mirror of
https://github.com/proski/madwifi
synced 2024-11-22 14:31:22 +03:00
1c2147eb68
When the compiler tries inlining static functions, it can notice that some variables may not be initialized in the functions being inlined. Provide initialization for output variables in all branches of execution, no matter how anomalous. Add asserts in some cases. git-svn-id: http://madwifi-project.org/svn/madwifi/trunk@3988 0192ed92-7a03-0410-a25b-9323aeb14dbd
725 lines
22 KiB
C
725 lines
22 KiB
C
/*
|
|
* Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
|
|
* Copyright (c) 2002-2008 Atheros Communications, Inc.
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*
|
|
* $Id: ar2425.c,v 1.8 2008/11/16 21:33:05 sam Exp $
|
|
*/
|
|
#include "opt_ah.h"
|
|
|
|
#include "ah.h"
|
|
#include "ah_internal.h"
|
|
|
|
#include "ar5212/ar5212.h"
|
|
#include "ar5212/ar5212reg.h"
|
|
#include "ar5212/ar5212phy.h"
|
|
|
|
#include "ah_eeprom_v3.h"
|
|
|
|
#define AH_5212_2425
|
|
#define AH_5212_2417
|
|
#include "ar5212/ar5212.ini"
|
|
|
|
#define N(a) (sizeof(a)/sizeof(a[0]))
|
|
|
|
struct ar2425State {
|
|
RF_HAL_FUNCS base; /* public state, must be first */
|
|
uint16_t pcdacTable[PWR_TABLE_SIZE_2413];
|
|
|
|
uint32_t Bank1Data[N(ar5212Bank1_2425)];
|
|
uint32_t Bank2Data[N(ar5212Bank2_2425)];
|
|
uint32_t Bank3Data[N(ar5212Bank3_2425)];
|
|
uint32_t Bank6Data[N(ar5212Bank6_2425)]; /* 2417 is same size */
|
|
uint32_t Bank7Data[N(ar5212Bank7_2425)];
|
|
};
|
|
#define AR2425(ah) ((struct ar2425State *) AH5212(ah)->ah_rfHal)
|
|
|
|
extern void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
|
|
uint32_t numBits, uint32_t firstBit, uint32_t column);
|
|
|
|
static void
|
|
ar2425WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
|
|
int writes)
|
|
{
|
|
HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2425, modesIndex, writes);
|
|
HAL_INI_WRITE_ARRAY(ah, ar5212Common_2425, 1, writes);
|
|
HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2425, freqIndex, writes);
|
|
#if 0
|
|
/*
|
|
* for SWAN similar to Condor
|
|
* Bit 0 enables link to go to L1 when MAC goes to sleep.
|
|
* Bit 3 enables the loop back the link down to reset.
|
|
*/
|
|
if (AH_PRIVATE(ah)->ah_ispcie && && ath_hal_pcieL1SKPEnable) {
|
|
OS_REG_WRITE(ah, AR_PCIE_PMC,
|
|
AR_PCIE_PMC_ENA_L1 | AR_PCIE_PMC_ENA_RESET);
|
|
}
|
|
/*
|
|
* for Standby issue in Swan/Condor.
|
|
* Bit 9 (MAC_WOW_PWR_STATE_MASK_D2)to be set to avoid skips
|
|
* before last Training Sequence 2 (TS2)
|
|
* Bit 8 (MAC_WOW_PWR_STATE_MASK_D1)to be unset to assert
|
|
* Power Reset along with PCI Reset
|
|
*/
|
|
OS_REG_SET_BIT(ah, AR_PCIE_PMC, MAC_WOW_PWR_STATE_MASK_D2);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Take the MHz channel value and set the Channel value
|
|
*
|
|
* ASSUMES: Writes enabled to analog bus
|
|
*/
|
|
static HAL_BOOL
|
|
ar2425SetChannel(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
|
|
{
|
|
uint32_t channelSel = 0;
|
|
uint32_t bModeSynth = 0;
|
|
uint32_t aModeRefSel = 0;
|
|
uint32_t reg32 = 0;
|
|
uint16_t freq;
|
|
|
|
OS_MARK(ah, AH_MARK_SETCHANNEL, chan->channel);
|
|
|
|
if (chan->channel < 4800) {
|
|
uint32_t txctl;
|
|
|
|
channelSel = chan->channel - 2272;
|
|
channelSel = ath_hal_reverseBits(channelSel, 8);
|
|
|
|
txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
|
|
if (chan->channel == 2484) {
|
|
// Enable channel spreading for channel 14
|
|
OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
|
|
txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
|
|
} else {
|
|
OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
|
|
txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
|
|
}
|
|
|
|
} else if (((chan->channel % 5) == 2) && (chan->channel <= 5435)) {
|
|
freq = chan->channel - 2; /* Align to even 5MHz raster */
|
|
channelSel = ath_hal_reverseBits(
|
|
(uint32_t)(((freq - 4800)*10)/25 + 1), 8);
|
|
aModeRefSel = ath_hal_reverseBits(0, 2);
|
|
} else if ((chan->channel % 20) == 0 && chan->channel >= 5120) {
|
|
channelSel = ath_hal_reverseBits(
|
|
((chan->channel - 4800) / 20 << 2), 8);
|
|
aModeRefSel = ath_hal_reverseBits(1, 2);
|
|
} else if ((chan->channel % 10) == 0) {
|
|
channelSel = ath_hal_reverseBits(
|
|
((chan->channel - 4800) / 10 << 1), 8);
|
|
aModeRefSel = ath_hal_reverseBits(1, 2);
|
|
} else if ((chan->channel % 5) == 0) {
|
|
channelSel = ath_hal_reverseBits(
|
|
(chan->channel - 4800) / 5, 8);
|
|
aModeRefSel = ath_hal_reverseBits(1, 2);
|
|
} else {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
|
|
__func__, chan->channel);
|
|
return AH_FALSE;
|
|
}
|
|
|
|
reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
|
|
(1 << 12) | 0x1;
|
|
OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
|
|
|
|
reg32 >>= 8;
|
|
OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
|
|
|
|
AH_PRIVATE(ah)->ah_curchan = chan;
|
|
return AH_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Reads EEPROM header info from device structure and programs
|
|
* all rf registers
|
|
*
|
|
* REQUIRES: Access to the analog rf device
|
|
*/
|
|
static HAL_BOOL
|
|
ar2425SetRfRegs(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, uint16_t modesIndex, uint16_t *rfXpdGain)
|
|
{
|
|
#define RF_BANK_SETUP(_priv, _ix, _col) do { \
|
|
int i; \
|
|
for (i = 0; i < N(ar5212Bank##_ix##_2425); i++) \
|
|
(_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2425[i][_col];\
|
|
} while (0)
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
|
|
struct ar2425State *priv = AR2425(ah);
|
|
uint16_t ob2GHz = 0, db2GHz = 0;
|
|
int regWrites = 0;
|
|
|
|
HALDEBUG(ah, HAL_DEBUG_RFPARAM,
|
|
"==>%s:chan 0x%x flag 0x%x modesIndex 0x%x\n",
|
|
__func__, chan->channel, chan->channelFlags, modesIndex);
|
|
|
|
HALASSERT(priv);
|
|
|
|
/* Setup rf parameters */
|
|
switch (chan->channelFlags & CHANNEL_ALL) {
|
|
case CHANNEL_B:
|
|
ob2GHz = ee->ee_obFor24;
|
|
db2GHz = ee->ee_dbFor24;
|
|
break;
|
|
case CHANNEL_G:
|
|
case CHANNEL_108G:
|
|
ob2GHz = ee->ee_obFor24g;
|
|
db2GHz = ee->ee_dbFor24g;
|
|
break;
|
|
default:
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
|
|
__func__, chan->channelFlags);
|
|
return AH_FALSE;
|
|
}
|
|
|
|
/* Bank 1 Write */
|
|
RF_BANK_SETUP(priv, 1, 1);
|
|
|
|
/* Bank 2 Write */
|
|
RF_BANK_SETUP(priv, 2, modesIndex);
|
|
|
|
/* Bank 3 Write */
|
|
RF_BANK_SETUP(priv, 3, modesIndex);
|
|
|
|
/* Bank 6 Write */
|
|
RF_BANK_SETUP(priv, 6, modesIndex);
|
|
|
|
ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 193, 0);
|
|
ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 190, 0);
|
|
|
|
/* Bank 7 Setup */
|
|
RF_BANK_SETUP(priv, 7, modesIndex);
|
|
|
|
/* Write Analog registers */
|
|
HAL_INI_WRITE_BANK(ah, ar5212Bank1_2425, priv->Bank1Data, regWrites);
|
|
HAL_INI_WRITE_BANK(ah, ar5212Bank2_2425, priv->Bank2Data, regWrites);
|
|
HAL_INI_WRITE_BANK(ah, ar5212Bank3_2425, priv->Bank3Data, regWrites);
|
|
if (IS_2417(ah)) {
|
|
HALASSERT(N(ar5212Bank6_2425) == N(ar5212Bank6_2417));
|
|
HAL_INI_WRITE_BANK(ah, ar5212Bank6_2417, priv->Bank6Data,
|
|
regWrites);
|
|
} else
|
|
HAL_INI_WRITE_BANK(ah, ar5212Bank6_2425, priv->Bank6Data,
|
|
regWrites);
|
|
HAL_INI_WRITE_BANK(ah, ar5212Bank7_2425, priv->Bank7Data, regWrites);
|
|
|
|
/* Now that we have reprogrammed rfgain value, clear the flag. */
|
|
ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
|
|
|
|
HALDEBUG(ah, HAL_DEBUG_RFPARAM, "<==%s\n", __func__);
|
|
return AH_TRUE;
|
|
#undef RF_BANK_SETUP
|
|
}
|
|
|
|
/*
|
|
* Return a reference to the requested RF Bank.
|
|
*/
|
|
static uint32_t *
|
|
ar2425GetRfBank(struct ath_hal *ah, int bank)
|
|
{
|
|
struct ar2425State *priv = AR2425(ah);
|
|
|
|
HALASSERT(priv != AH_NULL);
|
|
switch (bank) {
|
|
case 1: return priv->Bank1Data;
|
|
case 2: return priv->Bank2Data;
|
|
case 3: return priv->Bank3Data;
|
|
case 6: return priv->Bank6Data;
|
|
case 7: return priv->Bank7Data;
|
|
}
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
|
|
__func__, bank);
|
|
return AH_NULL;
|
|
}
|
|
|
|
/*
|
|
* Return indices surrounding the value in sorted integer lists.
|
|
*
|
|
* NB: the input list is assumed to be sorted in ascending order
|
|
*/
|
|
static void
|
|
GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
|
|
uint32_t *vlo, uint32_t *vhi)
|
|
{
|
|
int16_t target = v;
|
|
const uint16_t *ep = lp+listSize;
|
|
const uint16_t *tp;
|
|
|
|
/*
|
|
* Check first and last elements for out-of-bounds conditions.
|
|
*/
|
|
if (target < lp[0]) {
|
|
*vlo = *vhi = 0;
|
|
return;
|
|
}
|
|
if (target >= ep[-1]) {
|
|
*vlo = *vhi = listSize - 1;
|
|
return;
|
|
}
|
|
|
|
/* look for value being near or between 2 values in list */
|
|
for (tp = lp; tp < ep; tp++) {
|
|
/*
|
|
* If value is close to the current value of the list
|
|
* then target is not between values, it is one of the values
|
|
*/
|
|
if (*tp == target) {
|
|
*vlo = *vhi = tp - (const uint16_t *) lp;
|
|
return;
|
|
}
|
|
/*
|
|
* Look for value being between current value and next value
|
|
* if so return these 2 values
|
|
*/
|
|
if (target < tp[1]) {
|
|
*vlo = tp - (const uint16_t *) lp;
|
|
*vhi = *vlo + 1;
|
|
return;
|
|
}
|
|
}
|
|
HALASSERT(AH_FALSE); /* should not reach here */
|
|
*vlo = *vhi = 0;
|
|
}
|
|
|
|
/*
|
|
* Fill the Vpdlist for indices Pmax-Pmin
|
|
*/
|
|
static HAL_BOOL
|
|
ar2425FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t Pmax,
|
|
const int16_t *pwrList, const uint16_t *VpdList,
|
|
uint16_t numIntercepts,
|
|
uint16_t retVpdList[][64])
|
|
{
|
|
uint16_t ii, jj, kk;
|
|
int16_t currPwr = (int16_t)(2*Pmin);
|
|
/* since Pmin is pwr*2 and pwrList is 4*pwr */
|
|
uint32_t idxL, idxR;
|
|
|
|
ii = 0;
|
|
jj = 0;
|
|
|
|
if (numIntercepts < 2)
|
|
return AH_FALSE;
|
|
|
|
while (ii <= (uint16_t)(Pmax - Pmin)) {
|
|
GetLowerUpperIndex(currPwr, (const uint16_t *) pwrList,
|
|
numIntercepts, &(idxL), &(idxR));
|
|
if (idxR < 1)
|
|
idxR = 1; /* extrapolate below */
|
|
if (idxL == (uint32_t)(numIntercepts - 1))
|
|
idxL = numIntercepts - 2; /* extrapolate above */
|
|
if (pwrList[idxL] == pwrList[idxR])
|
|
kk = VpdList[idxL];
|
|
else
|
|
kk = (uint16_t)
|
|
(((currPwr - pwrList[idxL])*VpdList[idxR]+
|
|
(pwrList[idxR] - currPwr)*VpdList[idxL])/
|
|
(pwrList[idxR] - pwrList[idxL]));
|
|
retVpdList[pdGainIdx][ii] = kk;
|
|
ii++;
|
|
currPwr += 2; /* half dB steps */
|
|
}
|
|
|
|
return AH_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Returns interpolated or the scaled up interpolated value
|
|
*/
|
|
static int16_t
|
|
interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
|
|
int16_t targetLeft, int16_t targetRight)
|
|
{
|
|
int16_t rv;
|
|
|
|
if (srcRight != srcLeft) {
|
|
rv = ((target - srcLeft)*targetRight +
|
|
(srcRight - target)*targetLeft) / (srcRight - srcLeft);
|
|
} else {
|
|
rv = targetLeft;
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
* Uses the data points read from EEPROM to reconstruct the pdadc power table
|
|
* Called by ar2425SetPowerTable()
|
|
*/
|
|
static void
|
|
ar2425getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
|
|
const RAW_DATA_STRUCT_2413 *pRawDataset,
|
|
uint16_t pdGainOverlap_t2,
|
|
int16_t *pMinCalPower, uint16_t pPdGainBoundaries[],
|
|
uint16_t pPdGainValues[], uint16_t pPDADCValues[])
|
|
{
|
|
/* Note the items statically allocated below are to reduce stack usage */
|
|
uint32_t ii, jj, kk;
|
|
int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
|
|
uint32_t idxL, idxR;
|
|
uint32_t numPdGainsUsed = 0;
|
|
static uint16_t VpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL][MAX_PWR_RANGE_IN_HALF_DB];
|
|
/* filled out Vpd table for all pdGains (chanL) */
|
|
static uint16_t VpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL][MAX_PWR_RANGE_IN_HALF_DB];
|
|
/* filled out Vpd table for all pdGains (chanR) */
|
|
static uint16_t VpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL][MAX_PWR_RANGE_IN_HALF_DB];
|
|
/* filled out Vpd table for all pdGains (interpolated) */
|
|
/*
|
|
* If desired to support -ve power levels in future, just
|
|
* change pwr_I_0 to signed 5-bits.
|
|
*/
|
|
static int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
|
|
/* to accomodate -ve power levels later on. */
|
|
static int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
|
|
/* to accomodate -ve power levels later on */
|
|
uint16_t numVpd = 0;
|
|
uint16_t Vpd_step;
|
|
int16_t tmpVal ;
|
|
uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
|
|
|
|
HALDEBUG(ah, HAL_DEBUG_RFPARAM, "==>%s:\n", __func__);
|
|
|
|
/* Get upper lower index */
|
|
GetLowerUpperIndex(channel, pRawDataset->pChannels,
|
|
pRawDataset->numChannels, &(idxL), &(idxR));
|
|
|
|
for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
|
|
jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
|
|
/* work backwards 'cause highest pdGain for lowest power */
|
|
numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
|
|
if (numVpd > 0) {
|
|
pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
|
|
Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
|
|
if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
|
|
Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
|
|
}
|
|
Pmin_t2[numPdGainsUsed] = (int16_t)
|
|
(Pmin_t2[numPdGainsUsed] / 2);
|
|
Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
|
|
if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
|
|
Pmax_t2[numPdGainsUsed] =
|
|
pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
|
|
Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
|
|
ar2425FillVpdTable(
|
|
numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
|
|
&(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]),
|
|
&(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
|
|
);
|
|
ar2425FillVpdTable(
|
|
numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
|
|
&(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
|
|
&(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
|
|
);
|
|
for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
|
|
VpdTable_I[numPdGainsUsed][kk] =
|
|
interpolate_signed(
|
|
channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
|
|
(int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
|
|
}
|
|
/* fill VpdTable_I for this pdGain */
|
|
numPdGainsUsed++;
|
|
}
|
|
/* if this pdGain is used */
|
|
}
|
|
|
|
*pMinCalPower = Pmin_t2[0];
|
|
kk = 0; /* index for the final table */
|
|
for (ii = 0; ii < numPdGainsUsed; ii++) {
|
|
if (ii == (numPdGainsUsed - 1))
|
|
pPdGainBoundaries[ii] = Pmax_t2[ii] +
|
|
PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
|
|
else
|
|
pPdGainBoundaries[ii] = (uint16_t)
|
|
((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
|
|
|
|
/* Find starting index for this pdGain */
|
|
if (ii == 0)
|
|
ss = 0; /* for the first pdGain, start from index 0 */
|
|
else
|
|
ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) -
|
|
pdGainOverlap_t2;
|
|
Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
|
|
Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
|
|
/*
|
|
*-ve ss indicates need to extrapolate data below for this pdGain
|
|
*/
|
|
while (ss < 0) {
|
|
tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
|
|
pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
|
|
ss++;
|
|
}
|
|
|
|
sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
|
|
tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
|
|
maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
|
|
|
|
while (ss < (int16_t)maxIndex)
|
|
pPDADCValues[kk++] = VpdTable_I[ii][ss++];
|
|
|
|
Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
|
|
VpdTable_I[ii][sizeCurrVpdTable-2]);
|
|
Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
|
|
/*
|
|
* for last gain, pdGainBoundary == Pmax_t2, so will
|
|
* have to extrapolate
|
|
*/
|
|
if (tgtIndex > maxIndex) { /* need to extrapolate above */
|
|
while(ss < (int16_t)tgtIndex) {
|
|
tmpVal = (uint16_t)
|
|
(VpdTable_I[ii][sizeCurrVpdTable-1] +
|
|
(ss-maxIndex)*Vpd_step);
|
|
pPDADCValues[kk++] = (tmpVal > 127) ?
|
|
127 : tmpVal;
|
|
ss++;
|
|
}
|
|
} /* extrapolated above */
|
|
} /* for all pdGainUsed */
|
|
|
|
while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
|
|
pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
|
|
ii++;
|
|
}
|
|
while (kk < 128) {
|
|
pPDADCValues[kk] = pPDADCValues[kk-1];
|
|
kk++;
|
|
}
|
|
|
|
HALDEBUG(ah, HAL_DEBUG_RFPARAM, "<==%s\n", __func__);
|
|
}
|
|
|
|
|
|
/* Same as 2413 set power table */
|
|
static HAL_BOOL
|
|
ar2425SetPowerTable(struct ath_hal *ah,
|
|
int16_t *minPower, int16_t *maxPower, HAL_CHANNEL_INTERNAL *chan,
|
|
uint16_t *rfXpdGain)
|
|
{
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
|
|
const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
|
|
uint16_t pdGainOverlap_t2;
|
|
int16_t minCalPower2413_t2;
|
|
uint16_t *pdadcValues = ahp->ah_pcdacTable;
|
|
uint16_t gainBoundaries[4];
|
|
uint32_t i, reg32, regoffset;
|
|
|
|
HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s:chan 0x%x flag 0x%x\n",
|
|
__func__, chan->channel,chan->channelFlags);
|
|
|
|
if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
|
|
pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
|
|
else if (IS_CHAN_B(chan))
|
|
pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
|
|
else {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s:illegal mode\n", __func__);
|
|
return AH_FALSE;
|
|
}
|
|
|
|
pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
|
|
AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
|
|
|
|
ar2425getGainBoundariesAndPdadcsForPowers(ah, chan->channel,
|
|
pRawDataset, pdGainOverlap_t2,&minCalPower2413_t2,gainBoundaries,
|
|
rfXpdGain, pdadcValues);
|
|
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
|
|
(pRawDataset->pDataPerChannel[0].numPdGains - 1));
|
|
|
|
/*
|
|
* Note the pdadc table may not start at 0 dBm power, could be
|
|
* negative or greater than 0. Need to offset the power
|
|
* values by the amount of minPower for griffin
|
|
*/
|
|
if (minCalPower2413_t2 != 0)
|
|
ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2413_t2);
|
|
else
|
|
ahp->ah_txPowerIndexOffset = 0;
|
|
|
|
/* Finally, write the power values into the baseband power table */
|
|
regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
|
|
for (i = 0; i < 32; i++) {
|
|
reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0) |
|
|
((pdadcValues[4*i + 1] & 0xFF) << 8) |
|
|
((pdadcValues[4*i + 2] & 0xFF) << 16) |
|
|
((pdadcValues[4*i + 3] & 0xFF) << 24) ;
|
|
OS_REG_WRITE(ah, regoffset, reg32);
|
|
regoffset += 4;
|
|
}
|
|
|
|
OS_REG_WRITE(ah, AR_PHY_TPCRG5,
|
|
SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
|
|
SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
|
|
SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
|
|
SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
|
|
SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
|
|
|
|
return AH_TRUE;
|
|
}
|
|
|
|
static int16_t
|
|
ar2425GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
|
|
{
|
|
uint32_t ii,jj;
|
|
uint16_t Pmin=0,numVpd;
|
|
|
|
for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
|
|
jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
|
|
/* work backwards 'cause highest pdGain for lowest power */
|
|
numVpd = data->pDataPerPDGain[jj].numVpd;
|
|
if (numVpd > 0) {
|
|
Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
|
|
return(Pmin);
|
|
}
|
|
}
|
|
return(Pmin);
|
|
}
|
|
|
|
static int16_t
|
|
ar2425GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
|
|
{
|
|
uint32_t ii;
|
|
uint16_t Pmax=0,numVpd;
|
|
|
|
for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
|
|
/* work forwards cuase lowest pdGain for highest power */
|
|
numVpd = data->pDataPerPDGain[ii].numVpd;
|
|
if (numVpd > 0) {
|
|
Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
|
|
return(Pmax);
|
|
}
|
|
}
|
|
return(Pmax);
|
|
}
|
|
|
|
static
|
|
HAL_BOOL
|
|
ar2425GetChannelMaxMinPower(struct ath_hal *ah, HAL_CHANNEL *chan,
|
|
int16_t *maxPow, int16_t *minPow)
|
|
{
|
|
const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
|
|
const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
|
|
const RAW_DATA_PER_CHANNEL_2413 *data = AH_NULL;
|
|
uint16_t numChannels;
|
|
int totalD,totalF, totalMin,last, i;
|
|
|
|
*maxPow = 0;
|
|
|
|
if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
|
|
pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
|
|
else if (IS_CHAN_B(chan))
|
|
pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
|
|
else
|
|
return(AH_FALSE);
|
|
|
|
numChannels = pRawDataset->numChannels;
|
|
data = pRawDataset->pDataPerChannel;
|
|
|
|
/* Make sure the channel is in the range of the TP values
|
|
* (freq piers)
|
|
*/
|
|
if (numChannels < 1)
|
|
return(AH_FALSE);
|
|
|
|
if ((chan->channel < data[0].channelValue) ||
|
|
(chan->channel > data[numChannels-1].channelValue)) {
|
|
if (chan->channel < data[0].channelValue) {
|
|
*maxPow = ar2425GetMaxPower(ah, &data[0]);
|
|
*minPow = ar2425GetMinPower(ah, &data[0]);
|
|
return(AH_TRUE);
|
|
} else {
|
|
*maxPow = ar2425GetMaxPower(ah, &data[numChannels - 1]);
|
|
*minPow = ar2425GetMinPower(ah, &data[numChannels - 1]);
|
|
return(AH_TRUE);
|
|
}
|
|
}
|
|
|
|
/* Linearly interpolate the power value now */
|
|
for (last=0,i=0; (i<numChannels) && (chan->channel > data[i].channelValue);
|
|
last = i++);
|
|
totalD = data[i].channelValue - data[last].channelValue;
|
|
if (totalD > 0) {
|
|
totalF = ar2425GetMaxPower(ah, &data[i]) - ar2425GetMaxPower(ah, &data[last]);
|
|
*maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) +
|
|
ar2425GetMaxPower(ah, &data[last])*totalD)/totalD);
|
|
totalMin = ar2425GetMinPower(ah, &data[i]) - ar2425GetMinPower(ah, &data[last]);
|
|
*minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) +
|
|
ar2425GetMinPower(ah, &data[last])*totalD)/totalD);
|
|
return(AH_TRUE);
|
|
} else {
|
|
if (chan->channel == data[i].channelValue) {
|
|
*maxPow = ar2425GetMaxPower(ah, &data[i]);
|
|
*minPow = ar2425GetMinPower(ah, &data[i]);
|
|
return(AH_TRUE);
|
|
} else
|
|
return(AH_FALSE);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Free memory for analog bank scratch buffers
|
|
*/
|
|
static void
|
|
ar2425RfDetach(struct ath_hal *ah)
|
|
{
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
|
|
HALASSERT(ahp->ah_rfHal != AH_NULL);
|
|
ath_hal_free(ahp->ah_rfHal);
|
|
ahp->ah_rfHal = AH_NULL;
|
|
}
|
|
|
|
/*
|
|
* Allocate memory for analog bank scratch buffers
|
|
* Scratch Buffer will be reinitialized every reset so no need to zero now
|
|
*/
|
|
static HAL_BOOL
|
|
ar2425RfAttach(struct ath_hal *ah, HAL_STATUS *status)
|
|
{
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
struct ar2425State *priv;
|
|
|
|
HALASSERT(ah->ah_magic == AR5212_MAGIC);
|
|
|
|
HALASSERT(ahp->ah_rfHal == AH_NULL);
|
|
priv = ath_hal_malloc(sizeof(struct ar2425State));
|
|
if (priv == AH_NULL) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY,
|
|
"%s: cannot allocate private state\n", __func__);
|
|
*status = HAL_ENOMEM; /* XXX */
|
|
return AH_FALSE;
|
|
}
|
|
priv->base.rfDetach = ar2425RfDetach;
|
|
priv->base.writeRegs = ar2425WriteRegs;
|
|
priv->base.getRfBank = ar2425GetRfBank;
|
|
priv->base.setChannel = ar2425SetChannel;
|
|
priv->base.setRfRegs = ar2425SetRfRegs;
|
|
priv->base.setPowerTable = ar2425SetPowerTable;
|
|
priv->base.getChannelMaxMinPower = ar2425GetChannelMaxMinPower;
|
|
priv->base.getNfAdjust = ar5212GetNfAdjust;
|
|
|
|
ahp->ah_pcdacTable = priv->pcdacTable;
|
|
ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
|
|
ahp->ah_rfHal = &priv->base;
|
|
|
|
return AH_TRUE;
|
|
}
|
|
|
|
static HAL_BOOL
|
|
ar2425Probe(struct ath_hal *ah)
|
|
{
|
|
return IS_2425(ah) || IS_2417(ah);
|
|
}
|
|
AH_RF(RF2425, ar2425Probe, ar2425RfAttach);
|