mirror of
https://github.com/proski/madwifi
synced 2024-11-25 07:49:43 +03:00
5890429464
git-svn-id: http://madwifi-project.org/svn/madwifi/trunk@4166 0192ed92-7a03-0410-a25b-9323aeb14dbd
2661 lines
80 KiB
C
2661 lines
80 KiB
C
/*
|
|
* Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
|
|
* Copyright (c) 2002-2008 Atheros Communications, Inc.
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
#include "opt_ah.h"
|
|
|
|
#include "ah.h"
|
|
#include "ah_internal.h"
|
|
#include "ah_devid.h"
|
|
|
|
#include "ar5212/ar5212.h"
|
|
#include "ar5212/ar5212reg.h"
|
|
#include "ar5212/ar5212phy.h"
|
|
|
|
#include "ah_eeprom_v3.h"
|
|
|
|
/* Additional Time delay to wait after activiting the Base band */
|
|
#define BASE_ACTIVATE_DELAY 100 /* 100 usec */
|
|
#define PLL_SETTLE_DELAY 300 /* 300 usec */
|
|
|
|
static HAL_BOOL ar5212SetResetReg(struct ath_hal *, uint32_t resetMask);
|
|
/* NB: public for 5312 use */
|
|
HAL_BOOL ar5212IsSpurChannel(struct ath_hal *, HAL_CHANNEL *);
|
|
HAL_BOOL ar5212ChannelChange(struct ath_hal *, HAL_CHANNEL *);
|
|
int16_t ar5212GetNf(struct ath_hal *, HAL_CHANNEL_INTERNAL *);
|
|
HAL_BOOL ar5212SetBoardValues(struct ath_hal *, HAL_CHANNEL_INTERNAL *);
|
|
void ar5212SetDeltaSlope(struct ath_hal *, HAL_CHANNEL *);
|
|
HAL_BOOL ar5212SetTransmitPower(struct ath_hal *ah,
|
|
HAL_CHANNEL_INTERNAL *chan, uint16_t *rfXpdGain);
|
|
static HAL_BOOL ar5212SetRateTable(struct ath_hal *,
|
|
HAL_CHANNEL *, int16_t tpcScaleReduction, int16_t powerLimit,
|
|
HAL_BOOL commit, int16_t *minPower, int16_t *maxPower);
|
|
static void ar5212CorrectGainDelta(struct ath_hal *, int twiceOfdmCckDelta);
|
|
static void ar5212GetTargetPowers(struct ath_hal *, HAL_CHANNEL *,
|
|
const TRGT_POWER_INFO *pPowerInfo, uint16_t numChannels,
|
|
TRGT_POWER_INFO *pNewPower);
|
|
static uint16_t ar5212GetMaxEdgePower(uint16_t channel,
|
|
const RD_EDGES_POWER *pRdEdgesPower);
|
|
void ar5212SetRateDurationTable(struct ath_hal *, HAL_CHANNEL *);
|
|
void ar5212SetIFSTiming(struct ath_hal *, HAL_CHANNEL *);
|
|
|
|
/* NB: public for RF backend use */
|
|
void ar5212GetLowerUpperValues(uint16_t value,
|
|
uint16_t *pList, uint16_t listSize,
|
|
uint16_t *pLowerValue, uint16_t *pUpperValue);
|
|
void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
|
|
uint32_t numBits, uint32_t firstBit, uint32_t column);
|
|
|
|
static int
|
|
write_common(struct ath_hal *ah, const HAL_INI_ARRAY *ia,
|
|
HAL_BOOL bChannelChange, int writes)
|
|
{
|
|
#define IS_NO_RESET_TIMER_ADDR(x) \
|
|
( (((x) >= AR_BEACON) && ((x) <= AR_CFP_DUR)) || \
|
|
(((x) >= AR_SLEEP1) && ((x) <= AR_SLEEP3)))
|
|
#define V(r, c) (ia)->data[((r)*(ia)->cols) + (c)]
|
|
int r;
|
|
|
|
/* Write Common Array Parameters */
|
|
for (r = 0; r < ia->rows; r++) {
|
|
uint32_t reg = V(r, 0);
|
|
/* XXX timer/beacon setup registers? */
|
|
/* On channel change, don't reset the PCU registers */
|
|
if (!(bChannelChange && IS_NO_RESET_TIMER_ADDR(reg))) {
|
|
OS_REG_WRITE(ah, reg, V(r, 1));
|
|
DMA_YIELD(writes);
|
|
}
|
|
}
|
|
return writes;
|
|
#undef IS_NO_RESET_TIMER_ADDR
|
|
#undef V
|
|
}
|
|
|
|
#define IS_DISABLE_FAST_ADC_CHAN(x) (((x) == 2462) || ((x) == 2467))
|
|
|
|
/*
|
|
* Places the device in and out of reset and then places sane
|
|
* values in the registers based on EEPROM config, initialization
|
|
* vectors (as determined by the mode), and station configuration
|
|
*
|
|
* bChannelChange is used to preserve DMA/PCU registers across
|
|
* a HW Reset during channel change.
|
|
*/
|
|
HAL_BOOL
|
|
ar5212Reset(struct ath_hal *ah, HAL_OPMODE opmode,
|
|
HAL_CHANNEL *chan, HAL_BOOL bChannelChange, HAL_STATUS *status)
|
|
{
|
|
#define N(a) (sizeof (a) / sizeof (a[0]))
|
|
#define FAIL(_code) do { ecode = _code; goto bad; } while (0)
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
HAL_CHANNEL_INTERNAL *ichan = AH_NULL;
|
|
const HAL_EEPROM *ee;
|
|
uint32_t softLedCfg, softLedState;
|
|
uint32_t saveFrameSeqCount, saveDefAntenna, saveLedState;
|
|
uint32_t macStaId1, synthDelay, txFrm2TxDStart;
|
|
uint16_t rfXpdGain[MAX_NUM_PDGAINS_PER_CHANNEL];
|
|
int16_t cckOfdmPwrDelta = 0;
|
|
u_int modesIndex, freqIndex;
|
|
HAL_STATUS ecode;
|
|
int i, regWrites;
|
|
uint32_t testReg, powerVal;
|
|
int8_t twiceAntennaGain, twiceAntennaReduction;
|
|
uint32_t ackTpcPow, ctsTpcPow, chirpTpcPow;
|
|
HAL_BOOL isBmode = AH_FALSE;
|
|
HAL_BOOL ichan_isBmode = AH_FALSE;
|
|
|
|
HALASSERT(ah->ah_magic == AR5212_MAGIC);
|
|
ee = AH_PRIVATE(ah)->ah_eeprom;
|
|
|
|
OS_MARK(ah, AH_MARK_RESET, bChannelChange);
|
|
#define IS(_c,_f) (((_c)->channelFlags & _f) || 0)
|
|
if ((IS(chan, CHANNEL_2GHZ) ^ IS(chan, CHANNEL_5GHZ)) == 0) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY,
|
|
"%s: invalid channel %u/0x%x; not marked as 2GHz or 5GHz\n",
|
|
__func__, chan->channel, chan->channelFlags);
|
|
FAIL(HAL_EINVAL);
|
|
}
|
|
if ((IS(chan, CHANNEL_OFDM) ^ IS(chan, CHANNEL_CCK)) == 0) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY,
|
|
"%s: invalid channel %u/0x%x; not marked as OFDM or CCK\n",
|
|
__func__, chan->channel, chan->channelFlags);
|
|
FAIL(HAL_EINVAL);
|
|
}
|
|
#undef IS
|
|
|
|
/* Bring out of sleep mode */
|
|
if (!ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip did not wakeup\n",
|
|
__func__);
|
|
FAIL(HAL_EIO);
|
|
}
|
|
|
|
/*
|
|
* Map public channel to private.
|
|
*/
|
|
ichan = ath_hal_checkchannel(ah, chan);
|
|
if (ichan == AH_NULL) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY,
|
|
"%s: invalid channel %u/0x%x; no mapping\n",
|
|
__func__, chan->channel, chan->channelFlags);
|
|
FAIL(HAL_EINVAL);
|
|
}
|
|
switch (opmode) {
|
|
case HAL_M_STA:
|
|
case HAL_M_IBSS:
|
|
case HAL_M_HOSTAP:
|
|
case HAL_M_MONITOR:
|
|
break;
|
|
default:
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n",
|
|
__func__, opmode);
|
|
FAIL(HAL_EINVAL);
|
|
break;
|
|
}
|
|
HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3);
|
|
|
|
SAVE_CCK(ah, ichan, ichan_isBmode);
|
|
SAVE_CCK(ah, chan, isBmode);
|
|
|
|
/* Preserve certain DMA hardware registers on a channel change */
|
|
if (bChannelChange) {
|
|
/*
|
|
* On Venice, the TSF is almost preserved across a reset;
|
|
* it requires doubling writes to the RESET_TSF
|
|
* bit in the AR_BEACON register; it also has the quirk
|
|
* of the TSF going back in time on the station (station
|
|
* latches onto the last beacon's tsf during a reset 50%
|
|
* of the times); the latter is not a problem for adhoc
|
|
* stations since as long as the TSF is behind, it will
|
|
* get resynchronized on receiving the next beacon; the
|
|
* TSF going backwards in time could be a problem for the
|
|
* sleep operation (supported on infrastructure stations
|
|
* only) - the best and most general fix for this situation
|
|
* is to resynchronize the various sleep/beacon timers on
|
|
* the receipt of the next beacon i.e. when the TSF itself
|
|
* gets resynchronized to the AP's TSF - power save is
|
|
* needed to be temporarily disabled until that time
|
|
*
|
|
* Need to save the sequence number to restore it after
|
|
* the reset!
|
|
*/
|
|
saveFrameSeqCount = OS_REG_READ(ah, AR_D_SEQNUM);
|
|
} else
|
|
saveFrameSeqCount = 0; /* NB: silence compiler */
|
|
#if 0
|
|
/*
|
|
* XXX disable for now; this appears to sometimes cause OFDM
|
|
* XXX timing error floods when ani is enabled and bg scanning
|
|
* XXX kicks in
|
|
*/
|
|
/* If the channel change is across the same mode - perform a fast channel change */
|
|
if (IS_2413(ah) || IS_5413(ah)) {
|
|
/*
|
|
* Fast channel change can only be used when:
|
|
* -channel change requested - so it's not the initial reset.
|
|
* -it's not a change to the current channel -
|
|
* often called when switching modes on a channel
|
|
* -the modes of the previous and requested channel are the
|
|
* same
|
|
* XXX opmode shouldn't change either?
|
|
*/
|
|
if (bChannelChange &&
|
|
(AH_PRIVATE(ah)->ah_curchan != AH_NULL) &&
|
|
(chan->channel != AH_PRIVATE(ah)->ah_curchan->channel) &&
|
|
((chan->channelFlags & CHANNEL_ALL) ==
|
|
(AH_PRIVATE(ah)->ah_curchan->channelFlags & CHANNEL_ALL))) {
|
|
if (ar5212ChannelChange(ah, chan)) {
|
|
/* If ChannelChange completed - skip the rest of reset */
|
|
/* XXX ani? */
|
|
return AH_TRUE;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
/*
|
|
* Preserve the antenna on a channel change
|
|
*/
|
|
saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
|
|
if (saveDefAntenna == 0) /* XXX magic constants */
|
|
saveDefAntenna = 1;
|
|
|
|
/* Save hardware flag before chip reset clears the register */
|
|
macStaId1 = OS_REG_READ(ah, AR_STA_ID1) &
|
|
(AR_STA_ID1_BASE_RATE_11B | AR_STA_ID1_USE_DEFANT);
|
|
|
|
/* Save led state from pci config register */
|
|
saveLedState = OS_REG_READ(ah, AR_PCICFG) &
|
|
(AR_PCICFG_LEDCTL | AR_PCICFG_LEDMODE | AR_PCICFG_LEDBLINK |
|
|
AR_PCICFG_LEDSLOW);
|
|
softLedCfg = OS_REG_READ(ah, AR_GPIOCR);
|
|
softLedState = OS_REG_READ(ah, AR_GPIODO);
|
|
|
|
ar5212RestoreClock(ah, opmode); /* move to refclk operation */
|
|
|
|
/*
|
|
* Adjust gain parameters before reset if
|
|
* there's an outstanding gain updated.
|
|
*/
|
|
(void) ar5212GetRfgain(ah);
|
|
|
|
if (!ar5212ChipReset(ah, chan)) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
|
|
FAIL(HAL_EIO);
|
|
}
|
|
|
|
/* Setup the indices for the next set of register array writes */
|
|
switch (chan->channelFlags & CHANNEL_ALL) {
|
|
case CHANNEL_A:
|
|
modesIndex = 1;
|
|
freqIndex = 1;
|
|
break;
|
|
case CHANNEL_T:
|
|
modesIndex = 2;
|
|
freqIndex = 1;
|
|
break;
|
|
case CHANNEL_B:
|
|
modesIndex = 3;
|
|
freqIndex = 2;
|
|
break;
|
|
case CHANNEL_PUREG:
|
|
modesIndex = 4;
|
|
freqIndex = 2;
|
|
break;
|
|
case CHANNEL_108G:
|
|
modesIndex = 5;
|
|
freqIndex = 2;
|
|
break;
|
|
default:
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
|
|
__func__, chan->channelFlags);
|
|
FAIL(HAL_EINVAL);
|
|
}
|
|
|
|
OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
|
|
|
|
/* Set correct Baseband to analog shift setting to access analog chips. */
|
|
OS_REG_WRITE(ah, AR_PHY(0), 0x00000007);
|
|
|
|
regWrites = ath_hal_ini_write(ah, &ahp->ah_ini_modes, modesIndex, 0);
|
|
regWrites = write_common(ah, &ahp->ah_ini_common, bChannelChange,
|
|
regWrites);
|
|
ahp->ah_rfHal->writeRegs(ah, modesIndex, freqIndex, regWrites);
|
|
|
|
OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
|
|
|
|
if (IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan)) {
|
|
ar5212SetIFSTiming(ah, chan);
|
|
if (IS_5413(ah)) {
|
|
/*
|
|
* Force window_length for 1/2 and 1/4 rate channels,
|
|
* the ini file sets this to zero otherwise.
|
|
*/
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
|
|
AR_PHY_FRAME_CTL_WINLEN, 3);
|
|
}
|
|
}
|
|
|
|
/* Overwrite INI values for revised chipsets */
|
|
if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_2) {
|
|
/* ADC_CTL */
|
|
OS_REG_WRITE(ah, AR_PHY_ADC_CTL,
|
|
SM(2, AR_PHY_ADC_CTL_OFF_INBUFGAIN) |
|
|
SM(2, AR_PHY_ADC_CTL_ON_INBUFGAIN) |
|
|
AR_PHY_ADC_CTL_OFF_PWDDAC |
|
|
AR_PHY_ADC_CTL_OFF_PWDADC);
|
|
|
|
/* TX_PWR_ADJ */
|
|
if (chan->channel == 2484) {
|
|
cckOfdmPwrDelta = SCALE_OC_DELTA(
|
|
ee->ee_cckOfdmPwrDelta -
|
|
ee->ee_scaledCh14FilterCckDelta);
|
|
} else {
|
|
cckOfdmPwrDelta = SCALE_OC_DELTA(
|
|
ee->ee_cckOfdmPwrDelta);
|
|
}
|
|
|
|
if (IS_CHAN_G(chan)) {
|
|
OS_REG_WRITE(ah, AR_PHY_TXPWRADJ,
|
|
SM((ee->ee_cckOfdmPwrDelta*-1),
|
|
AR_PHY_TXPWRADJ_CCK_GAIN_DELTA) |
|
|
SM((cckOfdmPwrDelta*-1),
|
|
AR_PHY_TXPWRADJ_CCK_PCDAC_INDEX));
|
|
} else {
|
|
OS_REG_WRITE(ah, AR_PHY_TXPWRADJ, 0);
|
|
}
|
|
|
|
/* Add barker RSSI thresh enable as disabled */
|
|
OS_REG_CLR_BIT(ah, AR_PHY_DAG_CTRLCCK,
|
|
AR_PHY_DAG_CTRLCCK_EN_RSSI_THR);
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_DAG_CTRLCCK,
|
|
AR_PHY_DAG_CTRLCCK_RSSI_THR, 2);
|
|
|
|
/* Set the mute mask to the correct default */
|
|
OS_REG_WRITE(ah, AR_SEQ_MASK, 0x0000000F);
|
|
}
|
|
|
|
if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_3) {
|
|
/* Clear reg to alllow RX_CLEAR line debug */
|
|
OS_REG_WRITE(ah, AR_PHY_BLUETOOTH, 0);
|
|
}
|
|
if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_4) {
|
|
#ifdef notyet
|
|
/* Enable burst prefetch for the data queues */
|
|
OS_REG_RMW_FIELD(ah, AR_D_FPCTL, ... );
|
|
/* Enable double-buffering */
|
|
OS_REG_CLR_BIT(ah, AR_TXCFG, AR_TXCFG_DBL_BUF_DIS);
|
|
#endif
|
|
}
|
|
|
|
/* Set ADC/DAC select values */
|
|
OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0e);
|
|
|
|
if (IS_5413(ah) || IS_2417(ah)) {
|
|
uint32_t newReg=1;
|
|
if (IS_DISABLE_FAST_ADC_CHAN(chan->channel))
|
|
newReg = 0;
|
|
/* As it's a clock changing register, only write when the value needs to be changed */
|
|
if (OS_REG_READ(ah, AR_PHY_FAST_ADC) != newReg)
|
|
OS_REG_WRITE(ah, AR_PHY_FAST_ADC, newReg);
|
|
}
|
|
|
|
/* Setup the transmit power values. */
|
|
if (!ar5212SetTransmitPower(ah, ichan, rfXpdGain)) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY,
|
|
"%s: error init'ing transmit power\n", __func__);
|
|
FAIL(HAL_EIO);
|
|
}
|
|
|
|
/* Write the analog registers */
|
|
if (!ahp->ah_rfHal->setRfRegs(ah, ichan, modesIndex, rfXpdGain)) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: ar5212SetRfRegs failed\n",
|
|
__func__);
|
|
FAIL(HAL_EIO);
|
|
}
|
|
|
|
/* Write delta slope for OFDM enabled modes (A, G, Turbo) */
|
|
if (IS_CHAN_OFDM(chan)) {
|
|
if ((IS_5413(ah) || (AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER5_3)) &&
|
|
(!IS_CHAN_B(chan)))
|
|
ar5212SetSpurMitigation(ah, ichan);
|
|
ar5212SetDeltaSlope(ah, chan);
|
|
}
|
|
|
|
/* Setup board specific options for EEPROM version 3 */
|
|
if (!ar5212SetBoardValues(ah, ichan)) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY,
|
|
"%s: error setting board options\n", __func__);
|
|
FAIL(HAL_EIO);
|
|
}
|
|
|
|
/* Restore certain DMA hardware registers on a channel change */
|
|
if (bChannelChange)
|
|
OS_REG_WRITE(ah, AR_D_SEQNUM, saveFrameSeqCount);
|
|
|
|
OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
|
|
|
|
OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
|
|
OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
|
|
| macStaId1
|
|
| AR_STA_ID1_RTS_USE_DEF
|
|
| ahp->ah_staId1Defaults
|
|
);
|
|
ar5212SetOperatingMode(ah, opmode);
|
|
|
|
/* Set Venice BSSID mask according to current state */
|
|
OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask));
|
|
OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4));
|
|
|
|
/* Restore previous led state */
|
|
OS_REG_WRITE(ah, AR_PCICFG, OS_REG_READ(ah, AR_PCICFG) | saveLedState);
|
|
|
|
/* Restore soft Led state to GPIO */
|
|
OS_REG_WRITE(ah, AR_GPIOCR, softLedCfg);
|
|
OS_REG_WRITE(ah, AR_GPIODO, softLedState);
|
|
|
|
/* Restore previous antenna */
|
|
OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
|
|
|
|
/* then our BSSID */
|
|
OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
|
|
OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4));
|
|
|
|
/* Restore bmiss rssi & count thresholds */
|
|
OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
|
|
|
|
OS_REG_WRITE(ah, AR_ISR, ~0); /* cleared on write */
|
|
|
|
if (!ar5212SetChannel(ah, ichan))
|
|
FAIL(HAL_EIO);
|
|
|
|
OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
|
|
|
|
ar5212SetCoverageClass(ah, AH_PRIVATE(ah)->ah_coverageClass, 1);
|
|
|
|
ar5212SetRateDurationTable(ah, chan);
|
|
|
|
/* Set Tx frame start to tx data start delay */
|
|
if (IS_RAD5112_ANY(ah) &&
|
|
(IS_CHAN_HALF_RATE(AH_PRIVATE(ah)->ah_curchan) ||
|
|
IS_CHAN_QUARTER_RATE(AH_PRIVATE(ah)->ah_curchan))) {
|
|
txFrm2TxDStart =
|
|
(IS_CHAN_HALF_RATE(AH_PRIVATE(ah)->ah_curchan)) ?
|
|
TX_FRAME_D_START_HALF_RATE:
|
|
TX_FRAME_D_START_QUARTER_RATE;
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_TX_CTL,
|
|
AR_PHY_TX_FRAME_TO_TX_DATA_START, txFrm2TxDStart);
|
|
}
|
|
|
|
/*
|
|
* Setup fast diversity.
|
|
* Fast diversity can be enabled or disabled via regadd.txt.
|
|
* Default is enabled.
|
|
* For reference,
|
|
* Disable: reg val
|
|
* 0x00009860 0x00009d18 (if 11a / 11g, else no change)
|
|
* 0x00009970 0x192bb514
|
|
* 0x0000a208 0xd03e4648
|
|
*
|
|
* Enable: 0x00009860 0x00009d10 (if 11a / 11g, else no change)
|
|
* 0x00009970 0x192fb514
|
|
* 0x0000a208 0xd03e6788
|
|
*/
|
|
|
|
/* XXX Setup pre PHY ENABLE EAR additions */
|
|
/*
|
|
* Wait for the frequency synth to settle (synth goes on
|
|
* via AR_PHY_ACTIVE_EN). Read the phy active delay register.
|
|
* Value is in 100ns increments.
|
|
*/
|
|
synthDelay = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
|
|
if (IS_CHAN_CCK(chan)) {
|
|
synthDelay = (4 * synthDelay) / 22;
|
|
} else {
|
|
synthDelay /= 10;
|
|
}
|
|
|
|
/* Activate the PHY (includes baseband activate and synthesizer on) */
|
|
OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
|
|
|
|
/*
|
|
* There is an issue if the AP starts the calibration before
|
|
* the base band timeout completes. This could result in the
|
|
* rx_clear false triggering. As a workaround we add delay an
|
|
* extra BASE_ACTIVATE_DELAY usecs to ensure this condition
|
|
* does not happen.
|
|
*/
|
|
if (IS_CHAN_HALF_RATE(AH_PRIVATE(ah)->ah_curchan)) {
|
|
OS_DELAY((synthDelay << 1) + BASE_ACTIVATE_DELAY);
|
|
} else if (IS_CHAN_QUARTER_RATE(AH_PRIVATE(ah)->ah_curchan)) {
|
|
OS_DELAY((synthDelay << 2) + BASE_ACTIVATE_DELAY);
|
|
} else {
|
|
OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
|
|
}
|
|
|
|
/*
|
|
* The udelay method is not reliable with notebooks.
|
|
* Need to check to see if the baseband is ready
|
|
*/
|
|
testReg = OS_REG_READ(ah, AR_PHY_TESTCTRL);
|
|
/* Selects the Tx hold */
|
|
OS_REG_WRITE(ah, AR_PHY_TESTCTRL, AR_PHY_TESTCTRL_TXHOLD);
|
|
i = 0;
|
|
while ((i++ < 20) &&
|
|
(OS_REG_READ(ah, 0x9c24) & 0x10)) /* test if baseband not ready */ OS_DELAY(200);
|
|
OS_REG_WRITE(ah, AR_PHY_TESTCTRL, testReg);
|
|
|
|
/* Calibrate the AGC and start a NF calculation */
|
|
OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
|
|
OS_REG_READ(ah, AR_PHY_AGC_CONTROL)
|
|
| AR_PHY_AGC_CONTROL_CAL
|
|
| AR_PHY_AGC_CONTROL_NF);
|
|
|
|
if (!IS_CHAN_B(chan) && ahp->ah_bIQCalibration != IQ_CAL_DONE) {
|
|
/* Start IQ calibration w/ 2^(INIT_IQCAL_LOG_COUNT_MAX+1) samples */
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
|
|
AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX,
|
|
INIT_IQCAL_LOG_COUNT_MAX);
|
|
OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
|
|
AR_PHY_TIMING_CTRL4_DO_IQCAL);
|
|
ahp->ah_bIQCalibration = IQ_CAL_RUNNING;
|
|
} else
|
|
ahp->ah_bIQCalibration = IQ_CAL_INACTIVE;
|
|
|
|
/* Setup compression registers */
|
|
ar5212SetCompRegs(ah);
|
|
|
|
/* Set 1:1 QCU to DCU mapping for all queues */
|
|
for (i = 0; i < AR_NUM_DCU; i++)
|
|
OS_REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
|
|
|
|
ahp->ah_intrTxqs = 0;
|
|
for (i = 0; i < AH_PRIVATE(ah)->ah_caps.halTotalQueues; i++)
|
|
ar5212ResetTxQueue(ah, i);
|
|
|
|
/*
|
|
* Setup interrupt handling. Note that ar5212ResetTxQueue
|
|
* manipulates the secondary IMR's as queues are enabled
|
|
* and disabled. This is done with RMW ops to insure the
|
|
* settings we make here are preserved.
|
|
*/
|
|
ahp->ah_maskReg = AR_IMR_TXOK | AR_IMR_TXERR | AR_IMR_TXURN
|
|
| AR_IMR_RXOK | AR_IMR_RXERR | AR_IMR_RXORN
|
|
| AR_IMR_HIUERR
|
|
;
|
|
if (opmode == HAL_M_HOSTAP)
|
|
ahp->ah_maskReg |= AR_IMR_MIB;
|
|
OS_REG_WRITE(ah, AR_IMR, ahp->ah_maskReg);
|
|
/* Enable bus errors that are OR'd to set the HIUERR bit */
|
|
OS_REG_WRITE(ah, AR_IMR_S2,
|
|
OS_REG_READ(ah, AR_IMR_S2)
|
|
| AR_IMR_S2_MCABT | AR_IMR_S2_SSERR | AR_IMR_S2_DPERR);
|
|
|
|
if (AH_PRIVATE(ah)->ah_rfkillEnabled)
|
|
ar5212EnableRfKill(ah);
|
|
|
|
if (!ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 0)) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY,
|
|
"%s: offset calibration failed to complete in 1ms;"
|
|
" noisy environment?\n", __func__);
|
|
}
|
|
|
|
/*
|
|
* Set clocks back to 32kHz if they had been using refClk, then
|
|
* use an external 32kHz crystal when sleeping, if one exists.
|
|
*/
|
|
ar5212SetupClock(ah, opmode);
|
|
|
|
/*
|
|
* Writing to AR_BEACON will start timers. Hence it should
|
|
* be the last register to be written. Do not reset tsf, do
|
|
* not enable beacons at this point, but preserve other values
|
|
* like beaconInterval.
|
|
*/
|
|
OS_REG_WRITE(ah, AR_BEACON,
|
|
(OS_REG_READ(ah, AR_BEACON) &~ (AR_BEACON_EN | AR_BEACON_RESET_TSF)));
|
|
|
|
/* XXX Setup post reset EAR additions */
|
|
|
|
/* QoS support */
|
|
if (AH_PRIVATE(ah)->ah_macVersion > AR_SREV_VERSION_VENICE ||
|
|
(AH_PRIVATE(ah)->ah_macVersion == AR_SREV_VERSION_VENICE &&
|
|
AH_PRIVATE(ah)->ah_macRev >= AR_SREV_GRIFFIN_LITE)) {
|
|
OS_REG_WRITE(ah, AR_QOS_CONTROL, 0x100aa); /* XXX magic */
|
|
OS_REG_WRITE(ah, AR_QOS_SELECT, 0x3210); /* XXX magic */
|
|
}
|
|
|
|
/* Turn on NOACK Support for QoS packets */
|
|
OS_REG_WRITE(ah, AR_NOACK,
|
|
SM(2, AR_NOACK_2BIT_VALUE) |
|
|
SM(5, AR_NOACK_BIT_OFFSET) |
|
|
SM(0, AR_NOACK_BYTE_OFFSET));
|
|
|
|
/* Get Antenna Gain reduction */
|
|
if (IS_CHAN_5GHZ(chan)) {
|
|
ath_hal_eepromGet(ah, AR_EEP_ANTGAINMAX_5, &twiceAntennaGain);
|
|
} else {
|
|
ath_hal_eepromGet(ah, AR_EEP_ANTGAINMAX_2, &twiceAntennaGain);
|
|
}
|
|
twiceAntennaReduction =
|
|
ath_hal_getantennareduction(ah, chan, twiceAntennaGain);
|
|
|
|
/* TPC for self-generated frames */
|
|
|
|
ackTpcPow = MS(ahp->ah_macTPC, AR_TPC_ACK);
|
|
if ((ackTpcPow-ahp->ah_txPowerIndexOffset) > ichan->maxTxPower)
|
|
ackTpcPow = ichan->maxTxPower+ahp->ah_txPowerIndexOffset;
|
|
|
|
if (ackTpcPow > (2*ichan->maxRegTxPower - twiceAntennaReduction))
|
|
ackTpcPow = (2*ichan->maxRegTxPower - twiceAntennaReduction)
|
|
+ ahp->ah_txPowerIndexOffset;
|
|
|
|
ctsTpcPow = MS(ahp->ah_macTPC, AR_TPC_CTS);
|
|
if ((ctsTpcPow-ahp->ah_txPowerIndexOffset) > ichan->maxTxPower)
|
|
ctsTpcPow = ichan->maxTxPower+ahp->ah_txPowerIndexOffset;
|
|
|
|
if (ctsTpcPow > (2*ichan->maxRegTxPower - twiceAntennaReduction))
|
|
ctsTpcPow = (2*ichan->maxRegTxPower - twiceAntennaReduction)
|
|
+ ahp->ah_txPowerIndexOffset;
|
|
|
|
chirpTpcPow = MS(ahp->ah_macTPC, AR_TPC_CHIRP);
|
|
if ((chirpTpcPow-ahp->ah_txPowerIndexOffset) > ichan->maxTxPower)
|
|
chirpTpcPow = ichan->maxTxPower+ahp->ah_txPowerIndexOffset;
|
|
|
|
if (chirpTpcPow > (2*ichan->maxRegTxPower - twiceAntennaReduction))
|
|
chirpTpcPow = (2*ichan->maxRegTxPower - twiceAntennaReduction)
|
|
+ ahp->ah_txPowerIndexOffset;
|
|
|
|
if (ackTpcPow > 63)
|
|
ackTpcPow = 63;
|
|
if (ctsTpcPow > 63)
|
|
ctsTpcPow = 63;
|
|
if (chirpTpcPow > 63)
|
|
chirpTpcPow = 63;
|
|
|
|
powerVal = SM(ackTpcPow, AR_TPC_ACK) |
|
|
SM(ctsTpcPow, AR_TPC_CTS) |
|
|
SM(chirpTpcPow, AR_TPC_CHIRP);
|
|
|
|
OS_REG_WRITE(ah, AR_TPC, powerVal);
|
|
|
|
/* Restore user-specified settings */
|
|
if (ahp->ah_miscMode != 0)
|
|
OS_REG_WRITE(ah, AR_MISC_MODE, ahp->ah_miscMode);
|
|
if (ahp->ah_sifstime != (u_int) -1)
|
|
ar5212SetSifsTime(ah, ahp->ah_sifstime);
|
|
if (ahp->ah_slottime != (u_int) -1)
|
|
ar5212SetSlotTime(ah, ahp->ah_slottime);
|
|
if (ahp->ah_acktimeout != (u_int) -1)
|
|
ar5212SetAckTimeout(ah, ahp->ah_acktimeout);
|
|
if (ahp->ah_ctstimeout != (u_int) -1)
|
|
ar5212SetCTSTimeout(ah, ahp->ah_ctstimeout);
|
|
if (AH_PRIVATE(ah)->ah_diagreg != 0)
|
|
OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
|
|
|
|
AH_PRIVATE(ah)->ah_opmode = opmode; /* record operating mode */
|
|
|
|
if (bChannelChange) {
|
|
if (!(ichan->privFlags & CHANNEL_DFS))
|
|
ichan->privFlags &= ~CHANNEL_INTERFERENCE;
|
|
chan->channelFlags = ichan->channelFlags;
|
|
chan->privFlags = ichan->privFlags;
|
|
chan->maxRegTxPower = ichan->maxRegTxPower;
|
|
chan->maxTxPower = ichan->maxTxPower;
|
|
chan->minTxPower = ichan->minTxPower;
|
|
}
|
|
|
|
HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
|
|
|
|
RESTORE_CCK(ah, ichan, ichan_isBmode);
|
|
RESTORE_CCK(ah, chan, isBmode);
|
|
|
|
OS_MARK(ah, AH_MARK_RESET_DONE, 0);
|
|
|
|
return AH_TRUE;
|
|
bad:
|
|
if (ichan != AH_NULL)
|
|
RESTORE_CCK(ah, ichan, ichan_isBmode);
|
|
RESTORE_CCK(ah, chan, isBmode);
|
|
|
|
OS_MARK(ah, AH_MARK_RESET_DONE, ecode);
|
|
if (status != AH_NULL)
|
|
*status = ecode;
|
|
return AH_FALSE;
|
|
#undef FAIL
|
|
#undef N
|
|
}
|
|
|
|
/*
|
|
* Call the rf backend to change the channel.
|
|
*/
|
|
HAL_BOOL
|
|
ar5212SetChannel(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
|
|
{
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
|
|
/* Change the synth */
|
|
if (!ahp->ah_rfHal->setChannel(ah, chan))
|
|
return AH_FALSE;
|
|
return AH_TRUE;
|
|
}
|
|
|
|
/*
|
|
* This channel change evaluates whether the selected hardware can
|
|
* perform a synthesizer-only channel change (no reset). If the
|
|
* TX is not stopped, or the RFBus cannot be granted in the given
|
|
* time, the function returns false as a reset is necessary
|
|
*/
|
|
HAL_BOOL
|
|
ar5212ChannelChange(struct ath_hal *ah, HAL_CHANNEL *chan)
|
|
{
|
|
uint32_t ulCount;
|
|
uint32_t data, synthDelay, qnum;
|
|
uint16_t rfXpdGain[MAX_NUM_PDGAINS_PER_CHANNEL];
|
|
HAL_BOOL txStopped = AH_TRUE;
|
|
HAL_CHANNEL_INTERNAL *ichan;
|
|
|
|
/*
|
|
* Map public channel to private.
|
|
*/
|
|
ichan = ath_hal_checkchannel(ah, chan);
|
|
|
|
/* TX must be stopped or RF Bus grant will not work */
|
|
for (qnum = 0; qnum < AH_PRIVATE(ah)->ah_caps.halTotalQueues; qnum++) {
|
|
if (ar5212NumTxPending(ah, qnum)) {
|
|
txStopped = AH_FALSE;
|
|
break;
|
|
}
|
|
}
|
|
if (!txStopped)
|
|
return AH_FALSE;
|
|
|
|
/* Kill last Baseband Rx Frame */
|
|
OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_REQUEST); /* Request analog bus grant */
|
|
for (ulCount = 0; ulCount < 100; ulCount++) {
|
|
if (OS_REG_READ(ah, AR_PHY_RFBUS_GNT))
|
|
break;
|
|
OS_DELAY(5);
|
|
}
|
|
if (ulCount >= 100)
|
|
return AH_FALSE;
|
|
|
|
/* Change the synth */
|
|
if (!ar5212SetChannel(ah, ichan))
|
|
return AH_FALSE;
|
|
|
|
/*
|
|
* Wait for the frequency synth to settle (synth goes on via PHY_ACTIVE_EN).
|
|
* Read the phy active delay register. Value is in 100ns increments.
|
|
*/
|
|
data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
|
|
if (IS_CHAN_CCK(ichan)) {
|
|
synthDelay = (4 * data) / 22;
|
|
} else {
|
|
synthDelay = data / 10;
|
|
}
|
|
OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
|
|
|
|
/* Setup the transmit power values. */
|
|
if (!ar5212SetTransmitPower(ah, ichan, rfXpdGain)) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY,
|
|
"%s: error init'ing transmit power\n", __func__);
|
|
return AH_FALSE;
|
|
}
|
|
|
|
/* Write delta slope for OFDM enabled modes (A, G, Turbo) */
|
|
if (IS_CHAN_OFDM(ichan)) {
|
|
if ((IS_5413(ah) || (AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER5_3)) &&
|
|
(!IS_CHAN_B(chan)))
|
|
ar5212SetSpurMitigation(ah, ichan);
|
|
ar5212SetDeltaSlope(ah, chan);
|
|
}
|
|
|
|
/* Release the RFBus Grant */
|
|
OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
|
|
|
|
/* Start Noise Floor Cal */
|
|
OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
|
|
|
|
if (!(ichan->privFlags & CHANNEL_DFS))
|
|
ichan->privFlags &= ~CHANNEL_INTERFERENCE;
|
|
chan->channelFlags = ichan->channelFlags;
|
|
chan->privFlags = ichan->privFlags;
|
|
chan->maxRegTxPower = ichan->maxRegTxPower;
|
|
chan->maxTxPower = ichan->maxTxPower;
|
|
chan->minTxPower = ichan->minTxPower;
|
|
return AH_TRUE;
|
|
}
|
|
|
|
void
|
|
ar5212SetOperatingMode(struct ath_hal *ah, int opmode)
|
|
{
|
|
uint32_t val;
|
|
|
|
val = OS_REG_READ(ah, AR_STA_ID1);
|
|
val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
|
|
switch (opmode) {
|
|
case HAL_M_HOSTAP:
|
|
OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
|
|
| AR_STA_ID1_KSRCH_MODE);
|
|
OS_REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
|
|
break;
|
|
case HAL_M_IBSS:
|
|
OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
|
|
| AR_STA_ID1_KSRCH_MODE);
|
|
OS_REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
|
|
break;
|
|
case HAL_M_STA:
|
|
case HAL_M_MONITOR:
|
|
OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Places the PHY and Radio chips into reset. A full reset
|
|
* must be called to leave this state. The PCI/MAC/PCU are
|
|
* not placed into reset as we must receive interrupt to
|
|
* re-enable the hardware.
|
|
*/
|
|
HAL_BOOL
|
|
ar5212PhyDisable(struct ath_hal *ah)
|
|
{
|
|
return ar5212SetResetReg(ah, AR_RC_BB);
|
|
}
|
|
|
|
/*
|
|
* Places all of hardware into reset
|
|
*/
|
|
HAL_BOOL
|
|
ar5212Disable(struct ath_hal *ah)
|
|
{
|
|
if (!ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
|
|
return AH_FALSE;
|
|
/*
|
|
* Reset the HW - PCI must be reset after the rest of the
|
|
* device has been reset.
|
|
*/
|
|
return ar5212SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI);
|
|
}
|
|
|
|
/*
|
|
* Places the hardware into reset and then pulls it out of reset
|
|
*
|
|
* TODO: Only write the PLL if we're changing to or from CCK mode
|
|
*
|
|
* WARNING: The order of the PLL and mode registers must be correct.
|
|
*/
|
|
HAL_BOOL
|
|
ar5212ChipReset(struct ath_hal *ah, HAL_CHANNEL *chan)
|
|
{
|
|
|
|
OS_MARK(ah, AH_MARK_CHIPRESET, chan ? chan->channel : 0);
|
|
|
|
/*
|
|
* Reset the HW - PCI must be reset after the rest of the
|
|
* device has been reset
|
|
*/
|
|
if (!ar5212SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI))
|
|
return AH_FALSE;
|
|
|
|
/* Bring out of sleep mode (AGAIN) */
|
|
if (!ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
|
|
return AH_FALSE;
|
|
|
|
/* Clear warm reset register */
|
|
if (!ar5212SetResetReg(ah, 0))
|
|
return AH_FALSE;
|
|
|
|
/*
|
|
* Perform warm reset before the mode/PLL/turbo registers
|
|
* are changed in order to deactivate the radio. Mode changes
|
|
* with an active radio can result in corrupted shifts to the
|
|
* radio device.
|
|
*/
|
|
|
|
/*
|
|
* Set CCK and Turbo modes correctly.
|
|
*/
|
|
if (chan != AH_NULL) { /* NB: can be null during attach */
|
|
uint32_t rfMode, phyPLL = 0, curPhyPLL, turbo;
|
|
|
|
if (IS_5413(ah)) { /* NB: =>'s 5424 also */
|
|
rfMode = AR_PHY_MODE_AR5112;
|
|
if (IS_CHAN_HALF_RATE(chan))
|
|
rfMode |= AR_PHY_MODE_HALF;
|
|
else if (IS_CHAN_QUARTER_RATE(chan))
|
|
rfMode |= AR_PHY_MODE_QUARTER;
|
|
|
|
if (IS_CHAN_CCK(chan) || IS_CHAN_G(chan))
|
|
phyPLL = AR_PHY_PLL_CTL_44_5112;
|
|
else
|
|
phyPLL = AR_PHY_PLL_CTL_40_5413;
|
|
} else if (IS_RAD5111(ah)) {
|
|
rfMode = AR_PHY_MODE_AR5111;
|
|
if (IS_CHAN_CCK(chan) || IS_CHAN_G(chan))
|
|
phyPLL = AR_PHY_PLL_CTL_44;
|
|
else
|
|
phyPLL = AR_PHY_PLL_CTL_40;
|
|
if (IS_CHAN_HALF_RATE(chan))
|
|
phyPLL = AR_PHY_PLL_CTL_HALF;
|
|
else if (IS_CHAN_QUARTER_RATE(chan))
|
|
phyPLL = AR_PHY_PLL_CTL_QUARTER;
|
|
} else { /* 5112, 2413, 2316, 2317 */
|
|
rfMode = AR_PHY_MODE_AR5112;
|
|
if (IS_CHAN_CCK(chan) || IS_CHAN_G(chan))
|
|
phyPLL = AR_PHY_PLL_CTL_44_5112;
|
|
else
|
|
phyPLL = AR_PHY_PLL_CTL_40_5112;
|
|
if (IS_CHAN_HALF_RATE(chan))
|
|
phyPLL |= AR_PHY_PLL_CTL_HALF;
|
|
else if (IS_CHAN_QUARTER_RATE(chan))
|
|
phyPLL |= AR_PHY_PLL_CTL_QUARTER;
|
|
}
|
|
if (IS_CHAN_OFDM(chan) && (IS_CHAN_CCK(chan) ||
|
|
IS_CHAN_G(chan)))
|
|
rfMode |= AR_PHY_MODE_DYNAMIC;
|
|
else if (IS_CHAN_OFDM(chan))
|
|
rfMode |= AR_PHY_MODE_OFDM;
|
|
else
|
|
rfMode |= AR_PHY_MODE_CCK;
|
|
if (IS_CHAN_5GHZ(chan))
|
|
rfMode |= AR_PHY_MODE_RF5GHZ;
|
|
else
|
|
rfMode |= AR_PHY_MODE_RF2GHZ;
|
|
turbo = IS_CHAN_TURBO(chan) ?
|
|
(AR_PHY_FC_TURBO_MODE | AR_PHY_FC_TURBO_SHORT) : 0;
|
|
curPhyPLL = OS_REG_READ(ah, AR_PHY_PLL_CTL);
|
|
/*
|
|
* PLL, Mode, and Turbo values must be written in the correct
|
|
* order to ensure:
|
|
* - The PLL cannot be set to 44 unless the CCK or DYNAMIC
|
|
* mode bit is set
|
|
* - Turbo cannot be set at the same time as CCK or DYNAMIC
|
|
*/
|
|
if (IS_CHAN_CCK(chan) || IS_CHAN_G(chan)) {
|
|
OS_REG_WRITE(ah, AR_PHY_TURBO, turbo);
|
|
OS_REG_WRITE(ah, AR_PHY_MODE, rfMode);
|
|
if (curPhyPLL != phyPLL) {
|
|
OS_REG_WRITE(ah, AR_PHY_PLL_CTL, phyPLL);
|
|
/* Wait for the PLL to settle */
|
|
OS_DELAY(PLL_SETTLE_DELAY);
|
|
}
|
|
} else {
|
|
if (curPhyPLL != phyPLL) {
|
|
OS_REG_WRITE(ah, AR_PHY_PLL_CTL, phyPLL);
|
|
/* Wait for the PLL to settle */
|
|
OS_DELAY(PLL_SETTLE_DELAY);
|
|
}
|
|
OS_REG_WRITE(ah, AR_PHY_TURBO, turbo);
|
|
OS_REG_WRITE(ah, AR_PHY_MODE, rfMode);
|
|
}
|
|
}
|
|
return AH_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Recalibrate the lower PHY chips to account for temperature/environment
|
|
* changes.
|
|
*/
|
|
HAL_BOOL
|
|
ar5212PerCalibrationN(struct ath_hal *ah, HAL_CHANNEL *chan, u_int chainMask,
|
|
HAL_BOOL longCal, HAL_BOOL *isCalDone)
|
|
{
|
|
#define IQ_CAL_TRIES 10
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
HAL_CHANNEL_INTERNAL *ichan;
|
|
int32_t qCoff, qCoffDenom;
|
|
int32_t iqCorrMeas, iCoff, iCoffDenom;
|
|
uint32_t powerMeasQ, powerMeasI;
|
|
HAL_BOOL ichan_isBmode = AH_FALSE;
|
|
HAL_BOOL isBmode = AH_FALSE;
|
|
|
|
OS_MARK(ah, AH_MARK_PERCAL, chan->channel);
|
|
*isCalDone = AH_FALSE;
|
|
ichan = ath_hal_checkchannel(ah, chan);
|
|
if (ichan == AH_NULL) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY,
|
|
"%s: invalid channel %u/0x%x; no mapping\n",
|
|
__func__, chan->channel, chan->channelFlags);
|
|
return AH_FALSE;
|
|
}
|
|
SAVE_CCK(ah, ichan, ichan_isBmode);
|
|
SAVE_CCK(ah, chan, isBmode);
|
|
|
|
if (ahp->ah_bIQCalibration == IQ_CAL_DONE ||
|
|
ahp->ah_bIQCalibration == IQ_CAL_INACTIVE)
|
|
*isCalDone = AH_TRUE;
|
|
|
|
/* IQ calibration in progress. Check to see if it has finished. */
|
|
if (ahp->ah_bIQCalibration == IQ_CAL_RUNNING &&
|
|
!(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) & AR_PHY_TIMING_CTRL4_DO_IQCAL)) {
|
|
int i;
|
|
|
|
/* IQ Calibration has finished. */
|
|
ahp->ah_bIQCalibration = IQ_CAL_INACTIVE;
|
|
*isCalDone = AH_TRUE;
|
|
|
|
/* workaround for misgated IQ Cal results */
|
|
i = 0;
|
|
do {
|
|
/* Read calibration results. */
|
|
powerMeasI = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_I);
|
|
powerMeasQ = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_Q);
|
|
iqCorrMeas = OS_REG_READ(ah, AR_PHY_IQCAL_RES_IQ_CORR_MEAS);
|
|
if (powerMeasI && powerMeasQ)
|
|
break;
|
|
/* Do we really need this??? */
|
|
OS_REG_WRITE (ah, AR_PHY_TIMING_CTRL4,
|
|
OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) |
|
|
AR_PHY_TIMING_CTRL4_DO_IQCAL);
|
|
} while (++i < IQ_CAL_TRIES);
|
|
|
|
/*
|
|
* Prescale these values to remove 64-bit operation
|
|
* requirement at the loss of a little precision.
|
|
*/
|
|
iCoffDenom = (powerMeasI / 2 + powerMeasQ / 2) / 128;
|
|
qCoffDenom = powerMeasQ / 128;
|
|
|
|
/* Protect against divide-by-0 and loss of sign bits. */
|
|
if (iCoffDenom != 0 && qCoffDenom >= 2) {
|
|
iCoff = (int8_t)(-iqCorrMeas) / iCoffDenom;
|
|
/* IQCORR_Q_I_COFF is a signed 6 bit number */
|
|
if (iCoff < -32) {
|
|
iCoff = -32;
|
|
} else if (iCoff > 31) {
|
|
iCoff = 31;
|
|
}
|
|
|
|
/* IQCORR_Q_Q_COFF is a signed 5 bit number */
|
|
qCoff = (powerMeasI / qCoffDenom) - 128;
|
|
if (qCoff < -16) {
|
|
qCoff = -16;
|
|
} else if (qCoff > 15) {
|
|
qCoff = 15;
|
|
}
|
|
|
|
HALDEBUG(ah, HAL_DEBUG_PERCAL,
|
|
"****************** MISGATED IQ CAL! *******************\n");
|
|
HALDEBUG(ah, HAL_DEBUG_PERCAL,
|
|
"time = %d, i = %d, \n", OS_GETUPTIME(ah), i);
|
|
HALDEBUG(ah, HAL_DEBUG_PERCAL,
|
|
"powerMeasI = 0x%08x\n", powerMeasI);
|
|
HALDEBUG(ah, HAL_DEBUG_PERCAL,
|
|
"powerMeasQ = 0x%08x\n", powerMeasQ);
|
|
HALDEBUG(ah, HAL_DEBUG_PERCAL,
|
|
"iqCorrMeas = 0x%08x\n", iqCorrMeas);
|
|
HALDEBUG(ah, HAL_DEBUG_PERCAL,
|
|
"iCoff = %d\n", iCoff);
|
|
HALDEBUG(ah, HAL_DEBUG_PERCAL,
|
|
"qCoff = %d\n", qCoff);
|
|
|
|
/* Write values and enable correction */
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
|
|
AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, iCoff);
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
|
|
AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, qCoff);
|
|
OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
|
|
AR_PHY_TIMING_CTRL4_IQCORR_ENABLE);
|
|
|
|
ahp->ah_bIQCalibration = IQ_CAL_DONE;
|
|
ichan->iqCalValid = AH_TRUE;
|
|
ichan->iCoff = iCoff;
|
|
ichan->qCoff = qCoff;
|
|
}
|
|
} else if (!IS_CHAN_B(chan) && ahp->ah_bIQCalibration == IQ_CAL_DONE &&
|
|
!ichan->iqCalValid) {
|
|
/*
|
|
* Start IQ calibration if configured channel has changed.
|
|
* Use a magic number of 15 based on default value.
|
|
*/
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
|
|
AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX,
|
|
INIT_IQCAL_LOG_COUNT_MAX);
|
|
OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
|
|
AR_PHY_TIMING_CTRL4_DO_IQCAL);
|
|
ahp->ah_bIQCalibration = IQ_CAL_RUNNING;
|
|
}
|
|
/* XXX EAR */
|
|
|
|
if (longCal) {
|
|
/* Check noise floor results */
|
|
ar5212GetNf(ah, ichan);
|
|
|
|
if ((ichan->channelFlags & CHANNEL_CW_INT) == 0) {
|
|
/* Perform cal for 5Ghz channels and any OFDM on 5112 */
|
|
if (IS_CHAN_5GHZ(chan) ||
|
|
(IS_RAD5112(ah) && IS_CHAN_OFDM(chan)))
|
|
ar5212RequestRfgain(ah);
|
|
} else {
|
|
/* report up and clear internal state */
|
|
chan->channelFlags |= CHANNEL_CW_INT;
|
|
ichan->channelFlags &= ~CHANNEL_CW_INT;
|
|
}
|
|
}
|
|
RESTORE_CCK(ah, ichan, ichan_isBmode);
|
|
RESTORE_CCK(ah, chan, isBmode);
|
|
|
|
return AH_TRUE;
|
|
#undef IQ_CAL_TRIES
|
|
}
|
|
|
|
HAL_BOOL
|
|
ar5212PerCalibration(struct ath_hal *ah, HAL_CHANNEL *chan, HAL_BOOL *isIQdone)
|
|
{
|
|
return ar5212PerCalibrationN(ah, chan, 0x1, AH_TRUE, isIQdone);
|
|
}
|
|
|
|
HAL_BOOL
|
|
ar5212ResetCalValid(struct ath_hal *ah, HAL_CHANNEL *chan)
|
|
{
|
|
/* XXX */
|
|
return AH_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Write the given reset bit mask into the reset register
|
|
*/
|
|
static HAL_BOOL
|
|
ar5212SetResetReg(struct ath_hal *ah, uint32_t resetMask)
|
|
{
|
|
uint32_t mask = resetMask ? resetMask : ~0;
|
|
HAL_BOOL rt;
|
|
|
|
/* XXX ar5212MacStop & co. */
|
|
|
|
if (AH_PRIVATE(ah)->ah_ispcie) {
|
|
resetMask &= ~AR_RC_PCI;
|
|
}
|
|
|
|
(void) OS_REG_READ(ah, AR_RXDP);/* flush any pending MMR writes */
|
|
OS_REG_WRITE(ah, AR_RC, resetMask);
|
|
OS_DELAY(15); /* need to wait at least 128 clocks
|
|
when reseting PCI before read */
|
|
mask &= (AR_RC_MAC | AR_RC_BB);
|
|
resetMask &= (AR_RC_MAC | AR_RC_BB);
|
|
rt = ath_hal_wait(ah, AR_RC, mask, resetMask);
|
|
if ((resetMask & AR_RC_MAC) == 0) {
|
|
if (isBigEndian()) {
|
|
/*
|
|
* Set CFG, little-endian for register
|
|
* and descriptor accesses.
|
|
*/
|
|
mask = INIT_CONFIG_STATUS | AR_CFG_SWRD | AR_CFG_SWRG;
|
|
#ifndef AH_NEED_DESC_SWAP
|
|
mask |= AR_CFG_SWTD;
|
|
#endif
|
|
OS_REG_WRITE(ah, AR_CFG, LE_READ_4(&mask));
|
|
} else
|
|
OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
|
|
if (ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
|
|
(void) OS_REG_READ(ah, AR_ISR_RAC);
|
|
}
|
|
|
|
/* track PHY power state so we don't try to r/w BB registers */
|
|
AH5212(ah)->ah_phyPowerOn = ((resetMask & AR_RC_BB) == 0);
|
|
return rt;
|
|
}
|
|
|
|
int16_t
|
|
ar5212GetNoiseFloor(struct ath_hal *ah)
|
|
{
|
|
int16_t nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
|
|
if (nf & 0x100)
|
|
nf = 0 - ((nf ^ 0x1ff) + 1);
|
|
return nf;
|
|
}
|
|
|
|
static HAL_BOOL
|
|
getNoiseFloorThresh(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *chan,
|
|
int16_t *nft)
|
|
{
|
|
const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
|
|
|
|
HALASSERT(ah->ah_magic == AR5212_MAGIC);
|
|
|
|
switch (chan->channelFlags & CHANNEL_ALL_NOTURBO) {
|
|
case CHANNEL_A:
|
|
*nft = ee->ee_noiseFloorThresh[headerInfo11A];
|
|
break;
|
|
case CHANNEL_B:
|
|
*nft = ee->ee_noiseFloorThresh[headerInfo11B];
|
|
break;
|
|
case CHANNEL_PUREG:
|
|
*nft = ee->ee_noiseFloorThresh[headerInfo11G];
|
|
break;
|
|
default:
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
|
|
__func__, chan->channelFlags);
|
|
return AH_FALSE;
|
|
}
|
|
return AH_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Setup the noise floor cal history buffer.
|
|
*/
|
|
void
|
|
ar5212InitNfCalHistBuffer(struct ath_hal *ah)
|
|
{
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
int i;
|
|
|
|
ahp->ah_nfCalHist.first_run = 1;
|
|
ahp->ah_nfCalHist.currIndex = 0;
|
|
ahp->ah_nfCalHist.privNF = AR5212_CCA_MAX_GOOD_VALUE;
|
|
ahp->ah_nfCalHist.invalidNFcount = AR512_NF_CAL_HIST_MAX;
|
|
for (i = 0; i < AR512_NF_CAL_HIST_MAX; i ++)
|
|
ahp->ah_nfCalHist.nfCalBuffer[i] = AR5212_CCA_MAX_GOOD_VALUE;
|
|
}
|
|
|
|
/*
|
|
* Add a noise floor value to the ring buffer.
|
|
*/
|
|
static __inline void
|
|
updateNFHistBuff(struct ar5212NfCalHist *h, int16_t nf)
|
|
{
|
|
h->nfCalBuffer[h->currIndex] = nf;
|
|
if (++h->currIndex >= AR512_NF_CAL_HIST_MAX)
|
|
h->currIndex = 0;
|
|
}
|
|
|
|
/*
|
|
* Return the median noise floor value in the ring buffer.
|
|
*/
|
|
int16_t
|
|
ar5212GetNfHistMid(const int16_t calData[AR512_NF_CAL_HIST_MAX])
|
|
{
|
|
int16_t sort[AR512_NF_CAL_HIST_MAX];
|
|
int i, j;
|
|
|
|
OS_MEMCPY(sort, calData, AR512_NF_CAL_HIST_MAX*sizeof(int16_t));
|
|
for (i = 0; i < AR512_NF_CAL_HIST_MAX-1; i ++) {
|
|
for (j = 1; j < AR512_NF_CAL_HIST_MAX-i; j ++) {
|
|
if (sort[j] > sort[j-1]) {
|
|
int16_t nf = sort[j];
|
|
sort[j] = sort[j-1];
|
|
sort[j-1] = nf;
|
|
}
|
|
}
|
|
}
|
|
return sort[(AR512_NF_CAL_HIST_MAX-1)>>1];
|
|
}
|
|
|
|
/*
|
|
* Read the NF and check it against the noise floor threshold
|
|
*/
|
|
int16_t
|
|
ar5212GetNf(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
|
|
{
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
struct ar5212NfCalHist *h = &ahp->ah_nfCalHist;
|
|
int16_t nf, nfThresh;
|
|
int32_t val;
|
|
|
|
if (OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY,
|
|
"%s: NF did not complete in calibration window\n", __func__);
|
|
chan->rawNoiseFloor = h->privNF; /* most recent value */
|
|
return chan->rawNoiseFloor;
|
|
}
|
|
|
|
/*
|
|
* Finished NF cal, check against threshold.
|
|
*/
|
|
nf = ar5212GetNoiseFloor(ah);
|
|
if (getNoiseFloorThresh(ah, chan, &nfThresh)) {
|
|
if (nf > nfThresh) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY,
|
|
"%s: noise floor failed detected; detected %u, "
|
|
"threshold %u\n", __func__, nf, nfThresh);
|
|
/*
|
|
* NB: Don't discriminate 2.4 vs 5Ghz, if this
|
|
* happens it indicates a problem regardless
|
|
* of the band.
|
|
*/
|
|
chan->channelFlags |= CHANNEL_CW_INT;
|
|
nf = 0;
|
|
}
|
|
} else
|
|
nf = 0;
|
|
|
|
/*
|
|
* Pass through histogram and write median value as
|
|
* calculated from the accrued window. We require a
|
|
* full window of in-range values to be seen before we
|
|
* start using the history.
|
|
*/
|
|
updateNFHistBuff(h, nf);
|
|
if (h->first_run) {
|
|
if (nf < AR5212_CCA_MIN_BAD_VALUE ||
|
|
nf > AR5212_CCA_MAX_HIGH_VALUE) {
|
|
nf = AR5212_CCA_MAX_GOOD_VALUE;
|
|
h->invalidNFcount = AR512_NF_CAL_HIST_MAX;
|
|
} else if (--(h->invalidNFcount) == 0) {
|
|
h->first_run = 0;
|
|
h->privNF = nf = ar5212GetNfHistMid(h->nfCalBuffer);
|
|
} else {
|
|
nf = AR5212_CCA_MAX_GOOD_VALUE;
|
|
}
|
|
} else {
|
|
h->privNF = nf = ar5212GetNfHistMid(h->nfCalBuffer);
|
|
}
|
|
|
|
val = OS_REG_READ(ah, AR_PHY(25));
|
|
val &= 0xFFFFFE00;
|
|
val |= (((uint32_t)nf << 1) & 0x1FF);
|
|
OS_REG_WRITE(ah, AR_PHY(25), val);
|
|
OS_REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
|
|
OS_REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
|
|
OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
|
|
|
|
if (!ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF, 0)) {
|
|
#ifdef AH_DEBUG
|
|
ath_hal_printf(ah, "%s: AGC not ready AGC_CONTROL 0x%x\n",
|
|
__func__, OS_REG_READ(ah, AR_PHY_AGC_CONTROL));
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Now load a high maxCCAPower value again so that we're
|
|
* not capped by the median we just loaded
|
|
*/
|
|
val &= 0xFFFFFE00;
|
|
val |= (((uint32_t)(-50) << 1) & 0x1FF);
|
|
OS_REG_WRITE(ah, AR_PHY(25), val);
|
|
OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
|
|
OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
|
|
OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
|
|
|
|
return (chan->rawNoiseFloor = nf);
|
|
}
|
|
|
|
/*
|
|
* Set up compression configuration registers
|
|
*/
|
|
void
|
|
ar5212SetCompRegs(struct ath_hal *ah)
|
|
{
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
int i;
|
|
|
|
/* Check if h/w supports compression */
|
|
if (!AH_PRIVATE(ah)->ah_caps.halCompressSupport)
|
|
return;
|
|
|
|
OS_REG_WRITE(ah, AR_DCCFG, 1);
|
|
|
|
OS_REG_WRITE(ah, AR_CCFG,
|
|
(AR_COMPRESSION_WINDOW_SIZE >> 8) & AR_CCFG_WIN_M);
|
|
|
|
OS_REG_WRITE(ah, AR_CCFG,
|
|
OS_REG_READ(ah, AR_CCFG) | AR_CCFG_MIB_INT_EN);
|
|
OS_REG_WRITE(ah, AR_CCUCFG,
|
|
AR_CCUCFG_RESET_VAL | AR_CCUCFG_CATCHUP_EN);
|
|
|
|
OS_REG_WRITE(ah, AR_CPCOVF, 0);
|
|
|
|
/* reset decompression mask */
|
|
for (i = 0; i < HAL_DECOMP_MASK_SIZE; i++) {
|
|
OS_REG_WRITE(ah, AR_DCM_A, i);
|
|
OS_REG_WRITE(ah, AR_DCM_D, ahp->ah_decompMask[i]);
|
|
}
|
|
}
|
|
|
|
HAL_BOOL
|
|
ar5212SetAntennaSwitchInternal(struct ath_hal *ah, HAL_ANT_SETTING settings,
|
|
const HAL_CHANNEL_INTERNAL *chan)
|
|
{
|
|
#define ANT_SWITCH_TABLE1 AR_PHY(88)
|
|
#define ANT_SWITCH_TABLE2 AR_PHY(89)
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
|
|
uint32_t antSwitchA, antSwitchB;
|
|
int ix;
|
|
HAL_BOOL isBmode = AH_FALSE;
|
|
/* NB: need local copy for SAVE/RESTORE 'cuz chan is const */
|
|
HAL_CHANNEL_INTERNAL ichan = *chan;
|
|
|
|
HALASSERT(ah->ah_magic == AR5212_MAGIC);
|
|
HALASSERT(ahp->ah_phyPowerOn);
|
|
|
|
SAVE_CCK(ah, &ichan, isBmode);
|
|
switch (ichan.channelFlags & CHANNEL_ALL_NOTURBO) {
|
|
case CHANNEL_A: ix = 0; break;
|
|
case CHANNEL_B: ix = 1; break;
|
|
case CHANNEL_PUREG: ix = 2; break;
|
|
default:
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
|
|
__func__, ichan.channelFlags);
|
|
RESTORE_CCK(ah, &ichan, isBmode);
|
|
return AH_FALSE;
|
|
}
|
|
RESTORE_CCK(ah, &ichan, isBmode);
|
|
|
|
antSwitchA = ee->ee_antennaControl[1][ix]
|
|
| (ee->ee_antennaControl[2][ix] << 6)
|
|
| (ee->ee_antennaControl[3][ix] << 12)
|
|
| (ee->ee_antennaControl[4][ix] << 18)
|
|
| (ee->ee_antennaControl[5][ix] << 24)
|
|
;
|
|
antSwitchB = ee->ee_antennaControl[6][ix]
|
|
| (ee->ee_antennaControl[7][ix] << 6)
|
|
| (ee->ee_antennaControl[8][ix] << 12)
|
|
| (ee->ee_antennaControl[9][ix] << 18)
|
|
| (ee->ee_antennaControl[10][ix] << 24)
|
|
;
|
|
/*
|
|
* For fixed antenna, give the same setting for both switch banks
|
|
*/
|
|
switch (settings) {
|
|
case HAL_ANT_FIXED_A:
|
|
antSwitchB = antSwitchA;
|
|
break;
|
|
case HAL_ANT_FIXED_B:
|
|
antSwitchA = antSwitchB;
|
|
break;
|
|
case HAL_ANT_VARIABLE:
|
|
break;
|
|
default:
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad antenna setting %u\n",
|
|
__func__, settings);
|
|
return AH_FALSE;
|
|
}
|
|
if (antSwitchB == antSwitchA) {
|
|
HALDEBUG(ah, HAL_DEBUG_RFPARAM,
|
|
"%s: Setting fast diversity off.\n", __func__);
|
|
OS_REG_CLR_BIT(ah,AR_PHY_CCK_DETECT,
|
|
AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
|
|
ahp->ah_diversity = AH_FALSE;
|
|
} else {
|
|
HALDEBUG(ah, HAL_DEBUG_RFPARAM,
|
|
"%s: Setting fast diversity on.\n", __func__);
|
|
OS_REG_SET_BIT(ah,AR_PHY_CCK_DETECT,
|
|
AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
|
|
ahp->ah_diversity = AH_TRUE;
|
|
}
|
|
ahp->ah_antControl = settings;
|
|
|
|
OS_REG_WRITE(ah, ANT_SWITCH_TABLE1, antSwitchA);
|
|
OS_REG_WRITE(ah, ANT_SWITCH_TABLE2, antSwitchB);
|
|
|
|
return AH_TRUE;
|
|
#undef ANT_SWITCH_TABLE2
|
|
#undef ANT_SWITCH_TABLE1
|
|
}
|
|
|
|
HAL_BOOL
|
|
ar5212IsSpurChannel(struct ath_hal *ah, HAL_CHANNEL *chan)
|
|
{
|
|
uint32_t clockFreq =
|
|
((IS_5413(ah) || IS_RAD5112_ANY(ah) || IS_2417(ah)) ? 40 : 32);
|
|
return ( ((chan->channel % clockFreq) != 0)
|
|
&& (((chan->channel % clockFreq) < 10)
|
|
|| (((chan->channel) % clockFreq) > 22)) );
|
|
}
|
|
|
|
/*
|
|
* Read EEPROM header info and program the device for correct operation
|
|
* given the channel value.
|
|
*/
|
|
HAL_BOOL
|
|
ar5212SetBoardValues(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
|
|
{
|
|
#define NO_FALSE_DETECT_BACKOFF 2
|
|
#define CB22_FALSE_DETECT_BACKOFF 6
|
|
#define AR_PHY_BIS(_ah, _reg, _mask, _val) \
|
|
OS_REG_WRITE(_ah, AR_PHY(_reg), \
|
|
(OS_REG_READ(_ah, AR_PHY(_reg)) & _mask) | (_val));
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
|
|
int arrayMode, falseDectectBackoff;
|
|
int is2GHz = IS_CHAN_2GHZ(chan);
|
|
int8_t adcDesiredSize, pgaDesiredSize;
|
|
uint16_t switchSettling, txrxAtten, rxtxMargin;
|
|
int iCoff, qCoff;
|
|
|
|
HALASSERT(ah->ah_magic == AR5212_MAGIC);
|
|
|
|
switch (chan->channelFlags & CHANNEL_ALL) {
|
|
case CHANNEL_A:
|
|
case CHANNEL_T:
|
|
arrayMode = headerInfo11A;
|
|
if (!IS_RAD5112_ANY(ah) && !IS_2413(ah) && !IS_5413(ah))
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
|
|
AR_PHY_FRAME_CTL_TX_CLIP,
|
|
ahp->ah_gainValues.currStep->paramVal[GP_TXCLIP]);
|
|
break;
|
|
case CHANNEL_B:
|
|
arrayMode = headerInfo11B;
|
|
break;
|
|
case CHANNEL_G:
|
|
case CHANNEL_108G:
|
|
arrayMode = headerInfo11G;
|
|
break;
|
|
default:
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
|
|
__func__, chan->channelFlags);
|
|
return AH_FALSE;
|
|
}
|
|
|
|
/* Set the antenna register(s) correctly for the chip revision */
|
|
AR_PHY_BIS(ah, 68, 0xFFFFFC06,
|
|
(ee->ee_antennaControl[0][arrayMode] << 4) | 0x1);
|
|
|
|
ar5212SetAntennaSwitchInternal(ah, ahp->ah_antControl, chan);
|
|
|
|
/* Set the Noise Floor Thresh on ar5211 devices */
|
|
OS_REG_WRITE(ah, AR_PHY(90),
|
|
(ee->ee_noiseFloorThresh[arrayMode] & 0x1FF)
|
|
| (1 << 9));
|
|
|
|
if (ee->ee_version >= AR_EEPROM_VER5_0 && IS_CHAN_TURBO(chan)) {
|
|
switchSettling = ee->ee_switchSettlingTurbo[is2GHz];
|
|
adcDesiredSize = ee->ee_adcDesiredSizeTurbo[is2GHz];
|
|
pgaDesiredSize = ee->ee_pgaDesiredSizeTurbo[is2GHz];
|
|
txrxAtten = ee->ee_txrxAttenTurbo[is2GHz];
|
|
rxtxMargin = ee->ee_rxtxMarginTurbo[is2GHz];
|
|
} else {
|
|
switchSettling = ee->ee_switchSettling[arrayMode];
|
|
adcDesiredSize = ee->ee_adcDesiredSize[arrayMode];
|
|
pgaDesiredSize = ee->ee_pgaDesiredSize[is2GHz];
|
|
txrxAtten = ee->ee_txrxAtten[is2GHz];
|
|
rxtxMargin = ee->ee_rxtxMargin[is2GHz];
|
|
}
|
|
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING,
|
|
AR_PHY_SETTLING_SWITCH, switchSettling);
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
|
|
AR_PHY_DESIRED_SZ_ADC, adcDesiredSize);
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
|
|
AR_PHY_DESIRED_SZ_PGA, pgaDesiredSize);
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
|
|
AR_PHY_RXGAIN_TXRX_ATTEN, txrxAtten);
|
|
OS_REG_WRITE(ah, AR_PHY(13),
|
|
(ee->ee_txEndToXPAOff[arrayMode] << 24)
|
|
| (ee->ee_txEndToXPAOff[arrayMode] << 16)
|
|
| (ee->ee_txFrameToXPAOn[arrayMode] << 8)
|
|
| ee->ee_txFrameToXPAOn[arrayMode]);
|
|
AR_PHY_BIS(ah, 10, 0xFFFF00FF,
|
|
ee->ee_txEndToXLNAOn[arrayMode] << 8);
|
|
AR_PHY_BIS(ah, 25, 0xFFF80FFF,
|
|
(ee->ee_thresh62[arrayMode] << 12) & 0x7F000);
|
|
|
|
/*
|
|
* False detect backoff - suspected 32 MHz spur causes false
|
|
* detects in OFDM, causing Tx Hangs. Decrease weak signal
|
|
* sensitivity for this card.
|
|
*/
|
|
falseDectectBackoff = NO_FALSE_DETECT_BACKOFF;
|
|
if (ee->ee_version < AR_EEPROM_VER3_3) {
|
|
/* XXX magic number */
|
|
if (AH_PRIVATE(ah)->ah_subvendorid == 0x1022 &&
|
|
IS_CHAN_OFDM(chan))
|
|
falseDectectBackoff += CB22_FALSE_DETECT_BACKOFF;
|
|
} else {
|
|
if (ar5212IsSpurChannel(ah, (HAL_CHANNEL *)chan)) {
|
|
falseDectectBackoff += ee->ee_falseDetectBackoff[arrayMode];
|
|
}
|
|
}
|
|
AR_PHY_BIS(ah, 73, 0xFFFFFF01, (falseDectectBackoff << 1) & 0xFE);
|
|
|
|
if (chan->iqCalValid) {
|
|
iCoff = chan->iCoff;
|
|
qCoff = chan->qCoff;
|
|
} else {
|
|
iCoff = ee->ee_iqCalI[is2GHz];
|
|
qCoff = ee->ee_iqCalQ[is2GHz];
|
|
}
|
|
|
|
/* write previous IQ results */
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
|
|
AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, iCoff);
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
|
|
AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, qCoff);
|
|
OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
|
|
AR_PHY_TIMING_CTRL4_IQCORR_ENABLE);
|
|
|
|
if (ee->ee_version >= AR_EEPROM_VER4_1) {
|
|
if (!IS_CHAN_108G(chan) || ee->ee_version >= AR_EEPROM_VER5_0)
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
|
|
AR_PHY_GAIN_2GHZ_RXTX_MARGIN, rxtxMargin);
|
|
}
|
|
if (ee->ee_version >= AR_EEPROM_VER5_1) {
|
|
/* for now always disabled */
|
|
OS_REG_WRITE(ah, AR_PHY_HEAVY_CLIP_ENABLE, 0);
|
|
}
|
|
|
|
return AH_TRUE;
|
|
#undef AR_PHY_BIS
|
|
#undef NO_FALSE_DETECT_BACKOFF
|
|
#undef CB22_FALSE_DETECT_BACKOFF
|
|
}
|
|
|
|
/*
|
|
* Apply Spur Immunity to Boards that require it.
|
|
* Applies only to OFDM RX operation.
|
|
*/
|
|
|
|
void
|
|
ar5212SetSpurMitigation(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *ichan)
|
|
{
|
|
uint32_t pilotMask[2] = {0, 0}, binMagMask[4] = {0, 0, 0 , 0};
|
|
uint16_t i, finalSpur, curChanAsSpur, binWidth = 0, spurDetectWidth, spurChan;
|
|
int32_t spurDeltaPhase = 0, spurFreqSd = 0, spurOffset, binOffsetNumT16, curBinOffset;
|
|
int16_t numBinOffsets;
|
|
static const uint16_t magMapFor4[4] = {1, 2, 2, 1};
|
|
static const uint16_t magMapFor3[3] = {1, 2, 1};
|
|
const uint16_t *pMagMap;
|
|
HAL_BOOL is2GHz = IS_CHAN_2GHZ(ichan);
|
|
uint32_t val;
|
|
|
|
#define CHAN_TO_SPUR(_f, _freq) ( ((_freq) - ((_f) ? 2300 : 4900)) * 10 )
|
|
if (IS_2417(ah)) {
|
|
HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: no spur mitigation\n",
|
|
__func__);
|
|
return;
|
|
}
|
|
|
|
curChanAsSpur = CHAN_TO_SPUR(is2GHz, ichan->channel);
|
|
|
|
if (ichan->mainSpur) {
|
|
/* Pull out the saved spur value */
|
|
finalSpur = ichan->mainSpur;
|
|
} else {
|
|
/*
|
|
* Check if spur immunity should be performed for this channel
|
|
* Should only be performed once per channel and then saved
|
|
*/
|
|
finalSpur = AR_NO_SPUR;
|
|
spurDetectWidth = HAL_SPUR_CHAN_WIDTH;
|
|
if (IS_CHAN_TURBO(ichan))
|
|
spurDetectWidth *= 2;
|
|
|
|
/* Decide if any spur affects the current channel */
|
|
for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
|
|
spurChan = ath_hal_getSpurChan(ah, i, is2GHz);
|
|
if (spurChan == AR_NO_SPUR) {
|
|
break;
|
|
}
|
|
if ((curChanAsSpur - spurDetectWidth <= (spurChan & HAL_SPUR_VAL_MASK)) &&
|
|
(curChanAsSpur + spurDetectWidth >= (spurChan & HAL_SPUR_VAL_MASK))) {
|
|
finalSpur = spurChan & HAL_SPUR_VAL_MASK;
|
|
break;
|
|
}
|
|
}
|
|
/* Save detected spur (or no spur) for this channel */
|
|
ichan->mainSpur = finalSpur;
|
|
}
|
|
|
|
/* Write spur immunity data */
|
|
if (finalSpur == AR_NO_SPUR) {
|
|
/* Disable Spur Immunity Regs if they appear set */
|
|
if (OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) & AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER) {
|
|
/* Clear Spur Delta Phase, Spur Freq, and enable bits */
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_MASK_CTL, AR_PHY_MASK_CTL_RATE, 0);
|
|
val = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4);
|
|
val &= ~(AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
|
|
AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
|
|
AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
|
|
OS_REG_WRITE(ah, AR_PHY_MASK_CTL, val);
|
|
OS_REG_WRITE(ah, AR_PHY_TIMING11, 0);
|
|
|
|
/* Clear pilot masks */
|
|
OS_REG_WRITE(ah, AR_PHY_TIMING7, 0);
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_TIMING8, AR_PHY_TIMING8_PILOT_MASK_2, 0);
|
|
OS_REG_WRITE(ah, AR_PHY_TIMING9, 0);
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_TIMING10, AR_PHY_TIMING10_PILOT_MASK_2, 0);
|
|
|
|
/* Clear magnitude masks */
|
|
OS_REG_WRITE(ah, AR_PHY_BIN_MASK_1, 0);
|
|
OS_REG_WRITE(ah, AR_PHY_BIN_MASK_2, 0);
|
|
OS_REG_WRITE(ah, AR_PHY_BIN_MASK_3, 0);
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_MASK_CTL, AR_PHY_MASK_CTL_MASK_4, 0);
|
|
OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_1, 0);
|
|
OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_2, 0);
|
|
OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_3, 0);
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_BIN_MASK2_4, AR_PHY_BIN_MASK2_4_MASK_4, 0);
|
|
}
|
|
} else {
|
|
spurOffset = finalSpur - curChanAsSpur;
|
|
/*
|
|
* Spur calculations:
|
|
* spurDeltaPhase is (spurOffsetIn100KHz / chipFrequencyIn100KHz) << 21
|
|
* spurFreqSd is (spurOffsetIn100KHz / sampleFrequencyIn100KHz) << 11
|
|
*/
|
|
switch (ichan->channelFlags & CHANNEL_ALL) {
|
|
case CHANNEL_A: /* Chip Frequency & sampleFrequency are 40 MHz */
|
|
spurDeltaPhase = (spurOffset << 17) / 25;
|
|
spurFreqSd = spurDeltaPhase >> 10;
|
|
binWidth = HAL_BIN_WIDTH_BASE_100HZ;
|
|
break;
|
|
case CHANNEL_G: /* Chip Frequency is 44MHz, sampleFrequency is 40 MHz */
|
|
spurFreqSd = (spurOffset << 8) / 55;
|
|
spurDeltaPhase = (spurOffset << 17) / 25;
|
|
binWidth = HAL_BIN_WIDTH_BASE_100HZ;
|
|
break;
|
|
case CHANNEL_T: /* Chip Frequency & sampleFrequency are 80 MHz */
|
|
case CHANNEL_108G:
|
|
spurDeltaPhase = (spurOffset << 16) / 25;
|
|
spurFreqSd = spurDeltaPhase >> 10;
|
|
binWidth = HAL_BIN_WIDTH_TURBO_100HZ;
|
|
break;
|
|
}
|
|
|
|
/* Compute Pilot Mask */
|
|
binOffsetNumT16 = ((spurOffset * 1000) << 4) / binWidth;
|
|
/* The spur is on a bin if it's remainder at times 16 is 0 */
|
|
if (binOffsetNumT16 & 0xF) {
|
|
numBinOffsets = 4;
|
|
pMagMap = magMapFor4;
|
|
} else {
|
|
numBinOffsets = 3;
|
|
pMagMap = magMapFor3;
|
|
}
|
|
for (i = 0; i < numBinOffsets; i++) {
|
|
if ((binOffsetNumT16 >> 4) > HAL_MAX_BINS_ALLOWED) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY,
|
|
"Too man bins in spur mitigation\n");
|
|
return;
|
|
}
|
|
|
|
/* Get Pilot Mask values */
|
|
curBinOffset = (binOffsetNumT16 >> 4) + i + 25;
|
|
if ((curBinOffset >= 0) && (curBinOffset <= 32)) {
|
|
if (curBinOffset <= 25)
|
|
pilotMask[0] |= 1 << curBinOffset;
|
|
else if (curBinOffset >= 27)
|
|
pilotMask[0] |= 1 << (curBinOffset - 1);
|
|
} else if ((curBinOffset >= 33) && (curBinOffset <= 52))
|
|
pilotMask[1] |= 1 << (curBinOffset - 33);
|
|
|
|
/* Get viterbi values */
|
|
if ((curBinOffset >= -1) && (curBinOffset <= 14))
|
|
binMagMask[0] |= pMagMap[i] << (curBinOffset + 1) * 2;
|
|
else if ((curBinOffset >= 15) && (curBinOffset <= 30))
|
|
binMagMask[1] |= pMagMap[i] << (curBinOffset - 15) * 2;
|
|
else if ((curBinOffset >= 31) && (curBinOffset <= 46))
|
|
binMagMask[2] |= pMagMap[i] << (curBinOffset -31) * 2;
|
|
else if((curBinOffset >= 47) && (curBinOffset <= 53))
|
|
binMagMask[3] |= pMagMap[i] << (curBinOffset -47) * 2;
|
|
}
|
|
|
|
/* Write Spur Delta Phase, Spur Freq, and enable bits */
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_MASK_CTL, AR_PHY_MASK_CTL_RATE, 0xFF);
|
|
val = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4);
|
|
val |= (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
|
|
AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
|
|
AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
|
|
OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4, val);
|
|
OS_REG_WRITE(ah, AR_PHY_TIMING11, AR_PHY_TIMING11_USE_SPUR_IN_AGC |
|
|
SM(spurFreqSd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
|
|
SM(spurDeltaPhase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
|
|
|
|
/* Write pilot masks */
|
|
OS_REG_WRITE(ah, AR_PHY_TIMING7, pilotMask[0]);
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_TIMING8, AR_PHY_TIMING8_PILOT_MASK_2, pilotMask[1]);
|
|
OS_REG_WRITE(ah, AR_PHY_TIMING9, pilotMask[0]);
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_TIMING10, AR_PHY_TIMING10_PILOT_MASK_2, pilotMask[1]);
|
|
|
|
/* Write magnitude masks */
|
|
OS_REG_WRITE(ah, AR_PHY_BIN_MASK_1, binMagMask[0]);
|
|
OS_REG_WRITE(ah, AR_PHY_BIN_MASK_2, binMagMask[1]);
|
|
OS_REG_WRITE(ah, AR_PHY_BIN_MASK_3, binMagMask[2]);
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_MASK_CTL, AR_PHY_MASK_CTL_MASK_4, binMagMask[3]);
|
|
OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_1, binMagMask[0]);
|
|
OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_2, binMagMask[1]);
|
|
OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_3, binMagMask[2]);
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_BIN_MASK2_4, AR_PHY_BIN_MASK2_4_MASK_4, binMagMask[3]);
|
|
}
|
|
#undef CHAN_TO_SPUR
|
|
}
|
|
|
|
|
|
/*
|
|
* Delta slope coefficient computation.
|
|
* Required for OFDM operation.
|
|
*/
|
|
void
|
|
ar5212SetDeltaSlope(struct ath_hal *ah, HAL_CHANNEL *chan)
|
|
{
|
|
#define COEF_SCALE_S 24
|
|
#define INIT_CLOCKMHZSCALED 0x64000000
|
|
unsigned long coef_scaled, coef_exp, coef_man, ds_coef_exp, ds_coef_man;
|
|
unsigned long clockMhzScaled = INIT_CLOCKMHZSCALED;
|
|
|
|
if (IS_CHAN_TURBO(chan))
|
|
clockMhzScaled *= 2;
|
|
/* half and quarter rate can divide the scaled clock by 2 or 4 respectively */
|
|
/* scale for selected channel bandwidth */
|
|
if (IS_CHAN_HALF_RATE(chan)) {
|
|
clockMhzScaled = clockMhzScaled >> 1;
|
|
} else if (IS_CHAN_QUARTER_RATE(chan)) {
|
|
clockMhzScaled = clockMhzScaled >> 2;
|
|
}
|
|
|
|
/*
|
|
* ALGO -> coef = 1e8/fcarrier*fclock/40;
|
|
* scaled coef to provide precision for this floating calculation
|
|
*/
|
|
coef_scaled = clockMhzScaled / chan->channel;
|
|
|
|
/*
|
|
* ALGO -> coef_exp = 14-floor(log2(coef));
|
|
* floor(log2(x)) is the highest set bit position
|
|
*/
|
|
for (coef_exp = 31; coef_exp > 0; coef_exp--)
|
|
if ((coef_scaled >> coef_exp) & 0x1)
|
|
break;
|
|
/* A coef_exp of 0 is a legal bit position but an unexpected coef_exp */
|
|
HALASSERT(coef_exp);
|
|
coef_exp = 14 - (coef_exp - COEF_SCALE_S);
|
|
|
|
/*
|
|
* ALGO -> coef_man = floor(coef* 2^coef_exp+0.5);
|
|
* The coefficient is already shifted up for scaling
|
|
*/
|
|
coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
|
|
ds_coef_man = coef_man >> (COEF_SCALE_S - coef_exp);
|
|
ds_coef_exp = coef_exp - 16;
|
|
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
|
|
AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
|
|
AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
|
|
#undef INIT_CLOCKMHZSCALED
|
|
#undef COEF_SCALE_S
|
|
}
|
|
|
|
/*
|
|
* Set a limit on the overall output power. Used for dynamic
|
|
* transmit power control and the like.
|
|
*
|
|
* NB: limit is in units of 0.5 dbM.
|
|
*/
|
|
HAL_BOOL
|
|
ar5212SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
|
|
{
|
|
uint16_t dummyXpdGains[2];
|
|
HAL_BOOL ret, isBmode = AH_FALSE;
|
|
|
|
SAVE_CCK(ah, AH_PRIVATE(ah)->ah_curchan, isBmode);
|
|
AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER);
|
|
ret = ar5212SetTransmitPower(ah, AH_PRIVATE(ah)->ah_curchan,
|
|
dummyXpdGains);
|
|
RESTORE_CCK(ah, AH_PRIVATE(ah)->ah_curchan, isBmode);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Set the transmit power in the baseband for the given
|
|
* operating channel and mode.
|
|
*/
|
|
HAL_BOOL
|
|
ar5212SetTransmitPower(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan,
|
|
uint16_t *rfXpdGain)
|
|
{
|
|
#define POW_OFDM(_r, _s) (((0 & 1)<< ((_s)+6)) | (((_r) & 0x3f) << (_s)))
|
|
#define POW_CCK(_r, _s) (((_r) & 0x3f) << (_s))
|
|
#define N(a) (sizeof (a) / sizeof (a[0]))
|
|
static const uint16_t tpcScaleReductionTable[5] =
|
|
{ 0, 3, 6, 9, MAX_RATE_POWER };
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
|
|
int16_t minPower, maxPower, tpcInDb, powerLimit;
|
|
int i;
|
|
|
|
HALASSERT(ah->ah_magic == AR5212_MAGIC);
|
|
|
|
OS_MEMZERO(ahp->ah_pcdacTable, ahp->ah_pcdacTableSize);
|
|
OS_MEMZERO(ahp->ah_ratesArray, sizeof(ahp->ah_ratesArray));
|
|
|
|
powerLimit = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
|
|
if (powerLimit >= MAX_RATE_POWER || powerLimit == 0)
|
|
tpcInDb = tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale];
|
|
else
|
|
tpcInDb = 0;
|
|
if (!ar5212SetRateTable(ah, (HAL_CHANNEL *) chan, tpcInDb, powerLimit,
|
|
AH_TRUE, &minPower, &maxPower)) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set rate table\n",
|
|
__func__);
|
|
return AH_FALSE;
|
|
}
|
|
if (!ahp->ah_rfHal->setPowerTable(ah,
|
|
&minPower, &maxPower, chan, rfXpdGain)) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n",
|
|
__func__);
|
|
return AH_FALSE;
|
|
}
|
|
|
|
/*
|
|
* Adjust XR power/rate up by 2 dB to account for greater peak
|
|
* to avg ratio - except in newer avg power designs
|
|
*/
|
|
if (!IS_2413(ah) && !IS_5413(ah))
|
|
ahp->ah_ratesArray[15] += 4;
|
|
/*
|
|
* txPowerIndexOffset is set by the SetPowerTable() call -
|
|
* adjust the rate table
|
|
*/
|
|
for (i = 0; i < N(ahp->ah_ratesArray); i++) {
|
|
ahp->ah_ratesArray[i] += ahp->ah_txPowerIndexOffset;
|
|
if (ahp->ah_ratesArray[i] > 63)
|
|
ahp->ah_ratesArray[i] = 63;
|
|
}
|
|
|
|
if (ee->ee_eepMap < 2) {
|
|
/*
|
|
* Correct gain deltas for 5212 G operation -
|
|
* Removed with revised chipset
|
|
*/
|
|
if (AH_PRIVATE(ah)->ah_phyRev < AR_PHY_CHIP_ID_REV_2 &&
|
|
IS_CHAN_G(chan)) {
|
|
uint16_t cckOfdmPwrDelta;
|
|
|
|
if (chan->channel == 2484)
|
|
cckOfdmPwrDelta = SCALE_OC_DELTA(
|
|
ee->ee_cckOfdmPwrDelta -
|
|
ee->ee_scaledCh14FilterCckDelta);
|
|
else
|
|
cckOfdmPwrDelta = SCALE_OC_DELTA(
|
|
ee->ee_cckOfdmPwrDelta);
|
|
ar5212CorrectGainDelta(ah, cckOfdmPwrDelta);
|
|
}
|
|
/*
|
|
* Finally, write the power values into the
|
|
* baseband power table
|
|
*/
|
|
for (i = 0; i < (PWR_TABLE_SIZE/2); i++) {
|
|
OS_REG_WRITE(ah, AR_PHY_PCDAC_TX_POWER(i),
|
|
((((ahp->ah_pcdacTable[2*i + 1] << 8) | 0xff) & 0xffff) << 16)
|
|
| (((ahp->ah_pcdacTable[2*i] << 8) | 0xff) & 0xffff)
|
|
);
|
|
}
|
|
}
|
|
|
|
/* Write the OFDM power per rate set */
|
|
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
|
|
POW_OFDM(ahp->ah_ratesArray[3], 24)
|
|
| POW_OFDM(ahp->ah_ratesArray[2], 16)
|
|
| POW_OFDM(ahp->ah_ratesArray[1], 8)
|
|
| POW_OFDM(ahp->ah_ratesArray[0], 0)
|
|
);
|
|
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
|
|
POW_OFDM(ahp->ah_ratesArray[7], 24)
|
|
| POW_OFDM(ahp->ah_ratesArray[6], 16)
|
|
| POW_OFDM(ahp->ah_ratesArray[5], 8)
|
|
| POW_OFDM(ahp->ah_ratesArray[4], 0)
|
|
);
|
|
|
|
/* Write the CCK power per rate set */
|
|
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
|
|
POW_CCK(ahp->ah_ratesArray[10], 24)
|
|
| POW_CCK(ahp->ah_ratesArray[9], 16)
|
|
| POW_CCK(ahp->ah_ratesArray[15], 8) /* XR target power */
|
|
| POW_CCK(ahp->ah_ratesArray[8], 0)
|
|
);
|
|
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
|
|
POW_CCK(ahp->ah_ratesArray[14], 24)
|
|
| POW_CCK(ahp->ah_ratesArray[13], 16)
|
|
| POW_CCK(ahp->ah_ratesArray[12], 8)
|
|
| POW_CCK(ahp->ah_ratesArray[11], 0)
|
|
);
|
|
|
|
/*
|
|
* Set max power to 30 dBm and, optionally,
|
|
* enable TPC in tx descriptors.
|
|
*/
|
|
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, MAX_RATE_POWER |
|
|
(ahp->ah_tpcEnabled ? AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE : 0));
|
|
|
|
return AH_TRUE;
|
|
#undef N
|
|
#undef POW_CCK
|
|
#undef POW_OFDM
|
|
}
|
|
|
|
/*
|
|
* Sets the transmit power in the baseband for the given
|
|
* operating channel and mode.
|
|
*/
|
|
static HAL_BOOL
|
|
ar5212SetRateTable(struct ath_hal *ah, HAL_CHANNEL *chan,
|
|
int16_t tpcScaleReduction, int16_t powerLimit, HAL_BOOL commit,
|
|
int16_t *pMinPower, int16_t *pMaxPower)
|
|
{
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
|
|
uint16_t *rpow = ahp->ah_ratesArray;
|
|
uint16_t twiceMaxEdgePower = MAX_RATE_POWER;
|
|
uint16_t twiceMaxEdgePowerCck = MAX_RATE_POWER;
|
|
uint16_t twiceMaxRDPower = MAX_RATE_POWER;
|
|
int i;
|
|
uint8_t cfgCtl;
|
|
int8_t twiceAntennaGain, twiceAntennaReduction;
|
|
const RD_EDGES_POWER *rep;
|
|
TRGT_POWER_INFO targetPowerOfdm, targetPowerCck;
|
|
int16_t scaledPower, maxAvailPower = 0;
|
|
int16_t r13, r9, r7, r0;
|
|
|
|
HALASSERT(ah->ah_magic == AR5212_MAGIC);
|
|
|
|
twiceMaxRDPower = chan->maxRegTxPower * 2;
|
|
*pMaxPower = -MAX_RATE_POWER;
|
|
*pMinPower = MAX_RATE_POWER;
|
|
|
|
/* Get conformance test limit maximum for this channel */
|
|
cfgCtl = ath_hal_getctl(ah, chan);
|
|
for (i = 0; i < ee->ee_numCtls; i++) {
|
|
uint16_t twiceMinEdgePower;
|
|
|
|
if (ee->ee_ctl[i] == 0)
|
|
continue;
|
|
if (ee->ee_ctl[i] == cfgCtl ||
|
|
cfgCtl == ((ee->ee_ctl[i] & CTL_MODE_M) | SD_NO_CTL)) {
|
|
rep = &ee->ee_rdEdgesPower[i * NUM_EDGES];
|
|
twiceMinEdgePower = ar5212GetMaxEdgePower(chan->channel, rep);
|
|
if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
|
|
/* Find the minimum of all CTL edge powers that apply to this channel */
|
|
twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
|
|
} else {
|
|
twiceMaxEdgePower = twiceMinEdgePower;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (IS_CHAN_G(chan)) {
|
|
/* Check for a CCK CTL for 11G CCK powers */
|
|
cfgCtl = (cfgCtl & ~CTL_MODE_M) | CTL_11B;
|
|
for (i = 0; i < ee->ee_numCtls; i++) {
|
|
uint16_t twiceMinEdgePowerCck;
|
|
|
|
if (ee->ee_ctl[i] == 0)
|
|
continue;
|
|
if (ee->ee_ctl[i] == cfgCtl ||
|
|
cfgCtl == ((ee->ee_ctl[i] & CTL_MODE_M) | SD_NO_CTL)) {
|
|
rep = &ee->ee_rdEdgesPower[i * NUM_EDGES];
|
|
twiceMinEdgePowerCck = ar5212GetMaxEdgePower(chan->channel, rep);
|
|
if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
|
|
/* Find the minimum of all CTL edge powers that apply to this channel */
|
|
twiceMaxEdgePowerCck = AH_MIN(twiceMaxEdgePowerCck, twiceMinEdgePowerCck);
|
|
} else {
|
|
twiceMaxEdgePowerCck = twiceMinEdgePowerCck;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
/* Set the 11B cck edge power to the one found before */
|
|
twiceMaxEdgePowerCck = twiceMaxEdgePower;
|
|
}
|
|
|
|
/* Get Antenna Gain reduction */
|
|
if (IS_CHAN_5GHZ(chan)) {
|
|
ath_hal_eepromGet(ah, AR_EEP_ANTGAINMAX_5, &twiceAntennaGain);
|
|
} else {
|
|
ath_hal_eepromGet(ah, AR_EEP_ANTGAINMAX_2, &twiceAntennaGain);
|
|
}
|
|
twiceAntennaReduction =
|
|
ath_hal_getantennareduction(ah, chan, twiceAntennaGain);
|
|
|
|
if (IS_CHAN_OFDM(chan)) {
|
|
/* Get final OFDM target powers */
|
|
if (IS_CHAN_2GHZ(chan)) {
|
|
ar5212GetTargetPowers(ah, chan, ee->ee_trgtPwr_11g,
|
|
ee->ee_numTargetPwr_11g, &targetPowerOfdm);
|
|
} else {
|
|
ar5212GetTargetPowers(ah, chan, ee->ee_trgtPwr_11a,
|
|
ee->ee_numTargetPwr_11a, &targetPowerOfdm);
|
|
}
|
|
|
|
/* Get Maximum OFDM power */
|
|
/* Minimum of target and edge powers */
|
|
scaledPower = AH_MIN(twiceMaxEdgePower,
|
|
twiceMaxRDPower - twiceAntennaReduction);
|
|
|
|
/*
|
|
* If turbo is set, reduce power to keep power
|
|
* consumption under 2 Watts. Note that we always do
|
|
* this unless specially configured. Then we limit
|
|
* power only for non-AP operation.
|
|
*/
|
|
if (IS_CHAN_TURBO(chan)
|
|
#ifdef AH_ENABLE_AP_SUPPORT
|
|
&& AH_PRIVATE(ah)->ah_opmode != HAL_M_HOSTAP
|
|
#endif
|
|
) {
|
|
/*
|
|
* If turbo is set, reduce power to keep power
|
|
* consumption under 2 Watts
|
|
*/
|
|
if (ee->ee_version >= AR_EEPROM_VER3_1)
|
|
scaledPower = AH_MIN(scaledPower,
|
|
ee->ee_turbo2WMaxPower5);
|
|
/*
|
|
* EEPROM version 4.0 added an additional
|
|
* constraint on 2.4GHz channels.
|
|
*/
|
|
if (ee->ee_version >= AR_EEPROM_VER4_0 &&
|
|
IS_CHAN_2GHZ(chan))
|
|
scaledPower = AH_MIN(scaledPower,
|
|
ee->ee_turbo2WMaxPower2);
|
|
}
|
|
|
|
maxAvailPower = AH_MIN(scaledPower,
|
|
targetPowerOfdm.twicePwr6_24);
|
|
|
|
/* Reduce power by max regulatory domain allowed restrictions */
|
|
scaledPower = maxAvailPower - (tpcScaleReduction * 2);
|
|
scaledPower = (scaledPower < 0) ? 0 : scaledPower;
|
|
scaledPower = AH_MIN(scaledPower, powerLimit);
|
|
|
|
if (commit) {
|
|
/* Set OFDM rates 9, 12, 18, 24 */
|
|
r0 = rpow[0] = rpow[1] = rpow[2] = rpow[3] = rpow[4] = scaledPower;
|
|
|
|
/* Set OFDM rates 36, 48, 54, XR */
|
|
rpow[5] = AH_MIN(rpow[0], targetPowerOfdm.twicePwr36);
|
|
rpow[6] = AH_MIN(rpow[0], targetPowerOfdm.twicePwr48);
|
|
r7 = rpow[7] = AH_MIN(rpow[0], targetPowerOfdm.twicePwr54);
|
|
|
|
if (ee->ee_version >= AR_EEPROM_VER4_0) {
|
|
/* Setup XR target power from EEPROM */
|
|
rpow[15] = AH_MIN(scaledPower, IS_CHAN_2GHZ(chan) ?
|
|
ee->ee_xrTargetPower2 : ee->ee_xrTargetPower5);
|
|
} else {
|
|
/* XR uses 6mb power */
|
|
rpow[15] = rpow[0];
|
|
}
|
|
ahp->ah_ofdmTxPower = *pMaxPower;
|
|
|
|
} else {
|
|
r0 = scaledPower;
|
|
r7 = AH_MIN(r0, targetPowerOfdm.twicePwr54);
|
|
}
|
|
*pMinPower = r7;
|
|
*pMaxPower = r0;
|
|
|
|
HALDEBUG(ah, HAL_DEBUG_RFPARAM,
|
|
"%s: MaxRD: %d TurboMax: %d MaxCTL: %d "
|
|
"TPC_Reduction %d chan=%d (0x%x) maxAvailPower=%d pwr6_24=%d, maxPower=%d\n",
|
|
__func__, twiceMaxRDPower, ee->ee_turbo2WMaxPower5,
|
|
twiceMaxEdgePower, tpcScaleReduction * 2,
|
|
chan->channel, chan->channelFlags,
|
|
maxAvailPower, targetPowerOfdm.twicePwr6_24, *pMaxPower);
|
|
}
|
|
|
|
if (IS_CHAN_CCK(chan) || IS_CHAN_G(chan)) {
|
|
/* Get final CCK target powers */
|
|
ar5212GetTargetPowers(ah, chan, ee->ee_trgtPwr_11b,
|
|
ee->ee_numTargetPwr_11b, &targetPowerCck);
|
|
|
|
/* Reduce power by max regulatory domain allowed restrictions */
|
|
scaledPower = AH_MIN(twiceMaxEdgePowerCck,
|
|
twiceMaxRDPower - twiceAntennaReduction);
|
|
if (maxAvailPower < AH_MIN(scaledPower, targetPowerCck.twicePwr6_24))
|
|
maxAvailPower = AH_MIN(scaledPower, targetPowerCck.twicePwr6_24);
|
|
|
|
/* Reduce power by user selection */
|
|
scaledPower = AH_MIN(scaledPower, targetPowerCck.twicePwr6_24) - (tpcScaleReduction * 2);
|
|
scaledPower = (scaledPower < 0) ? 0 : scaledPower;
|
|
scaledPower = AH_MIN(scaledPower, powerLimit);
|
|
|
|
if (commit) {
|
|
/* Set CCK rates 2L, 2S, 5.5L, 5.5S, 11L, 11S */
|
|
rpow[8] = AH_MIN(scaledPower, targetPowerCck.twicePwr6_24);
|
|
r9 = rpow[9] = AH_MIN(scaledPower, targetPowerCck.twicePwr36);
|
|
rpow[10] = rpow[9];
|
|
rpow[11] = AH_MIN(scaledPower, targetPowerCck.twicePwr48);
|
|
rpow[12] = rpow[11];
|
|
r13 = rpow[13] = AH_MIN(scaledPower, targetPowerCck.twicePwr54);
|
|
rpow[14] = rpow[13];
|
|
} else {
|
|
r9 = AH_MIN(scaledPower, targetPowerCck.twicePwr36);
|
|
r13 = AH_MIN(scaledPower, targetPowerCck.twicePwr54);
|
|
}
|
|
|
|
/* Set min/max power based off OFDM values or initialization */
|
|
if (r13 < *pMinPower)
|
|
*pMinPower = r13;
|
|
if (r9 > *pMaxPower)
|
|
*pMaxPower = r9;
|
|
|
|
HALDEBUG(ah, HAL_DEBUG_RFPARAM,
|
|
"%s: cck: MaxRD: %d MaxCTL: %d "
|
|
"TPC_Reduction %d chan=%d (0x%x) maxAvailPower=%d pwr6_24=%d, maxPower=%d\n",
|
|
__func__, twiceMaxRDPower, twiceMaxEdgePowerCck,
|
|
tpcScaleReduction * 2, chan->channel, chan->channelFlags,
|
|
maxAvailPower, targetPowerCck.twicePwr6_24, *pMaxPower);
|
|
}
|
|
if (commit) {
|
|
ahp->ah_tx6PowerInHalfDbm = *pMaxPower;
|
|
AH_PRIVATE(ah)->ah_maxPowerLevel = ahp->ah_tx6PowerInHalfDbm;
|
|
}
|
|
return AH_TRUE;
|
|
}
|
|
|
|
HAL_BOOL
|
|
ar5212GetChipPowerLimits(struct ath_hal *ah, HAL_CHANNEL *chans, uint32_t nchans)
|
|
{
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
static const uint16_t tpcScaleReductionTable[5] =
|
|
{ 0, 3, 6, 9, MAX_RATE_POWER };
|
|
int16_t minPower, maxPower, tpcInDb, powerLimit;
|
|
HAL_CHANNEL *chan;
|
|
int i;
|
|
|
|
/*
|
|
* Get Pier table max and min powers.
|
|
*/
|
|
for (i = 0; i < nchans; i++) {
|
|
chan = &chans[i];
|
|
if (ahp->ah_rfHal->getChannelMaxMinPower(ah, chan, &maxPower, &minPower)) {
|
|
/* NB: rf code returns 1/4 dBm units, convert */
|
|
chan->maxTxPower = maxPower / 2;
|
|
chan->minTxPower = minPower / 2;
|
|
} else {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY,
|
|
"%s: no min/max power for %u/0x%x\n",
|
|
__func__, chan->channel, chan->channelFlags);
|
|
chan->maxTxPower = MAX_RATE_POWER;
|
|
chan->minTxPower = 0;
|
|
}
|
|
}
|
|
/*
|
|
* Now adjust to reflect any global scale and/or CTL's.
|
|
* (XXX is that correct?)
|
|
*/
|
|
powerLimit = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
|
|
if (powerLimit >= MAX_RATE_POWER || powerLimit == 0)
|
|
tpcInDb = tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale];
|
|
else
|
|
tpcInDb = 0;
|
|
for (i=0; i<nchans; i++) {
|
|
chan = &chans[i];
|
|
if (!ar5212SetRateTable(ah, (HAL_CHANNEL *) chan, tpcInDb, powerLimit,
|
|
AH_FALSE, &minPower, &maxPower)) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY,
|
|
"%s: unable to find max/min power\n",__func__);
|
|
return AH_FALSE;
|
|
}
|
|
if (maxPower < chan->maxTxPower)
|
|
chan->maxTxPower = maxPower;
|
|
if (minPower < chan->minTxPower)
|
|
chan->minTxPower = minPower;
|
|
}
|
|
#ifdef AH_DEBUG
|
|
for (i=0; i<nchans; i++) {
|
|
HALDEBUG(ah, HAL_DEBUG_RESET,
|
|
"Chan %d: MaxPow = %d MinPow = %d\n",
|
|
chans[i].channel,chans[i].maxTxPower, chans[i].minTxPower);
|
|
}
|
|
#endif
|
|
return AH_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Correct for the gain-delta between ofdm and cck mode target
|
|
* powers. Write the results to the rate table and the power table.
|
|
*
|
|
* Conventions :
|
|
* 1. rpow[ii] is the integer value of 2*(desired power
|
|
* for the rate ii in dBm) to provide 0.5dB resolution. rate
|
|
* mapping is as following :
|
|
* [0..7] --> ofdm 6, 9, .. 48, 54
|
|
* [8..14] --> cck 1L, 2L, 2S, .. 11L, 11S
|
|
* [15] --> XR (all rates get the same power)
|
|
* 2. powv[ii] is the pcdac corresponding to ii/2 dBm.
|
|
*/
|
|
static void
|
|
ar5212CorrectGainDelta(struct ath_hal *ah, int twiceOfdmCckDelta)
|
|
{
|
|
#define N(_a) (sizeof(_a) / sizeof(_a[0]))
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
|
|
int16_t ratesIndex[N(ahp->ah_ratesArray)];
|
|
uint16_t ii, jj, iter;
|
|
int32_t cckIndex;
|
|
int16_t gainDeltaAdjust;
|
|
|
|
HALASSERT(ah->ah_magic == AR5212_MAGIC);
|
|
|
|
gainDeltaAdjust = ee->ee_cckOfdmGainDelta;
|
|
|
|
/* make a local copy of desired powers as initial indices */
|
|
OS_MEMCPY(ratesIndex, ahp->ah_ratesArray, sizeof(ratesIndex));
|
|
|
|
/* fix only the CCK indices */
|
|
for (ii = 8; ii < 15; ii++) {
|
|
/* apply a gain_delta correction of -15 for CCK */
|
|
ratesIndex[ii] -= gainDeltaAdjust;
|
|
|
|
/* Now check for contention with all ofdm target powers */
|
|
jj = 0;
|
|
iter = 0;
|
|
/* indicates not all ofdm rates checked forcontention yet */
|
|
while (jj < 16) {
|
|
if (ratesIndex[ii] < 0)
|
|
ratesIndex[ii] = 0;
|
|
if (jj == 8) { /* skip CCK rates */
|
|
jj = 15;
|
|
continue;
|
|
}
|
|
if (ratesIndex[ii] == ahp->ah_ratesArray[jj]) {
|
|
if (ahp->ah_ratesArray[jj] == 0)
|
|
ratesIndex[ii]++;
|
|
else if (iter > 50) {
|
|
/*
|
|
* To avoid pathological case of of
|
|
* dm target powers 0 and 0.5dBm
|
|
*/
|
|
ratesIndex[ii]++;
|
|
} else
|
|
ratesIndex[ii]--;
|
|
/* check with all rates again */
|
|
jj = 0;
|
|
iter++;
|
|
} else
|
|
jj++;
|
|
}
|
|
if (ratesIndex[ii] >= PWR_TABLE_SIZE)
|
|
ratesIndex[ii] = PWR_TABLE_SIZE -1;
|
|
cckIndex = ahp->ah_ratesArray[ii] - twiceOfdmCckDelta;
|
|
if (cckIndex < 0)
|
|
cckIndex = 0;
|
|
|
|
/*
|
|
* Validate that the indexes for the powv are not
|
|
* out of bounds.
|
|
*/
|
|
HALASSERT(cckIndex < PWR_TABLE_SIZE);
|
|
HALASSERT(ratesIndex[ii] < PWR_TABLE_SIZE);
|
|
ahp->ah_pcdacTable[ratesIndex[ii]] =
|
|
ahp->ah_pcdacTable[cckIndex];
|
|
}
|
|
/* Override rate per power table with new values */
|
|
for (ii = 8; ii < 15; ii++)
|
|
ahp->ah_ratesArray[ii] = ratesIndex[ii];
|
|
#undef N
|
|
}
|
|
|
|
/*
|
|
* Find the maximum conformance test limit for the given channel and CTL info
|
|
*/
|
|
static uint16_t
|
|
ar5212GetMaxEdgePower(uint16_t channel, const RD_EDGES_POWER *pRdEdgesPower)
|
|
{
|
|
/* temp array for holding edge channels */
|
|
uint16_t tempChannelList[NUM_EDGES];
|
|
uint16_t clo, chi, twiceMaxEdgePower;
|
|
int i, numEdges;
|
|
|
|
/* Get the edge power */
|
|
for (i = 0; i < NUM_EDGES; i++) {
|
|
if (pRdEdgesPower[i].rdEdge == 0)
|
|
break;
|
|
tempChannelList[i] = pRdEdgesPower[i].rdEdge;
|
|
}
|
|
numEdges = i;
|
|
|
|
ar5212GetLowerUpperValues(channel, tempChannelList,
|
|
numEdges, &clo, &chi);
|
|
/* Get the index for the lower channel */
|
|
for (i = 0; i < numEdges && clo != tempChannelList[i]; i++)
|
|
;
|
|
/* Is lower channel ever outside the rdEdge? */
|
|
HALASSERT(i != numEdges);
|
|
|
|
if ((clo == chi && clo == channel) || (pRdEdgesPower[i].flag)) {
|
|
/*
|
|
* If there's an exact channel match or an inband flag set
|
|
* on the lower channel use the given rdEdgePower
|
|
*/
|
|
twiceMaxEdgePower = pRdEdgesPower[i].twice_rdEdgePower;
|
|
HALASSERT(twiceMaxEdgePower > 0);
|
|
} else
|
|
twiceMaxEdgePower = MAX_RATE_POWER;
|
|
return twiceMaxEdgePower;
|
|
}
|
|
|
|
/*
|
|
* Returns interpolated or the scaled up interpolated value
|
|
*/
|
|
static uint16_t
|
|
interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
|
|
uint16_t targetLeft, uint16_t targetRight)
|
|
{
|
|
uint16_t rv;
|
|
int16_t lRatio;
|
|
|
|
/* to get an accurate ratio, always scale, if want to scale, then don't scale back down */
|
|
if ((targetLeft * targetRight) == 0)
|
|
return 0;
|
|
|
|
if (srcRight != srcLeft) {
|
|
/*
|
|
* Note the ratio always need to be scaled,
|
|
* since it will be a fraction.
|
|
*/
|
|
lRatio = (target - srcLeft) * EEP_SCALE / (srcRight - srcLeft);
|
|
if (lRatio < 0) {
|
|
/* Return as Left target if value would be negative */
|
|
rv = targetLeft;
|
|
} else if (lRatio > EEP_SCALE) {
|
|
/* Return as Right target if Ratio is greater than 100% (SCALE) */
|
|
rv = targetRight;
|
|
} else {
|
|
rv = (lRatio * targetRight + (EEP_SCALE - lRatio) *
|
|
targetLeft) / EEP_SCALE;
|
|
}
|
|
} else {
|
|
rv = targetLeft;
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
* Return the four rates of target power for the given target power table
|
|
* channel, and number of channels
|
|
*/
|
|
static void
|
|
ar5212GetTargetPowers(struct ath_hal *ah, HAL_CHANNEL *chan,
|
|
const TRGT_POWER_INFO *powInfo,
|
|
uint16_t numChannels, TRGT_POWER_INFO *pNewPower)
|
|
{
|
|
/* temp array for holding target power channels */
|
|
uint16_t tempChannelList[NUM_TEST_FREQUENCIES];
|
|
uint16_t clo, chi, ixlo, ixhi;
|
|
int i;
|
|
|
|
/* Copy the target powers into the temp channel list */
|
|
for (i = 0; i < numChannels; i++)
|
|
tempChannelList[i] = powInfo[i].testChannel;
|
|
|
|
ar5212GetLowerUpperValues(chan->channel, tempChannelList,
|
|
numChannels, &clo, &chi);
|
|
|
|
/* Get the indices for the channel */
|
|
ixlo = ixhi = 0;
|
|
for (i = 0; i < numChannels; i++) {
|
|
if (clo == tempChannelList[i]) {
|
|
ixlo = i;
|
|
}
|
|
if (chi == tempChannelList[i]) {
|
|
ixhi = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Get the lower and upper channels, target powers,
|
|
* and interpolate between them.
|
|
*/
|
|
pNewPower->twicePwr6_24 = interpolate(chan->channel, clo, chi,
|
|
powInfo[ixlo].twicePwr6_24, powInfo[ixhi].twicePwr6_24);
|
|
pNewPower->twicePwr36 = interpolate(chan->channel, clo, chi,
|
|
powInfo[ixlo].twicePwr36, powInfo[ixhi].twicePwr36);
|
|
pNewPower->twicePwr48 = interpolate(chan->channel, clo, chi,
|
|
powInfo[ixlo].twicePwr48, powInfo[ixhi].twicePwr48);
|
|
pNewPower->twicePwr54 = interpolate(chan->channel, clo, chi,
|
|
powInfo[ixlo].twicePwr54, powInfo[ixhi].twicePwr54);
|
|
}
|
|
|
|
/*
|
|
* Search a list for a specified value v that is within
|
|
* EEP_DELTA of the search values. Return the closest
|
|
* values in the list above and below the desired value.
|
|
* EEP_DELTA is a factional value; everything is scaled
|
|
* so only integer arithmetic is used.
|
|
*
|
|
* NB: the input list is assumed to be sorted in ascending order
|
|
*/
|
|
void
|
|
ar5212GetLowerUpperValues(uint16_t v, uint16_t *lp, uint16_t listSize,
|
|
uint16_t *vlo, uint16_t *vhi)
|
|
{
|
|
uint32_t target = v * EEP_SCALE;
|
|
uint16_t *ep = lp+listSize;
|
|
|
|
/*
|
|
* Check first and last elements for out-of-bounds conditions.
|
|
*/
|
|
if (target < (uint32_t)(lp[0] * EEP_SCALE - EEP_DELTA)) {
|
|
*vlo = *vhi = lp[0];
|
|
return;
|
|
}
|
|
if (target > (uint32_t)(ep[-1] * EEP_SCALE + EEP_DELTA)) {
|
|
*vlo = *vhi = ep[-1];
|
|
return;
|
|
}
|
|
|
|
/* look for value being near or between 2 values in list */
|
|
for (; lp < ep; lp++) {
|
|
/*
|
|
* If value is close to the current value of the list
|
|
* then target is not between values, it is one of the values
|
|
*/
|
|
if (abs(lp[0] * EEP_SCALE - target) < EEP_DELTA) {
|
|
*vlo = *vhi = lp[0];
|
|
return;
|
|
}
|
|
/*
|
|
* Look for value being between current value and next value
|
|
* if so return these 2 values
|
|
*/
|
|
if (target < (uint32_t)(lp[1] * EEP_SCALE - EEP_DELTA)) {
|
|
*vlo = lp[0];
|
|
*vhi = lp[1];
|
|
return;
|
|
}
|
|
}
|
|
HALASSERT(AH_FALSE); /* should not reach here */
|
|
*vlo = *vhi = 0;
|
|
}
|
|
|
|
/*
|
|
* Perform analog "swizzling" of parameters into their location
|
|
*
|
|
* NB: used by RF backends
|
|
*/
|
|
void
|
|
ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32, uint32_t numBits,
|
|
uint32_t firstBit, uint32_t column)
|
|
{
|
|
#define MAX_ANALOG_START 319 /* XXX */
|
|
uint32_t tmp32, mask, arrayEntry, lastBit;
|
|
int32_t bitPosition, bitsLeft;
|
|
|
|
HALASSERT(column <= 3);
|
|
HALASSERT(numBits <= 32);
|
|
HALASSERT(firstBit + numBits <= MAX_ANALOG_START);
|
|
|
|
tmp32 = ath_hal_reverseBits(reg32, numBits);
|
|
arrayEntry = (firstBit - 1) / 8;
|
|
bitPosition = (firstBit - 1) % 8;
|
|
bitsLeft = numBits;
|
|
while (bitsLeft > 0) {
|
|
lastBit = (bitPosition + bitsLeft > 8) ?
|
|
8 : bitPosition + bitsLeft;
|
|
mask = (((1 << lastBit) - 1) ^ ((1 << bitPosition) - 1)) <<
|
|
(column * 8);
|
|
rfBuf[arrayEntry] &= ~mask;
|
|
rfBuf[arrayEntry] |= ((tmp32 << bitPosition) <<
|
|
(column * 8)) & mask;
|
|
bitsLeft -= 8 - bitPosition;
|
|
tmp32 = tmp32 >> (8 - bitPosition);
|
|
bitPosition = 0;
|
|
arrayEntry++;
|
|
}
|
|
#undef MAX_ANALOG_START
|
|
}
|
|
|
|
/*
|
|
* Sets the rate to duration values in MAC - used for multi-
|
|
* rate retry.
|
|
* The rate duration table needs to cover all valid rate codes;
|
|
* the 11g table covers all ofdm rates, while the 11b table
|
|
* covers all cck rates => all valid rates get covered between
|
|
* these two mode's ratetables!
|
|
* But if we're turbo, the ofdm phy is replaced by the turbo phy
|
|
* and cck is not valid with turbo => all rates get covered
|
|
* by the turbo ratetable only
|
|
*/
|
|
void
|
|
ar5212SetRateDurationTable(struct ath_hal *ah, HAL_CHANNEL *chan)
|
|
{
|
|
const HAL_RATE_TABLE *rt;
|
|
int i;
|
|
|
|
/* NB: band doesn't matter for 1/2 and 1/4 rate */
|
|
if (IS_CHAN_HALF_RATE(chan)) {
|
|
rt = ar5212GetRateTable(ah, HAL_MODE_11A_HALF_RATE);
|
|
} else if (IS_CHAN_QUARTER_RATE(chan)) {
|
|
rt = ar5212GetRateTable(ah, HAL_MODE_11A_QUARTER_RATE);
|
|
} else {
|
|
rt = ar5212GetRateTable(ah,
|
|
IS_CHAN_TURBO(chan) ? HAL_MODE_TURBO : HAL_MODE_11G);
|
|
}
|
|
|
|
for (i = 0; i < rt->rateCount; ++i)
|
|
OS_REG_WRITE(ah,
|
|
AR_RATE_DURATION(rt->info[i].rateCode),
|
|
ath_hal_computetxtime(ah, rt,
|
|
WLAN_CTRL_FRAME_SIZE,
|
|
rt->info[i].controlRate, AH_FALSE));
|
|
if (!IS_CHAN_TURBO(chan)) {
|
|
/* 11g Table is used to cover the CCK rates. */
|
|
rt = ar5212GetRateTable(ah, HAL_MODE_11G);
|
|
for (i = 0; i < rt->rateCount; ++i) {
|
|
uint32_t reg = AR_RATE_DURATION(rt->info[i].rateCode);
|
|
|
|
if (rt->info[i].phy != IEEE80211_T_CCK)
|
|
continue;
|
|
|
|
OS_REG_WRITE(ah, reg,
|
|
ath_hal_computetxtime(ah, rt,
|
|
WLAN_CTRL_FRAME_SIZE,
|
|
rt->info[i].controlRate, AH_FALSE));
|
|
/* cck rates have short preamble option also */
|
|
if (rt->info[i].shortPreamble) {
|
|
reg += rt->info[i].shortPreamble << 2;
|
|
OS_REG_WRITE(ah, reg,
|
|
ath_hal_computetxtime(ah, rt,
|
|
WLAN_CTRL_FRAME_SIZE,
|
|
rt->info[i].controlRate,
|
|
AH_TRUE));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Adjust various register settings based on half/quarter rate clock setting.
|
|
* This includes: +USEC, TX/RX latency,
|
|
* + IFS params: slot, eifs, misc etc.
|
|
*/
|
|
void
|
|
ar5212SetIFSTiming(struct ath_hal *ah, HAL_CHANNEL *chan)
|
|
{
|
|
uint32_t txLat, rxLat, usec, slot, refClock, eifs, init_usec;
|
|
|
|
HALASSERT(IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan));
|
|
|
|
refClock = OS_REG_READ(ah, AR_USEC) & AR_USEC_USEC32;
|
|
if (IS_CHAN_HALF_RATE(chan)) {
|
|
slot = IFS_SLOT_HALF_RATE;
|
|
rxLat = RX_NON_FULL_RATE_LATENCY << AR5212_USEC_RX_LAT_S;
|
|
txLat = TX_HALF_RATE_LATENCY << AR5212_USEC_TX_LAT_S;
|
|
usec = HALF_RATE_USEC;
|
|
eifs = IFS_EIFS_HALF_RATE;
|
|
init_usec = INIT_USEC >> 1;
|
|
} else { /* quarter rate */
|
|
slot = IFS_SLOT_QUARTER_RATE;
|
|
rxLat = RX_NON_FULL_RATE_LATENCY << AR5212_USEC_RX_LAT_S;
|
|
txLat = TX_QUARTER_RATE_LATENCY << AR5212_USEC_TX_LAT_S;
|
|
usec = QUARTER_RATE_USEC;
|
|
eifs = IFS_EIFS_QUARTER_RATE;
|
|
init_usec = INIT_USEC >> 2;
|
|
}
|
|
|
|
OS_REG_WRITE(ah, AR_USEC, (usec | refClock | txLat | rxLat));
|
|
OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, slot);
|
|
OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, eifs);
|
|
OS_REG_RMW_FIELD(ah, AR_D_GBL_IFS_MISC,
|
|
AR_D_GBL_IFS_MISC_USEC_DURATION, init_usec);
|
|
}
|