%s",
"No combination of channels allows a "
"beneficial trade-off.");
return 0;
}
IEEE80211_NOTE(new->ni_vap, IEEE80211_MSG_ASSOC |
IEEE80211_MSG_DOTH, new,
"Nodes which don't support channels %swill be "
"forced to leave.",
ints_sprintf(to_gain, best));
if (new->ni_needed_chans != NULL)
FREE(new->ni_needed_chans, M_DEVBUF);
MALLOC(new->ni_needed_chans, void*,
to_gain * sizeof(*new->ni_needed_chans),
M_DEVBUF, M_NOWAIT);
if (new->ni_needed_chans == NULL) {
IEEE80211_NOTE(new->ni_vap, IEEE80211_MSG_DEBUG |
IEEE80211_MSG_DOTH, new, "%s",
"needed_chans allocation failed");
return 0;
}
/* Store the list of channels to remove nodes which don't
* support them. */
for (i = 0; i < to_gain; i++)
new->ni_needed_chans[i] = best[i];
new->ni_n_needed_chans = to_gain;
return 1;
}
}
static int
ieee80211_parse_sc_ie(struct ieee80211_node *ni, u_int8_t *frm,
const struct ieee80211_frame *wh)
{
struct ieee80211_ie_sc *sc_ie = (struct ieee80211_ie_sc *)frm;
struct ieee80211com *ic = ni->ni_ic;
#ifdef IEEE80211_DEBUG
struct ieee80211vap *vap = ni->ni_vap;
int reassoc = (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
IEEE80211_FC0_SUBTYPE_REASSOC_REQ;
#endif
int i, tmp1, tmp2;
int count;
if (sc_ie == NULL) {
if (ni->ni_ic->ic_sc_algorithm == IEEE80211_SC_STRICT) {
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_ASSOC |
IEEE80211_MSG_DOTH, wh->i_addr2,
"deny %s request, no supported "
"channels IE",
reassoc ? "reassoc" : "assoc");
return IEEE80211_STATUS_SUPPCHAN_UNACCEPTABLE;
}
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_ASSOC |
IEEE80211_MSG_DOTH, wh->i_addr2,
"%s request: no supported channels IE",
reassoc ? "reassoc" : "assoc");
return IEEE80211_STATUS_SUCCESS;
}
if (sc_ie->sc_len % 2 != 0) {
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_ASSOC |
IEEE80211_MSG_DOTH, wh->i_addr2,
"deny %s request, malformed supported "
"channels IE (len)",
reassoc ? "reassoc" : "assoc");
/* XXX: deauth with IEEE80211_REASON_IE_INVALID? */
return IEEE80211_STATUS_SUPPCHAN_UNACCEPTABLE;
}
if (ni->ni_suppchans_new == NULL) {
MALLOC(ni->ni_suppchans_new, void*, IEEE80211_CHAN_BYTES,
M_DEVBUF, M_NOWAIT);
if (ni->ni_suppchans_new == NULL) {
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_ASSOC |
IEEE80211_MSG_DOTH, wh->i_addr2,
"deny %s request, couldn't allocate "
"memory for SC IE!",
reassoc ? "reassoc" : "assoc");
return IEEE80211_STATUS_SUPPCHAN_UNACCEPTABLE;
}
}
memset(ni->ni_suppchans_new, 0, IEEE80211_CHAN_BYTES);
for (i = 0; i < (sc_ie->sc_len / 2); i++) {
u_int8_t chan = sc_ie->sc_subband[i].sc_first;
/* XXX: see 802.11d-2001-4-05-03-interp,
* but what about .11j, turbo, etc.? */
u_int8_t step = (chan <= 14 ? 1 : 4);
u_int16_t last = chan + step *
(sc_ie->sc_subband[i].sc_number - 1);
/* check for subband under- (sc_number == 0) or overflow */
if ((last < chan) || ((chan <= 14) && (last > 14)) ||
(chan > 14 && last > 200)) {
/* XXX: deauth with IEEE80211_REASON_IE_INVALID? */
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_ASSOC |
IEEE80211_MSG_DOTH, wh->i_addr2,
"deny %s request, malformed supported "
"channels ie (subbands, %d, %d)",
reassoc ? "reassoc" : "assoc",
chan, last);
return IEEE80211_STATUS_SUPPCHAN_UNACCEPTABLE;
}
for (; chan <= last; chan += step)
setbit(ni->ni_suppchans_new, chan);
}
/* forbid STAs that claim they don't support the channel they are
* currently operating at */
if (isclr(ni->ni_suppchans_new, ic->ic_bsschan->ic_ieee)) {
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_ASSOC |
IEEE80211_MSG_DOTH, wh->i_addr2,
"deny %s request, sc ie does not contain bss "
"channel(subbands)",
reassoc ? "reassoc" : "assoc");
return IEEE80211_STATUS_SUPPCHAN_UNACCEPTABLE;
}
if ((ic->ic_sc_algorithm != IEEE80211_SC_TIGHT) &&
(ic->ic_sc_algorithm != IEEE80211_SC_STRICT))
goto success;
/* count number of channels that will be common to all STAs after the
* new one joins */
count = 0;
CHANNEL_FOREACH(i, ic, tmp1, tmp2)
if (isset(ni->ni_suppchans_new, i) && (
ic->ic_chan_nodes[i] == ic->ic_cn_total))
count++;
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_ASSOC | IEEE80211_MSG_DOTH,
wh->i_addr2, "%s request: %d common channels, %d "
"required", reassoc ? "reassoc" : "assoc",
count, ic->ic_sc_mincom);
if (count < ic->ic_sc_mincom) {
/* common channel count decreases below the required minimum */
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_ASSOC | IEEE80211_MSG_DOTH,
wh->i_addr2, "%s request: not enough common "
"channels available, tight/strict algorithm "
"engaged", reassoc ? "reassoc" : "assoc");
if (!find_worse_nodes(ic, ni)) {
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_ASSOC |
IEEE80211_MSG_DOTH, wh->i_addr2,
"deny %s request, tight/strict "
"criterion not met",
reassoc ? "reassoc" : "assoc");
return IEEE80211_STATUS_SUPPCHAN_UNACCEPTABLE;
}
}
success:
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_DOTH | IEEE80211_MSG_ASSOC |
IEEE80211_MSG_ELEMID, wh->i_addr2,
"%s", "supported channels ie parsing successful");
return IEEE80211_STATUS_SUCCESS;
}
struct ieee80211_channel *
ieee80211_doth_findchan(struct ieee80211vap *vap, u_int8_t chan)
{
struct ieee80211com *ic = vap->iv_ic;
struct ieee80211_channel *c;
int flags, freq;
/* NB: try first to preserve turbo */
flags = ic->ic_bsschan->ic_flags & IEEE80211_CHAN_ALL;
freq = ieee80211_ieee2mhz(chan, 0);
c = ieee80211_find_channel(ic, freq, flags);
if (c == NULL)
c = ieee80211_find_channel(ic, freq, 0);
return c;
}
/* This function is called at the end of the Channel Shutdown procedure, just
* before switching to the new channel (if any) */
static void
ieee80211_doth_cancel_cs(struct ieee80211com *ic)
{
del_timer(&ic->ic_csa_timer);
ic->ic_flags &= ~IEEE80211_F_CHANSWITCH;
ic->ic_set_dfs_clear(ic, 0);
}
static void
ieee80211_doth_switch_channel(struct ieee80211com *ic)
{
struct ieee80211vap *vap;
u_int32_t now_tu;
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
now_tu = IEEE80211_TSF_TO_TU(vap->iv_get_tsf(vap));
IEEE80211_DPRINTF(vap, IEEE80211_MSG_DOTH,
"%s: Channel switch to %3d (%4d MHz) NOW! "
"(now_tu:%lu)\n", __func__,
ic->ic_csa_chan->ic_ieee,
ic->ic_csa_chan->ic_freq, now_tu);
}
ieee80211_doth_cancel_cs(ic);
ic->ic_curchan = ic->ic_bsschan = ic->ic_csa_chan;
ic->ic_set_channel(ic);
}
void
ieee80211_doth_switch_channel_tmr(unsigned long arg)
{
struct ieee80211com *ic = (struct ieee80211com *)arg;
ieee80211_doth_switch_channel(ic);
}
/* This function is called when we received an action frame or a beacon frame
* containing a CSA IE. */
static int
ieee80211_parse_csaie(struct ieee80211_node *ni, u_int8_t *frm,
const struct ieee80211_frame *wh)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211com *ic = vap->iv_ic;
struct ieee80211_channel *c;
struct ieee80211_ie_csa *csa_ie = (struct ieee80211_ie_csa *)frm;
int subtype;
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
IEEE80211_DPRINTF(
vap, IEEE80211_MSG_DOTH,
"%s: Receiving %s%s%s frame with CSA IE: %u/%u/%u\n",
__func__,
subtype == IEEE80211_FC0_SUBTYPE_BEACON ? "beacon" : "",
subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP ? "probe response" : "",
subtype == IEEE80211_FC0_SUBTYPE_ACTION ? "action" : "",
csa_ie->csa_mode,
csa_ie->csa_chan,
csa_ie->csa_count);
if ((ic->ic_flags & IEEE80211_F_DOTH) == 0) {
IEEE80211_DPRINTF(vap, IEEE80211_MSG_DOTH,
"%s: Ignored CSA IE since 802.11h "
"support is disabled\n", __func__);
return 0;
}
if (csa_ie->csa_id != IEEE80211_ELEMID_CHANSWITCHANN) {
IEEE80211_DISCARD_IE(vap,
IEEE80211_MSG_ELEMID | IEEE80211_MSG_DOTH,
wh, "channel switch", "invalid element ID %u",
csa_ie->csa_id);
return -1;
}
if (csa_ie->csa_len != 3) {
IEEE80211_DISCARD_IE(vap,
IEEE80211_MSG_ELEMID | IEEE80211_MSG_DOTH,
wh, "channel switch", "invalid length %u",
csa_ie->csa_len);
return -1;
}
if ((csa_ie->csa_mode != IEEE80211_CSA_CAN_STOP_TX) &&
(csa_ie->csa_mode != IEEE80211_CSA_MUST_STOP_TX)) {
IEEE80211_DISCARD_IE(vap,
IEEE80211_MSG_ELEMID | IEEE80211_MSG_DOTH,
wh, "channel switch", "invalid CSA mode %u",
csa_ie->csa_mode);
return -1;
}
if (isclr(ic->ic_chan_avail, csa_ie->csa_chan)) {
IEEE80211_DISCARD_IE(vap,
IEEE80211_MSG_ELEMID | IEEE80211_MSG_DOTH,
wh, "channel switch", "invalid channel %u",
csa_ie->csa_chan);
return -1;
}
if ((c = ieee80211_doth_findchan(vap, csa_ie->csa_chan)) == NULL) {
/* XXX something wrong */
IEEE80211_DISCARD_IE(vap,
IEEE80211_MSG_ELEMID | IEEE80211_MSG_DOTH,
wh, "channel switch",
"channel %u lookup failed", csa_ie->csa_chan);
return -1;
}
ieee80211_start_new_csa(vap, csa_ie->csa_mode, c, csa_ie->csa_count,
subtype == IEEE80211_FC0_SUBTYPE_BEACON);
/* This is an extension to 802.11h. When we receive a CSA IE with
* Mode=1, then we treat it like a "remote" radar detected event. This
* is needed to effectively stop transmitting */
if (csa_ie->csa_mode == IEEE80211_CSA_MUST_STOP_TX) {
ic->ic_radar_detected(ic, "remote radar from CSA IE",
1, csa_ie->csa_chan);
}
return 0;
}
/* XXX. Not the right place for such a definition */
struct l2_update_frame {
u8 da[ETH_ALEN]; /* broadcast */
u8 sa[ETH_ALEN]; /* STA addr */
__be16 len; /* 6 */
u8 dsap; /* null DSAP address */
u8 ssap; /* null SSAP address, CR=Response */
u8 control;
u8 xid_info[3];
} __attribute__ ((packed));
static void
ieee80211_deliver_l2_rnr(struct ieee80211_node *ni)
{
struct ieee80211vap *vap = ni->ni_vap;
struct net_device *dev = vap->iv_dev;
struct sk_buff *skb;
struct l2_update_frame *l2uf;
skb = ieee80211_dev_alloc_skb(sizeof(*l2uf));
if (skb == NULL) {
return;
}
skb_put(skb, sizeof(*l2uf));
l2uf = (struct l2_update_frame *)(skb->data);
/* dst: Broadcast address */
memcpy(l2uf->da, dev->broadcast, ETH_ALEN);
/* src: associated STA */
memcpy(l2uf->sa, ni->ni_macaddr, ETH_ALEN);
l2uf->len = htons(6);
l2uf->dsap = 0;
l2uf->ssap = 0;
l2uf->control = 0xf5;
l2uf->xid_info[0] = 0x81;
l2uf->xid_info[1] = 0x80;
l2uf->xid_info[2] = 0x00;
skb->dev = dev;
/* eth_trans_type modifies skb state (skb_pull(ETH_HLEN)), so use
* constants instead. We know the packet type anyway. */
skb->pkt_type = PACKET_BROADCAST;
skb->protocol = htons(ETH_P_802_2);
skb_reset_mac_header(skb);
ieee80211_deliver_data(ni, skb);
return;
}
static void
ieee80211_deliver_l2_xid(struct ieee80211_node *ni)
{
struct ieee80211vap *vap = ni->ni_vap;
struct net_device *dev = vap->iv_dev;
struct sk_buff *skb;
struct l2_update_frame *l2uf;
skb = ieee80211_dev_alloc_skb(sizeof(*l2uf));
if (skb == NULL) {
return;
}
/* Leak check / cleanup destructor */
skb_put(skb, sizeof(*l2uf));
l2uf = (struct l2_update_frame *)(skb->data);
/* dst: Broadcast address */
memcpy(l2uf->da, dev->broadcast, ETH_ALEN);
/* src: associated STA */
memcpy(l2uf->sa, ni->ni_macaddr, ETH_ALEN);
l2uf->len = htons(6);
l2uf->dsap = 0x00; /* NULL DSAP address */
l2uf->ssap = 0x01;/* NULL SSAP address, CR Bit: Response */
l2uf->control = 0xaf; /* XID response lsb.1111F101.
* F=0 (no poll command; unsolicited frame) */
l2uf->xid_info[0] = 0x81; /* XID format identifier */
l2uf->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */
l2uf->xid_info[2] = 1 << 1; /* XID sender's receive window size (RW)
* FIX: what is correct RW with 802.11? */
skb->dev = dev;
/* eth_trans_type modifies skb state (skb_pull(ETH_HLEN)), so use
* constants instead. We know the packet type anyway. */
skb->pkt_type = PACKET_BROADCAST;
skb->protocol = htons(ETH_P_802_2);
skb_reset_mac_header(skb);
ieee80211_deliver_data(ni, skb);
return;
}
static __inline int
contbgscan(struct ieee80211vap *vap)
{
struct ieee80211com *ic = vap->iv_ic;
return ((ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) &&
time_after(jiffies, ic->ic_lastdata + vap->iv_bgscanidle));
}
static __inline int
startbgscan(struct ieee80211vap *vap)
{
struct ieee80211com *ic = vap->iv_ic;
return ((vap->iv_flags & IEEE80211_F_BGSCAN) &&
!IEEE80211_IS_CHAN_DTURBO(ic->ic_curchan) &&
time_after(jiffies, ic->ic_lastscan + vap->iv_bgscanintvl) &&
time_after(jiffies, ic->ic_lastdata + vap->iv_bgscanidle));
}
/*
* Context: SoftIRQ
*/
int
ieee80211_recv_mgmt(struct ieee80211vap *vap,
struct ieee80211_node *ni_or_null, struct sk_buff *skb,
int subtype, int rssi, u_int64_t rtsf)
{
#define ISPROBE(_st) ((_st) == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
#define ISREASSOC(_st) ((_st) == IEEE80211_FC0_SUBTYPE_REASSOC_RESP)
struct ieee80211_node * ni = ni_or_null;
struct ieee80211com *ic = vap->iv_ic;
struct ieee80211_frame *wh;
u_int8_t *frm, *efrm;
u_int8_t *ssid, *rates, *xrates, *suppchan, *wpa, *rsn, *wme, *ath;
u_int8_t rate;
int reassoc, resp, allocbs = 0;
u_int8_t qosinfo;
if (ni_or_null == NULL)
ni = vap->iv_bss;
wh = (struct ieee80211_frame *)skb->data;
frm = (u_int8_t *)&wh[1];
efrm = skb->data + skb->len;
IEEE80211_DPRINTF(vap, IEEE80211_MSG_ASSOC,
"%s: vap:%p[" MAC_FMT "] ni:%p[" MAC_FMT "]\n",
__func__, vap, MAC_ADDR(vap->iv_bssid),
ni_or_null, MAC_ADDR(wh->i_addr2));
/* forward management frame to application */
if (vap->iv_opmode != IEEE80211_M_MONITOR)
forward_mgmt_to_app(vap, subtype, skb, wh);
switch (subtype) {
case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
case IEEE80211_FC0_SUBTYPE_BEACON: {
struct ieee80211_scanparams scan;
/*
* We process beacon/probe response frames:
* o when scanning, or
* o station mode when associated (to collect state
* updates such as 802.11g slot time), or
* o adhoc mode (to discover neighbors)
* Frames otherwise received are discarded.
*/
if (!((ic->ic_flags & IEEE80211_F_SCAN) ||
(vap->iv_opmode == IEEE80211_M_STA && ni->ni_associd) ||
vap->iv_opmode == IEEE80211_M_IBSS)) {
vap->iv_stats.is_rx_mgtdiscard++;
return 0;
}
/*
* beacon/probe response frame format
* [8] time stamp
* [2] beacon interval
* [2] capability information
* [tlv] ssid
* [tlv] supported rates
* [tlv] country information
* [tlv] parameter set (FH/DS)
* [tlv] erp information
* [tlv] extended supported rates
* [tlv] WME
* [tlv] WPA or RSN
* [tlv] Atheros Advanced Capabilities
*/
IEEE80211_VERIFY_LENGTH(efrm - frm, 12);
memset(&scan, 0, sizeof(scan));
scan.tstamp = frm;
frm += 8;
scan.bintval = le16toh(*(__le16 *)frm);
frm += 2;
scan.capinfo = le16toh(*(__le16 *)frm);
frm += 2;
scan.bchan = ieee80211_chan2ieee(ic, ic->ic_curchan);
scan.chan = scan.bchan;
while (frm < efrm) {
/* Agere element in beacon */
if ((*frm == IEEE80211_ELEMID_AGERE1) ||
(*frm == IEEE80211_ELEMID_AGERE2)) {
frm = efrm;
continue;
}
IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1]);
switch (*frm) {
case IEEE80211_ELEMID_SSID:
scan.ssid = frm;
break;
case IEEE80211_ELEMID_RATES:
scan.rates = frm;
break;
case IEEE80211_ELEMID_COUNTRY:
scan.country = frm;
break;
case IEEE80211_ELEMID_FHPARMS:
if (ic->ic_phytype == IEEE80211_T_FH) {
scan.fhdwell = LE_READ_2(&frm[2]);
scan.chan = IEEE80211_FH_CHAN(frm[4],
frm[5]);
scan.fhindex = frm[6];
}
break;
case IEEE80211_ELEMID_DSPARMS:
/*
* XXX hack this since depending on phytype
* is problematic for multi-mode devices.
*/
if (ic->ic_phytype != IEEE80211_T_FH)
scan.chan = frm[2];
break;
case IEEE80211_ELEMID_TIM:
/* XXX ATIM? */
scan.tim = frm;
scan.timoff = frm - skb->data;
break;
case IEEE80211_ELEMID_IBSSPARMS:
break;
case IEEE80211_ELEMID_XRATES:
scan.xrates = frm;
break;
case IEEE80211_ELEMID_ERP:
if (frm[1] != 1) {
IEEE80211_DISCARD_IE(vap,
IEEE80211_MSG_ELEMID, wh, "ERP",
"bad len %u", frm[1]);
vap->iv_stats.is_rx_elem_toobig++;
break;
}
scan.erp = frm[2];
break;
case IEEE80211_ELEMID_RSN:
scan.rsn = frm;
break;
case IEEE80211_ELEMID_VENDOR:
if (iswpaoui(frm))
scan.wpa = frm;
else if (iswmeparam(frm) || iswmeinfo(frm))
scan.wme = frm;
else if (isatherosoui(frm))
scan.ath = frm;
break;
case IEEE80211_ELEMID_CHANSWITCHANN:
if (ic->ic_flags & IEEE80211_F_DOTH)
scan.csa = frm;
break;
default:
IEEE80211_DISCARD_IE(vap, IEEE80211_MSG_ELEMID,
wh, "unhandled",
"id %u, len %u", *frm, frm[1]);
vap->iv_stats.is_rx_elem_unknown++;
break;
}
frm += frm[1] + 2;
}
if (frm > efrm)
return 0; /* reached past the end */
IEEE80211_VERIFY_ELEMENT(scan.rates, IEEE80211_RATE_MAXSIZE);
IEEE80211_VERIFY_ELEMENT(scan.ssid, IEEE80211_NWID_LEN);
#if IEEE80211_CHAN_MAX < 255
if (scan.chan > IEEE80211_CHAN_MAX) {
IEEE80211_DISCARD(vap, IEEE80211_MSG_ELEMID,
wh, ieee80211_mgt_subtype_name[subtype >>
IEEE80211_FC0_SUBTYPE_SHIFT],
"invalid channel %u", scan.chan);
vap->iv_stats.is_rx_badchan++;
return 0;
}
#endif
if (scan.chan != scan.bchan &&
ic->ic_phytype != IEEE80211_T_FH) {
/*
* Frame was received on a channel different from the
* one indicated in the DS params element id;
* silently discard it.
*
* NB: this can happen due to signal leakage.
* But we should take it for FH PHY because
* the RSSI value should be correct even for
* different hop pattern in FH.
*/
IEEE80211_DISCARD(vap, IEEE80211_MSG_ELEMID,
wh, ieee80211_mgt_subtype_name[subtype >>
IEEE80211_FC0_SUBTYPE_SHIFT],
"for off-channel %u", scan.chan);
vap->iv_stats.is_rx_chanmismatch++;
return 0;
}
/* IEEE802.11 does not specify the allowed range for
* beacon interval. We discard any beacons with a
* beacon interval outside of an arbitrary range in
* order to protect against attack.
*/
if (!IEEE80211_BINTVAL_VALID(scan.bintval)) {
IEEE80211_DISCARD(vap, IEEE80211_MSG_SCAN,
wh, "beacon", "invalid beacon interval (%u)",
scan.bintval);
return 0;
}
/*
* Count frame now that we know it's to be processed.
*/
if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
IEEE80211_NODE_STAT(ni, rx_beacons);
else
IEEE80211_NODE_STAT(ni, rx_proberesp);
/* According to 802.11h 11.6 p47 : if a STA with
* dot11SpectrumManagementRequired set to TRUE receives a
* Beacon or Probe Response frames with the Spectrum
* Management bit set to 1, then we behave the same way as if
* Channel Availability Check is done */
if ((ic->ic_flags & IEEE80211_F_DOTH) &&
(scan.capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT)) {
IEEE80211_DPRINTF(vap, IEEE80211_MSG_DOTH,
"Received an enabling signal from "
MAC_FMT "\n", MAC_ADDR(wh->i_addr2));
ic->ic_set_dfs_clear(ic, 1);
}
/*
* When operating in station mode, check for state updates.
* Be careful to ignore beacons received while doing a
* background scan. We consider only 11g/WMM stuff right now.
*/
if (vap->iv_opmode == IEEE80211_M_STA &&
ni->ni_associd != 0 &&
IEEE80211_ADDR_EQ(wh->i_addr2, vap->iv_bssid)) {
/* record tsf of last beacon */
memcpy(ni->ni_tstamp.data, scan.tstamp,
sizeof(ni->ni_tstamp));
if (ni->ni_intval != scan.bintval) {
IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
"beacon interval divergence: "
"was %u, now %u",
ni->ni_intval, scan.bintval);
if (!ni->ni_intval_end) {
int msecs = 0; /* silence compiler */
ni->ni_intval_cnt = 0;
ni->ni_intval_old = ni->ni_intval;
msecs = (ni->ni_intval_old * 1024 * 10) /
1000;
ni->ni_intval_end = jiffies +
msecs_to_jiffies(msecs);
IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC,
ni, "scheduling beacon "
"interval measurement "
"for %u msecs",
msecs);
}
if (scan.bintval > ni->ni_intval) {
ni->ni_intval = scan.bintval;
vap->iv_flags_ext |=
IEEE80211_FEXT_APPIE_UPDATE;
}
/* XXX: statistic */
}
if (ni->ni_intval_end) {
if (scan.bintval == ni->ni_intval_old)
ni->ni_intval_cnt++;
if (!time_before(jiffies, ni->ni_intval_end)) {
IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC,
ni, "beacon interval "
"measurement finished, "
"old value repeated: "
"%u times",
ni->ni_intval_cnt);
ni->ni_intval_end = 0;
if (ni->ni_intval_cnt == 0) {
IEEE80211_NOTE(vap,
IEEE80211_MSG_ASSOC, ni,
"reprogramming bmiss "
"timer from %u to %u",
ni->ni_intval_old,
scan.bintval);
ni->ni_intval = scan.bintval;
vap->iv_flags_ext |=
IEEE80211_FEXT_APPIE_UPDATE;
} else {
IEEE80211_NOTE(vap,
IEEE80211_MSG_ASSOC, ni,
"ignoring the divergence "
"(maybe someone tried to "
"spoof the AP?)", 0);
}
}
/* XXX statistic */
}
if (ni->ni_erp != scan.erp) {
IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
"erp change: was 0x%x, now 0x%x",
ni->ni_erp, scan.erp);
if (scan.erp & IEEE80211_ERP_USE_PROTECTION)
ic->ic_flags |= IEEE80211_F_USEPROT;
else
ic->ic_flags &= ~IEEE80211_F_USEPROT;
ni->ni_erp = scan.erp;
/* XXX statistic */
}
if ((ni->ni_capinfo ^ scan.capinfo) &
IEEE80211_CAPINFO_SHORT_SLOTTIME) {
IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
"capabilities change: was 0x%x, now 0x%x",
ni->ni_capinfo, scan.capinfo);
/*
* NB: we assume short preamble doesn't
* change dynamically
*/
ieee80211_set_shortslottime(ic,
IEEE80211_IS_CHAN_A(ic->ic_bsschan) ||
(ni->ni_capinfo &
IEEE80211_CAPINFO_SHORT_SLOTTIME));
ni->ni_capinfo = scan.capinfo;
/* XXX statistic */
}
if (scan.wme != NULL &&
(ni->ni_flags & IEEE80211_NODE_QOS)) {
int _retval;
if ((_retval = ieee80211_parse_wmeparams(
vap, scan.wme,
wh, &qosinfo)) >= 0) {
if (qosinfo & WME_CAPINFO_UAPSD_EN)
ni->ni_flags |=
IEEE80211_NODE_UAPSD;
if (_retval > 0)
ieee80211_wme_updateparams(vap);
}
} else
ni->ni_flags &= ~IEEE80211_NODE_UAPSD;
if (scan.ath != NULL)
ieee80211_parse_athParams(ni, scan.ath);
if (scan.csa != NULL)
ieee80211_parse_csaie(ni, scan.csa, wh);
if (scan.tim != NULL) {
/*
* Check the TIM. For now we drop out of
* power save mode for any reason.
*/
struct ieee80211_tim_ie *tim =
(struct ieee80211_tim_ie *)scan.tim;
int aid = IEEE80211_AID(ni->ni_associd);
int ix = aid / NBBY;
int min = tim->tim_bitctl &~ 1;
int max = tim->tim_len + min - 4;
if ((tim->tim_bitctl&1) ||
(min <= ix && ix <= max &&
isset(tim->tim_bitmap - min, aid)))
ieee80211_sta_pwrsave(vap, 0);
vap->iv_dtim_count = tim->tim_count;
}
/* WDS/Repeater: re-schedule software beacon timer for
* STA. */
if ((vap->iv_state == IEEE80211_S_RUN) &&
(vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS)) {
mod_timer(&vap->iv_swbmiss,
jiffies + vap->iv_swbmiss_period);
}
/* If scanning, pass the info to the scan module.
* Otherwise, check if it's the right time to do
* a background scan. Background scanning must
* be enabled and we must not be operating in the
* turbo phase of dynamic turbo mode. Then,
* it's been a while since the last background
* scan and if no data frames have come through
* recently, kick off a scan. Note that this
* is the mechanism by which a background scan
* is started _and_ continued each time we
* return on-channel to receive a beacon from
* our ap. */
if (ic->ic_flags & IEEE80211_F_SCAN)
ieee80211_add_scan(vap, &scan, wh,
subtype, rssi, rtsf);
else if (contbgscan(vap) || startbgscan(vap))
ieee80211_bg_scan(vap);
return 0;
}
/* ieee80211_parse_csaie() needs to be called in IBSS mode as
* well. We filter on the IBSSID */
if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
(scan.capinfo & IEEE80211_CAPINFO_IBSS) &&
IEEE80211_ADDR_EQ(wh->i_addr3, vap->iv_bssid)) {
if (scan.csa != NULL)
ieee80211_parse_csaie(ni,scan.csa,wh);
}
/*
* If scanning, just pass information to the scan module.
*/
if (ic->ic_flags & IEEE80211_F_SCAN) {
ieee80211_add_scan(vap, &scan, wh, subtype, rssi, rtsf);
return 0;
}
if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
(scan.capinfo & IEEE80211_CAPINFO_IBSS)) {
if (ni_or_null == NULL) {
/* Create a new entry in the neighbor table. */
ni = ieee80211_add_neighbor(vap, wh, &scan);
if (ni == NULL)
return 0;
} else {
/*
* Copy data from beacon to neighbor table.
* Some of this information might change after
* ieee80211_add_neighbor(), so we just copy
* everything over to be safe.
*/
ni->ni_esslen = scan.ssid[1];
memcpy(ni->ni_essid, scan.ssid + 2, scan.ssid[1]);
IEEE80211_ADDR_COPY(ni->ni_bssid, wh->i_addr3);
memcpy(ni->ni_tstamp.data, scan.tstamp,
sizeof(ni->ni_tstamp));
ni->ni_intval =
IEEE80211_BINTVAL_SANITISE(scan.bintval);
ni->ni_capinfo = scan.capinfo;
ni->ni_chan = ic->ic_curchan;
ni->ni_fhdwell = scan.fhdwell;
ni->ni_fhindex = scan.fhindex;
ni->ni_erp = scan.erp;
ni->ni_timoff = scan.timoff;
if (scan.wme != NULL)
ieee80211_saveie(&ni->ni_wme_ie, scan.wme);
if (scan.wpa != NULL)
ieee80211_saveie(&ni->ni_wpa_ie, scan.wpa);
if (scan.rsn != NULL)
ieee80211_saveie(&ni->ni_rsn_ie, scan.rsn);
if (scan.ath != NULL)
ieee80211_saveath(ni, scan.ath);
/* NB: must be after ni_chan is setup */
ieee80211_setup_rates(ni, scan.rates,
scan.xrates, IEEE80211_F_DOSORT);
}
if (ni != NULL) {
ni->ni_rssi = rssi;
ni->ni_rtsf = rtsf;
ni->ni_last_rx = jiffies;
}
}
break;
}
case IEEE80211_FC0_SUBTYPE_PROBE_REQ:
if (vap->iv_opmode == IEEE80211_M_STA ||
vap->iv_opmode == IEEE80211_M_AHDEMO ||
vap->iv_state != IEEE80211_S_RUN) {
vap->iv_stats.is_rx_mgtdiscard++;
return 0;
}
if (IEEE80211_IS_MULTICAST(wh->i_addr2)) {
/* frame must be directed */
vap->iv_stats.is_rx_mgtdiscard++; /* XXX: stat */
return 0;
}
/*
* XR vap does not process probe requests.
*/
#ifdef ATH_SUPERG_XR
if (vap->iv_flags & IEEE80211_F_XR)
return 0;
#endif
/*
* prreq frame format
* [tlv] ssid
* [tlv] supported rates
* [tlv] extended supported rates
* [tlv] Atheros Advanced Capabilities
*/
ssid = rates = xrates = ath = NULL;
while (frm < efrm) {
IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1]);
switch (*frm) {
case IEEE80211_ELEMID_SSID:
ssid = frm;
break;
case IEEE80211_ELEMID_RATES:
rates = frm;
break;
case IEEE80211_ELEMID_XRATES:
xrates = frm;
break;
case IEEE80211_ELEMID_VENDOR:
if (isatherosoui(frm))
ath = frm;
/* XXX Atheros OUI support */
break;
}
frm += frm[1] + 2;
}
if (frm > efrm)
return 0; /* reached past the end */
IEEE80211_VERIFY_ELEMENT(rates, IEEE80211_RATE_MAXSIZE);
IEEE80211_VERIFY_ELEMENT(ssid, IEEE80211_NWID_LEN);
IEEE80211_VERIFY_SSID(vap->iv_bss, ssid);
if ((vap->iv_flags & IEEE80211_F_HIDESSID) && ssid[1] == 0) {
IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT,
wh, ieee80211_mgt_subtype_name[subtype >>
IEEE80211_FC0_SUBTYPE_SHIFT],
"%s", "no ssid with ssid suppression enabled");
vap->iv_stats.is_rx_ssidmismatch++; /*XXX*/
return 0;
}
if (ni == vap->iv_bss) {
if (vap->iv_opmode == IEEE80211_M_IBSS) {
/*
* XXX Cannot tell if the sender is operating
* in ibss mode. But we need a new node to
* send the response so blindly add them to the
* neighbor table.
*/
ni = ieee80211_fakeup_adhoc_node(vap,
wh->i_addr2);
} else {
ni = ieee80211_dup_bss(vap, wh->i_addr2, 1);
}
if (ni == NULL)
return 0;
allocbs = 1;
}
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_INPUT, wh->i_addr2,
"%s", "recv probe req");
ni->ni_rssi = rssi;
ni->ni_rtsf = rtsf;
ni->ni_last_rx = jiffies;
rate = ieee80211_setup_rates(ni, rates, xrates,
IEEE80211_F_DOSORT | IEEE80211_F_DOFRATE |
IEEE80211_F_DONEGO | IEEE80211_F_DODEL);
if (rate & IEEE80211_RATE_BASIC) {
IEEE80211_DISCARD(vap, IEEE80211_MSG_XRATE,
wh, ieee80211_mgt_subtype_name[subtype >>
IEEE80211_FC0_SUBTYPE_SHIFT],
"%s", "recv'd rate set invalid");
} else {
IEEE80211_SEND_MGMT(ni,
IEEE80211_FC0_SUBTYPE_PROBE_RESP, 0);
}
if (allocbs) {
/*
* Temporary node created just to send a
* response, reclaim immediately
*/
ieee80211_unref_node(&ni);
} else if (ath != NULL)
ieee80211_saveath(ni, ath);
break;
case IEEE80211_FC0_SUBTYPE_AUTH: {
u_int16_t algo, seq, status;
/*
* auth frame format
* [2] algorithm
* [2] sequence
* [2] status
* [tlv*] challenge
*/
IEEE80211_VERIFY_LENGTH(efrm - frm, 6);
algo = le16toh(*(__le16 *)frm);
seq = le16toh(*(__le16 *)(frm + 2));
status = le16toh(*(__le16 *)(frm + 4));
#ifdef ATH_SUPERG_XR
if (!IEEE80211_ADDR_EQ(wh->i_addr3, vap->iv_bssid)) {
/*
* node roaming between XR and normal vaps.
* this can only happen in AP mode. disaccociate from
* previous vap first.
*/
if (vap->iv_xrvap) {
if (ni == vap->iv_bss)
ni = vap->iv_xrvap->iv_bss;
else {
ieee80211_node_leave(ni);
/* This would be a stupid place to add
* a node to the table; XR stuff needs
* work anyway. */
ieee80211_node_reset(ni, vap->iv_xrvap);
}
vap = vap->iv_xrvap;
} else {
IEEE80211_DISCARD(vap, IEEE80211_MSG_AUTH,
wh, "auth", "%s", "not to pier xr bssid");
return 0;
}
}
#endif
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr2,
"recv auth frame with algorithm %d seq %d", algo, seq);
/* Consult the ACL policy module if setup. */
if (vap->iv_acl != NULL &&
!vap->iv_acl->iac_check(vap, wh->i_addr2)) {
IEEE80211_DISCARD(vap, IEEE80211_MSG_ACL,
wh, "auth", "%s", "disallowed by ACL");
vap->iv_stats.is_rx_acl++;
return 0;
}
if (vap->iv_flags & IEEE80211_F_COUNTERM) {
IEEE80211_DISCARD(vap,
IEEE80211_MSG_AUTH | IEEE80211_MSG_CRYPTO,
wh, "auth", "%s", "TKIP countermeasures enabled");
vap->iv_stats.is_rx_auth_countermeasures++;
if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
ieee80211_send_error(ni, wh->i_addr2,
IEEE80211_FC0_SUBTYPE_AUTH,
IEEE80211_REASON_MIC_FAILURE);
}
return 0;
}
if (algo == IEEE80211_AUTH_ALG_SHARED)
ieee80211_auth_shared(ni, wh, frm + 6, efrm, rssi,
rtsf, seq, status);
else if (algo == IEEE80211_AUTH_ALG_OPEN)
ieee80211_auth_open(ni, wh, rssi, rtsf, seq, status);
else {
IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY,
wh, "auth", "unsupported alg %d", algo);
vap->iv_stats.is_rx_auth_unsupported++;
if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
/* XXX not right */
ieee80211_send_error(ni, wh->i_addr2,
IEEE80211_FC0_SUBTYPE_AUTH,
(seq + 1) |
(IEEE80211_STATUS_ALG << 16));
}
return 0;
}
break;
}
case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
case IEEE80211_FC0_SUBTYPE_REASSOC_REQ: {
u_int16_t capinfo, bintval;
struct ieee80211_rsnparms rsn_parm;
u_int8_t reason;
if (vap->iv_opmode != IEEE80211_M_HOSTAP ||
vap->iv_state != IEEE80211_S_RUN) {
vap->iv_stats.is_rx_mgtdiscard++;
return 0;
}
if (subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
reassoc = 1;
resp = IEEE80211_FC0_SUBTYPE_REASSOC_RESP;
} else {
reassoc = 0;
resp = IEEE80211_FC0_SUBTYPE_ASSOC_RESP;
}
/*
* asreq frame format
* [2] capability information
* [2] listen interval
* [6*] current AP address (reassoc only)
* [tlv] ssid
* [tlv] supported rates
* [tlv] extended supported rates
* [tlv] supported channels
* [tlv] wpa or RSN
* [tlv] WME
* [tlv] Atheros Advanced Capabilities
*/
IEEE80211_VERIFY_LENGTH(efrm - frm, (reassoc ? 10 : 4));
if (!IEEE80211_ADDR_EQ(wh->i_addr3, vap->iv_bssid)) {
IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY,
wh, ieee80211_mgt_subtype_name[subtype >>
IEEE80211_FC0_SUBTYPE_SHIFT],
"%s", "wrong bssid");
vap->iv_stats.is_rx_assoc_bss++;
return 0;
}
capinfo = le16toh(*(__le16 *)frm);
frm += 2;
bintval = le16toh(*(__le16 *)frm);
frm += 2;
if (reassoc)
frm += 6; /* ignore current AP info */
ssid = rates = xrates = suppchan = wpa = rsn = wme = ath = NULL;
while (frm < efrm) {
IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1]);
switch (*frm) {
case IEEE80211_ELEMID_SSID:
ssid = frm;
break;
case IEEE80211_ELEMID_RATES:
rates = frm;
break;
case IEEE80211_ELEMID_XRATES:
xrates = frm;
break;
/* XXX verify only one of RSN and WPA IEs? */
case IEEE80211_ELEMID_RSN:
if (vap->iv_flags & IEEE80211_F_WPA2)
rsn = frm;
else
IEEE80211_DPRINTF(vap,
IEEE80211_MSG_ASSOC |
IEEE80211_MSG_WPA,
"[" MAC_FMT "] ignoring RSN IE "
"in association request\n",
MAC_ADDR(wh->i_addr2));
break;
case IEEE80211_ELEMID_VENDOR:
/* NB: Provide all IEs for wpa_supplicant, so
* it can handle downgrade attacks, etc. */
if (iswpaoui(frm) && !wpa) {
if (vap->iv_flags & IEEE80211_F_WPA1)
wpa = frm;
else
IEEE80211_DPRINTF(vap,
IEEE80211_MSG_ASSOC |
IEEE80211_MSG_WPA,
"[" MAC_FMT "] "
"ignoring WPA IE in "
"association request\n",
MAC_ADDR(wh->i_addr2));
} else if (iswmeinfo(frm))
wme = frm;
else if (isatherosoui(frm))
ath = frm;
break;
}
frm += frm[1] + 2;
}
if (frm > efrm)
return 0; /* reached past the end */
IEEE80211_VERIFY_ELEMENT(rates, IEEE80211_RATE_MAXSIZE);
IEEE80211_VERIFY_ELEMENT(ssid, IEEE80211_NWID_LEN);
IEEE80211_VERIFY_SSID(vap->iv_bss, ssid);
if (ni == vap->iv_bss) {
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_ANY, wh->i_addr2,
"deny %s request, sta not authenticated",
reassoc ? "reassoc" : "assoc");
ieee80211_send_error(ni, wh->i_addr2,
IEEE80211_FC0_SUBTYPE_DEAUTH,
IEEE80211_REASON_ASSOC_NOT_AUTHED);
vap->iv_stats.is_rx_assoc_notauth++;
return 0;
}
if (ni->ni_needed_chans != NULL) {
FREE(ni->ni_needed_chans, M_DEVBUF);
ni->ni_needed_chans = NULL;
}
if (ic->ic_flags & IEEE80211_F_DOTH) {
u_int8_t status;
status = ieee80211_parse_sc_ie(ni, suppchan, wh);
if (status != IEEE80211_STATUS_SUCCESS) {
/* ieee80211_parse_sc_ie already printed dbg msg */
IEEE80211_SEND_MGMT(ni, resp, status);
ieee80211_node_leave(ni); /* XXX */
vap->iv_stats.is_rx_assoc_badscie++; /* XXX */
return 0;
}
}
/* Assert right associstion security credentials */
/* XXX Divy. Incomplete */
if (wpa == NULL && (ic->ic_flags & IEEE80211_F_WPA)) {
IEEE80211_DPRINTF(vap,
IEEE80211_MSG_ASSOC | IEEE80211_MSG_WPA,
"[" MAC_FMT "] no WPA/RSN IE in association request\n",
MAC_ADDR(wh->i_addr2));
IEEE80211_SEND_MGMT(ni,
IEEE80211_FC0_SUBTYPE_DEAUTH,
IEEE80211_REASON_RSN_REQUIRED);
ieee80211_node_leave(ni);
/* XXX distinguish WPA/RSN? */
vap->iv_stats.is_rx_assoc_badwpaie++;
return 0;
}
if (rsn != NULL) {
/* Initialise values to node defaults, which are then
* overwritten by values in the IE. These are
* installed once association is complete. */
rsn_parm = ni->ni_rsn;
if (rsn[0] != IEEE80211_ELEMID_RSN)
reason = ieee80211_parse_wpa(vap, rsn, &rsn_parm, wh);
else
reason = ieee80211_parse_rsn(vap, rsn, &rsn_parm, wh);
if (reason != 0) {
IEEE80211_SEND_MGMT(ni,
IEEE80211_FC0_SUBTYPE_DEAUTH, reason);
ieee80211_node_leave(ni);
/* XXX distinguish WPA/RSN? */
vap->iv_stats.is_rx_assoc_badwpaie++;
return 0;
}
IEEE80211_NOTE_MAC(vap,
IEEE80211_MSG_ASSOC | IEEE80211_MSG_WPA,
wh->i_addr2,
"%s ie: mc %u/%u uc %u/%u key %u caps 0x%x",
rsn[0] != IEEE80211_ELEMID_RSN ? "WPA" : "RSN",
rsn_parm.rsn_mcastcipher, rsn_parm.rsn_mcastkeylen,
rsn_parm.rsn_ucastcipher, rsn_parm.rsn_ucastkeylen,
rsn_parm.rsn_keymgmt, rsn_parm.rsn_caps);
}
/* discard challenge after association */
if (ni->ni_challenge != NULL) {
FREE(ni->ni_challenge, M_DEVBUF);
ni->ni_challenge = NULL;
}
/* 802.11 spec. says to ignore station's privacy bit */
if ((capinfo & IEEE80211_CAPINFO_ESS) == 0) {
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_ANY, wh->i_addr2,
"deny %s request, capability mismatch 0x%x",
reassoc ? "reassoc" : "assoc", capinfo);
IEEE80211_SEND_MGMT(ni, resp, IEEE80211_STATUS_CAPINFO);
ieee80211_node_leave(ni);
vap->iv_stats.is_rx_assoc_capmismatch++;
return 0;
}
rate = ieee80211_setup_rates(ni, rates, xrates,
IEEE80211_F_DOSORT | IEEE80211_F_DOFRATE |
IEEE80211_F_DONEGO | IEEE80211_F_DODEL);
/*
* If constrained to 11g-only stations reject an
* 11b-only station. We cheat a bit here by looking
* at the max negotiated xmit rate and assuming anyone
* with a best rate <24Mb/s is an 11b station.
*/
if ((rate & IEEE80211_RATE_BASIC) ||
((vap->iv_flags & IEEE80211_F_PUREG) && rate < 48)) {
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_ANY, wh->i_addr2,
"deny %s request, rate set mismatch",
reassoc ? "reassoc" : "assoc");
IEEE80211_SEND_MGMT(ni, resp,
IEEE80211_STATUS_BASIC_RATE);
ieee80211_node_leave(ni);
vap->iv_stats.is_rx_assoc_norate++;
return 0;
}
if (ni->ni_associd != 0 &&
IEEE80211_IS_CHAN_ANYG(ic->ic_bsschan)) {
if ((ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME)
!= (capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME)) {
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_ANY,
wh->i_addr2,
"deny %s request, short slot time "
"capability mismatch 0x%x",
reassoc ? "reassoc" : "assoc", capinfo);
IEEE80211_SEND_MGMT(ni, resp,
IEEE80211_STATUS_CAPINFO);
ieee80211_node_leave(ni);
vap->iv_stats.is_rx_assoc_capmismatch++;
return 0;
}
}
ni->ni_rssi = rssi;
ni->ni_rtsf = rtsf;
ni->ni_last_rx = jiffies;
ni->ni_intval = IEEE80211_BINTVAL_SANITISE(bintval);
ni->ni_capinfo = capinfo;
ni->ni_chan = ic->ic_curchan;
ni->ni_fhdwell = vap->iv_bss->ni_fhdwell;
ni->ni_fhindex = vap->iv_bss->ni_fhindex;
/* WPA */
ieee80211_saveie(&ni->ni_wpa_ie, wpa);
/* RSN */
ni->ni_rsn = rsn_parm;
ieee80211_saveie(&ni->ni_rsn_ie, rsn);
/* WME - including QoS flag */
ieee80211_saveie(&ni->ni_wme_ie, wme);
ni->ni_flags &= ~IEEE80211_NODE_QOS;
if ((wme != NULL) && (ieee80211_parse_wmeie(wme, wh, ni) > 0))
ni->ni_flags |= IEEE80211_NODE_QOS;
ieee80211_saveath(ni, ath);
/* Send Receiver Not Ready (RNR) followed by XID for newly
* associated stations. */
ieee80211_deliver_l2_rnr(ni);
ieee80211_deliver_l2_xid(ni);
ieee80211_node_join(ni, resp);
#ifdef ATH_SUPERG_XR
if (ni->ni_prev_vap &&
ni->ni_vap != ni->ni_prev_vap &&
ni->ni_vap->iv_ath_cap & IEEE80211_ATHC_XR) {
/*
* node moved between XR and normal vap.
* move the data between XR and normal vap.
*/
ic->ic_node_move_data(ni);
ni->ni_prev_vap = ni->ni_vap;
}
#endif
break;
}
case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
case IEEE80211_FC0_SUBTYPE_REASSOC_RESP: {
u_int16_t capinfo, associd;
u_int16_t status;
if (vap->iv_opmode != IEEE80211_M_STA ||
vap->iv_state != IEEE80211_S_ASSOC) {
vap->iv_stats.is_rx_mgtdiscard++;
return 0;
}
/*
* asresp frame format
* [2] capability information
* [2] status
* [2] association ID
* [tlv] supported rates
* [tlv] extended supported rates
* [tlv] WME
*/
IEEE80211_VERIFY_LENGTH(efrm - frm, 6);
ni = vap->iv_bss;
capinfo = le16toh(*(__le16 *)frm);
frm += 2;
status = le16toh(*(__le16 *)frm);
frm += 2;
if (status != 0) {
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_ASSOC,
wh->i_addr2,
"%sassoc failed (reason %d)",
ISREASSOC(subtype) ? "re" : "", status);
vap->iv_stats.is_rx_auth_fail++; /* XXX */
ieee80211_new_state(vap, IEEE80211_S_SCAN,
IEEE80211_SCAN_FAIL_STATUS);
return 0;
}
associd = le16toh(*(__le16 *)frm);
frm += 2;
rates = xrates = wme = NULL;
while (frm < efrm) {
/*
* Do not discard frames containing proprietary Agere
* elements 128 and 129, as the reported element length
* is often wrong. Skip rest of the frame, since we can
* not rely on the given element length making it impossible
* to know where the next element starts.
*/
if ((*frm == IEEE80211_ELEMID_AGERE1) ||
(*frm == IEEE80211_ELEMID_AGERE2)) {
frm = efrm;
continue;
}
IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1]);
switch (*frm) {
case IEEE80211_ELEMID_RATES:
rates = frm;
break;
case IEEE80211_ELEMID_XRATES:
xrates = frm;
break;
case IEEE80211_ELEMID_VENDOR:
if (iswmeoui(frm))
wme = frm;
break;
}
frm += frm[1] + 2;
}
if (frm > efrm)
return 0; /* reached past the end */
IEEE80211_VERIFY_ELEMENT(rates, IEEE80211_RATE_MAXSIZE);
rate = ieee80211_setup_rates(ni, rates, xrates,
IEEE80211_F_DOSORT | IEEE80211_F_DOFRATE |
IEEE80211_F_DONEGO | IEEE80211_F_DODEL);
if (rate & IEEE80211_RATE_BASIC) {
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_ASSOC,
wh->i_addr2,
"%sassoc failed (rate set mismatch)",
ISREASSOC(subtype) ? "re" : "");
vap->iv_stats.is_rx_assoc_norate++;
ieee80211_new_state(vap, IEEE80211_S_SCAN,
IEEE80211_SCAN_FAIL_STATUS);
return 0;
}
ni->ni_capinfo = capinfo;
ni->ni_associd = associd;
if (wme != NULL &&
ieee80211_parse_wmeparams(vap, wme, wh, &qosinfo) >= 0) {
ni->ni_flags |= IEEE80211_NODE_QOS;
ieee80211_wme_updateparams(vap);
} else
ni->ni_flags &= ~IEEE80211_NODE_QOS;
/*
* Configure state now that we are associated.
*
* XXX may need different/additional driver callbacks?
*/
if (IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
((ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) &&
(ic->ic_caps & IEEE80211_C_SHPREAMBLE))) {
ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
ic->ic_flags &= ~IEEE80211_F_USEBARKER;
} else {
ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
ic->ic_flags |= IEEE80211_F_USEBARKER;
}
ieee80211_set_shortslottime(ic,
IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
(ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME));
/*
* Honor ERP protection.
*
* NB: ni_erp should zero for non-11g operation
* but we check the channel characteristics
* just in case.
*/
if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
(ni->ni_erp & IEEE80211_ERP_USE_PROTECTION))
ic->ic_flags |= IEEE80211_F_USEPROT;
else
ic->ic_flags &= ~IEEE80211_F_USEPROT;
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_ASSOC, wh->i_addr2,
"%sassoc success: %s preamble, %s slot time%s%s%s%s%s%s%s",
ISREASSOC(subtype) ? "re" : "",
(ic->ic_flags&IEEE80211_F_SHPREAMBLE) &&
(ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) ? "short" : "long",
ic->ic_flags&IEEE80211_F_SHSLOT ? "short" : "long",
ic->ic_flags&IEEE80211_F_USEPROT ? ", protection" : "",
ni->ni_flags & IEEE80211_NODE_QOS ? ", QoS" : "",
IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_TURBOP) ?
", turbo" : "",
IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_COMP) ?
", compression" : "",
IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF) ?
", fast-frames" : "",
IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_XR) ?
", XR" : "",
IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_AR) ?
", AR" : ""
);
ieee80211_new_state(vap, IEEE80211_S_RUN, subtype);
break;
}
case IEEE80211_FC0_SUBTYPE_DEAUTH: {
u_int16_t reason;
if (vap->iv_state == IEEE80211_S_SCAN) {
vap->iv_stats.is_rx_mgtdiscard++;
return 0;
}
/*
* deauth frame format
* [2] reason
*/
IEEE80211_VERIFY_LENGTH(efrm - frm, 2);
reason = le16toh(*(__le16 *)frm);
vap->iv_stats.is_rx_deauth++;
IEEE80211_NODE_STAT(ni, rx_deauth);
IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
"recv deauthenticate (reason %d)", reason);
switch (vap->iv_opmode) {
case IEEE80211_M_STA:
ieee80211_new_state(vap, IEEE80211_S_AUTH,
wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK);
break;
case IEEE80211_M_HOSTAP:
if (ni != vap->iv_bss)
ieee80211_node_leave(ni);
break;
default:
vap->iv_stats.is_rx_mgtdiscard++;
break;
}
break;
}
case IEEE80211_FC0_SUBTYPE_DISASSOC: {
u_int16_t reason;
if (vap->iv_state != IEEE80211_S_RUN &&
vap->iv_state != IEEE80211_S_ASSOC &&
vap->iv_state != IEEE80211_S_AUTH) {
vap->iv_stats.is_rx_mgtdiscard++;
return 0;
}
/*
* disassoc frame format
* [2] reason
*/
IEEE80211_VERIFY_LENGTH(efrm - frm, 2);
reason = le16toh(*(__le16 *)frm);
vap->iv_stats.is_rx_disassoc++;
IEEE80211_NODE_STAT(ni, rx_disassoc);
IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
"recv disassociate (reason %d)", reason);
switch (vap->iv_opmode) {
case IEEE80211_M_STA:
ieee80211_new_state(vap, IEEE80211_S_ASSOC, 0);
break;
case IEEE80211_M_HOSTAP:
if (ni != vap->iv_bss)
ieee80211_node_leave(ni);
break;
default:
vap->iv_stats.is_rx_mgtdiscard++;
break;
}
break;
}
case IEEE80211_FC0_SUBTYPE_ACTION: {
unsigned char cat, act;
/* we only parse Action frame from our BSSID */
if (!IEEE80211_ADDR_EQ(wh->i_addr3, vap->iv_bssid)) {
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT,
wh->i_addr3, NULL,
"%s", "not to bss");
vap->iv_stats.is_rx_wrongbss ++;
return 0;
}
/* parse the Category field */
switch (cat = *frm++) {
case IEEE80211_ACTION_SPECTRUM_MANAGEMENT:
switch (act = *frm++) {
case IEEE80211_ACTION_S_CHANSWITCHANN:
ieee80211_parse_csaie(ni, frm, wh);
break;
default:
IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY, wh,
"mgt", "action frame category 0x%x, "
"action 0x%x not handled", cat, act);
break;
}
break;
default:
IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY, wh, "mgt",
"action frame category 0x%x not handled", cat);
break;
}
break;
}
default:
IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY, wh, "mgt",
"subtype 0x%x not handled", subtype);
vap->iv_stats.is_rx_badsubtype++;
break;
}
#undef ISREASSOC
#undef ISPROBE
return 1;
}
#undef IEEE80211_VERIFY_LENGTH
#undef IEEE80211_VERIFY_ELEMENT
/*
* Process a received ps-poll frame.
*/
static void
ieee80211_recv_pspoll(struct ieee80211_node *ni, struct sk_buff *skb0)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211_frame_min *wh;
struct sk_buff *skb;
u_int16_t aid;
int qlen;
wh = (struct ieee80211_frame_min *)skb0->data;
if (ni->ni_associd == 0) {
IEEE80211_DISCARD(vap,
IEEE80211_MSG_POWER | IEEE80211_MSG_DEBUG,
(struct ieee80211_frame *)wh, "ps-poll",
"%s", "unassociated station");
vap->iv_stats.is_ps_unassoc++;
IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_DEAUTH,
IEEE80211_REASON_NOT_ASSOCED);
return;
}
aid = le16toh(wh->i_dur);
if (aid != ni->ni_associd) {
IEEE80211_DISCARD(vap,
IEEE80211_MSG_POWER | IEEE80211_MSG_DEBUG,
(struct ieee80211_frame *)wh, "ps-poll",
"aid mismatch: sta aid 0x%x poll aid 0x%x",
ni->ni_associd, aid);
vap->iv_stats.is_ps_badaid++;
IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_DEAUTH,
IEEE80211_REASON_NOT_ASSOCED);
return;
}
/* Okay, take the first queued packet and put it out... */
IEEE80211_NODE_SAVEQ_LOCK_IRQ(ni);
qlen = IEEE80211_NODE_SAVEQ_DEQUEUE(ni, skb);
IEEE80211_NODE_SAVEQ_UNLOCK_IRQ(ni);
if (skb == NULL) {
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_POWER, wh->i_addr2,
"%s", "recv ps-poll, but queue empty");
ieee80211_send_nulldata(ieee80211_ref_node(ni));
vap->iv_stats.is_ps_qempty++; /* XXX node stat */
if (vap->iv_set_tim != NULL)
vap->iv_set_tim(ni, 0); /* just in case */
return;
}
/*
* If there are more packets, set the more packets bit
* in the packet dispatched to the station; otherwise
* turn off the TIM bit.
*/
if (qlen != 0) {
IEEE80211_NOTE(vap, IEEE80211_MSG_POWER, ni,
"recv ps-poll, send packet, %u still queued", qlen);
/*
* NB: More-data bit will be set during encap.
*/
} else {
IEEE80211_NOTE(vap, IEEE80211_MSG_POWER, ni,
"%s", "recv ps-poll, send packet, queue empty");
if (vap->iv_set_tim != NULL)
vap->iv_set_tim(ni, 0);
}
M_PWR_SAV_SET(skb); /* ensure MORE_DATA bit is set correctly */
ieee80211_parent_queue_xmit(skb); /* Submit to parent device, including updating stats */
}
#ifdef ATH_SUPERG_FF
static int
athff_decap(struct sk_buff *skb)
{
struct ether_header eh_src, *eh_dst;
struct llc *llc;
if (skb->len < (sizeof(struct ether_header) + LLC_SNAPFRAMELEN))
return -1;
memcpy(&eh_src, skb->data, sizeof(struct ether_header));
llc = (struct llc *)skb_pull(skb, sizeof(struct ether_header));
eh_src.ether_type = llc->llc_un.type_snap.ether_type;
skb_pull(skb, LLC_SNAPFRAMELEN);
eh_dst = (struct ether_header *)skb_push(skb, sizeof(struct ether_header));
memcpy(eh_dst, &eh_src, sizeof(struct ether_header));
return 0;
}
#endif
#ifdef USE_HEADERLEN_RESV
/*
* The kernel version of this function alters the skb in a manner
* inconsistent with dev->hard_header_len header reservation. This
* is a rewrite of the portion of eth_type_trans() that we need.
*/
static __be16
ath_eth_type_trans(struct sk_buff *skb, struct net_device *dev)
{
struct ethhdr *eth;
skb_reset_mac_header(skb);
skb_pull(skb, ETH_HLEN);
eth = (struct ethhdr *)skb_mac_header(skb);
if (*eth->h_dest & 1)
if (memcmp(eth->h_dest, dev->broadcast, ETH_ALEN) == 0)
skb->pkt_type = PACKET_BROADCAST;
else
skb->pkt_type = PACKET_MULTICAST;
else
if (memcmp(eth->h_dest, dev->dev_addr, ETH_ALEN))
skb->pkt_type = PACKET_OTHERHOST;
return eth->h_proto;
}
#endif
/* Re-process a frame w/ HW detected MIC failure, as it may be a false
* negative. The frame will be dropped in any case. */
void
ieee80211_check_mic(struct ieee80211_node *ni, struct sk_buff *skb)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211_frame *wh;
struct ieee80211_key *key;
int hdrlen;
if (skb->len < sizeof(struct ieee80211_frame_min)) {
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
ni->ni_macaddr, NULL,
"too short (1): len %u", skb->len);
vap->iv_stats.is_rx_tooshort++;
return;
}
wh = (struct ieee80211_frame *)skb->data;
hdrlen = ieee80211_hdrsize(wh);
key = ieee80211_crypto_decap(ni, skb, hdrlen);
if (key == NULL) {
/* NB: stats+msgs handled in crypto_decap */
IEEE80211_NODE_STAT(ni, rx_wepfail);
} else if (!ieee80211_crypto_demic(vap, key, skb, hdrlen, 1)) {
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT,
ni->ni_macaddr, "data", "%s", "demic error");
IEEE80211_NODE_STAT(ni, rx_demicfail);
} else
IEEE80211_NODE_STAT(ni, rx_hwdemicerr);
return;
}
EXPORT_SYMBOL(ieee80211_check_mic);
#ifdef IEEE80211_DEBUG
/*
* Debugging support.
*/
/*
* Return the bssid of a frame.
*/
static const u_int8_t *
ieee80211_getbssid(struct ieee80211vap *vap, const struct ieee80211_frame *wh)
{
if (vap->iv_opmode == IEEE80211_M_STA)
return wh->i_addr2;
if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != IEEE80211_FC1_DIR_NODS)
return wh->i_addr1;
if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == IEEE80211_FC0_SUBTYPE_PS_POLL)
return wh->i_addr1;
return wh->i_addr3;
}
void
ieee80211_note(struct ieee80211vap *vap, const char *fmt, ...)
{
char buf[BUF_LEN];
va_list ap;
va_start(ap, fmt);
vsnprintf(buf, sizeof(buf), fmt, ap);
va_end(ap);
printk(KERN_DEBUG "%s/%s[" MAC_FMT "]: %s",
vap->iv_ic->ic_dev->name, vap->iv_dev->name,
MAC_ADDR(vap->iv_myaddr),
buf); /* NB: no \n */
}
EXPORT_SYMBOL(ieee80211_note);
void
ieee80211_note_frame(struct ieee80211vap *vap, const struct ieee80211_frame *wh,
const char *fmt, ...)
{
char buf[BUF_LEN];
va_list ap;
va_start(ap, fmt);
vsnprintf(buf, sizeof(buf), fmt, ap);
va_end(ap);
printk(KERN_DEBUG "%s/%s[" MAC_FMT "]: " MAC_FMT " %s\n",
vap->iv_ic->ic_dev->name, vap->iv_dev->name,
MAC_ADDR(vap->iv_myaddr),
MAC_ADDR(ieee80211_getbssid(vap, wh)), buf);
}
EXPORT_SYMBOL(ieee80211_note_frame);
void
ieee80211_note_mac(struct ieee80211vap *vap, const u_int8_t mac[IEEE80211_ADDR_LEN],
const char *fmt, ...)
{
char buf[BUF_LEN];
va_list ap;
va_start(ap, fmt);
vsnprintf(buf, sizeof(buf), fmt, ap);
va_end(ap);
printk(KERN_DEBUG "%s/%s[" MAC_FMT "]: " MAC_FMT " %s\n",
vap->iv_ic->ic_dev->name, vap->iv_dev->name,
MAC_ADDR(vap->iv_myaddr),
MAC_ADDR(mac), buf);
}
EXPORT_SYMBOL(ieee80211_note_mac);
static void
ieee80211_discard_frame(struct ieee80211vap *vap, const struct ieee80211_frame *wh,
const char *type, const char *fmt, ...)
{
char buf[BUF_LEN];
va_list ap;
va_start(ap, fmt);
vsnprintf(buf, sizeof(buf), fmt, ap);
va_end(ap);
printk(KERN_DEBUG "%s/%s[" MAC_FMT "]: " MAC_FMT " discard %s%sframe, %s\n",
vap->iv_ic->ic_dev->name, vap->iv_dev->name,
MAC_ADDR(vap->iv_myaddr),
MAC_ADDR(wh->i_addr2),
(type != NULL) ? type : "",
(type != NULL) ? " " : "",
buf);
}
static void
ieee80211_discard_ie(struct ieee80211vap *vap, const struct ieee80211_frame *wh,
const char *type, const char *fmt, ...)
{
char buf[BUF_LEN];
va_list ap;
va_start(ap, fmt);
vsnprintf(buf, sizeof(buf), fmt, ap);
va_end(ap);
printk(KERN_DEBUG "%s/%s[" MAC_FMT "]: "
MAC_FMT " discard %s%sinformation element, %s\n",
vap->iv_ic->ic_dev->name, vap->iv_dev->name,
MAC_ADDR(vap->iv_myaddr),
MAC_ADDR(ieee80211_getbssid(vap, wh)),
(type != NULL) ? type : "",
(type != NULL) ? " " : "",
buf);
}
static void
ieee80211_discard_mac(struct ieee80211vap *vap, const u_int8_t mac[IEEE80211_ADDR_LEN],
const char *type, const char *fmt, ...)
{
char buf[BUF_LEN];
va_list ap;
va_start(ap, fmt);
vsnprintf(buf, sizeof(buf), fmt, ap);
va_end(ap);
printk(KERN_DEBUG "%s/%s[" MAC_FMT "]: " MAC_FMT " discard %s%sframe, %s\n",
vap->iv_ic->ic_dev->name,
vap->iv_dev->name,
MAC_ADDR(vap->iv_myaddr),
MAC_ADDR(mac),
(type != NULL) ? type : "",
(type != NULL) ? " " : "",
buf);
}
#endif /* IEEE80211_DEBUG */