mirror of
https://github.com/proski/madwifi
synced 2024-11-29 17:53:12 +03:00
5702465321
git-svn-id: http://madwifi-project.org/svn/madwifi/trunk@3978 0192ed92-7a03-0410-a25b-9323aeb14dbd
643 lines
16 KiB
C
643 lines
16 KiB
C
/*
|
|
* Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
|
|
* Copyright (c) 2002-2004 Atheros Communications, Inc.
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*
|
|
* $Id: ar5210_misc.c,v 1.6 2008/11/27 22:29:37 sam Exp $
|
|
*/
|
|
#include "opt_ah.h"
|
|
|
|
#include "ah.h"
|
|
#include "ah_internal.h"
|
|
|
|
#include "ar5210/ar5210.h"
|
|
#include "ar5210/ar5210reg.h"
|
|
#include "ar5210/ar5210phy.h"
|
|
|
|
#include "ah_eeprom_v1.h"
|
|
|
|
#define AR_NUM_GPIO 6 /* 6 GPIO bits */
|
|
#define AR_GPIOD_MASK 0x2f /* 6-bit mask */
|
|
|
|
void
|
|
ar5210GetMacAddress(struct ath_hal *ah, uint8_t *mac)
|
|
{
|
|
struct ath_hal_5210 *ahp = AH5210(ah);
|
|
|
|
OS_MEMCPY(mac, ahp->ah_macaddr, IEEE80211_ADDR_LEN);
|
|
}
|
|
|
|
HAL_BOOL
|
|
ar5210SetMacAddress(struct ath_hal *ah, const uint8_t *mac)
|
|
{
|
|
struct ath_hal_5210 *ahp = AH5210(ah);
|
|
|
|
OS_MEMCPY(ahp->ah_macaddr, mac, IEEE80211_ADDR_LEN);
|
|
return AH_TRUE;
|
|
}
|
|
|
|
void
|
|
ar5210GetBssIdMask(struct ath_hal *ah, uint8_t *mask)
|
|
{
|
|
static const uint8_t ones[IEEE80211_ADDR_LEN] =
|
|
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
|
|
OS_MEMCPY(mask, ones, IEEE80211_ADDR_LEN);
|
|
}
|
|
|
|
HAL_BOOL
|
|
ar5210SetBssIdMask(struct ath_hal *ah, const uint8_t *mask)
|
|
{
|
|
return AH_FALSE;
|
|
}
|
|
|
|
/*
|
|
* Read 16 bits of data from the specified EEPROM offset.
|
|
*/
|
|
HAL_BOOL
|
|
ar5210EepromRead(struct ath_hal *ah, u_int off, uint16_t *data)
|
|
{
|
|
(void) OS_REG_READ(ah, AR_EP_AIR(off)); /* activate read op */
|
|
if (!ath_hal_wait(ah, AR_EP_STA,
|
|
AR_EP_STA_RDCMPLT | AR_EP_STA_RDERR, AR_EP_STA_RDCMPLT)) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: read failed for entry 0x%x\n",
|
|
__func__, AR_EP_AIR(off));
|
|
return AH_FALSE;
|
|
}
|
|
*data = OS_REG_READ(ah, AR_EP_RDATA) & 0xffff;
|
|
return AH_TRUE;
|
|
}
|
|
|
|
#ifdef AH_SUPPORT_WRITE_EEPROM
|
|
/*
|
|
* Write 16 bits of data to the specified EEPROM offset.
|
|
*/
|
|
HAL_BOOL
|
|
ar5210EepromWrite(struct ath_hal *ah, u_int off, uint16_t data)
|
|
{
|
|
return AH_FALSE;
|
|
}
|
|
#endif /* AH_SUPPORT_WRITE_EEPROM */
|
|
|
|
/*
|
|
* Attempt to change the cards operating regulatory domain to the given value
|
|
*/
|
|
HAL_BOOL
|
|
ar5210SetRegulatoryDomain(struct ath_hal *ah,
|
|
uint16_t regDomain, HAL_STATUS *status)
|
|
{
|
|
HAL_STATUS ecode;
|
|
|
|
if (AH_PRIVATE(ah)->ah_currentRD == regDomain) {
|
|
ecode = HAL_EINVAL;
|
|
goto bad;
|
|
}
|
|
/*
|
|
* Check if EEPROM is configured to allow this; must
|
|
* be a proper version and the protection bits must
|
|
* permit re-writing that segment of the EEPROM.
|
|
*/
|
|
if (ath_hal_eepromGetFlag(ah, AR_EEP_WRITEPROTECT)) {
|
|
ecode = HAL_EEWRITE;
|
|
goto bad;
|
|
}
|
|
ecode = HAL_EIO; /* disallow all writes */
|
|
bad:
|
|
if (status)
|
|
*status = ecode;
|
|
return AH_FALSE;
|
|
}
|
|
|
|
/*
|
|
* Return the wireless modes (a,b,g,t) supported by hardware.
|
|
*
|
|
* This value is what is actually supported by the hardware
|
|
* and is unaffected by regulatory/country code settings.
|
|
*
|
|
*/
|
|
u_int
|
|
ar5210GetWirelessModes(struct ath_hal *ah)
|
|
{
|
|
/* XXX could enable turbo mode but can't do all rates */
|
|
return HAL_MODE_11A;
|
|
}
|
|
|
|
/*
|
|
* Called if RfKill is supported (according to EEPROM). Set the interrupt and
|
|
* GPIO values so the ISR and can disable RF on a switch signal
|
|
*/
|
|
void
|
|
ar5210EnableRfKill(struct ath_hal *ah)
|
|
{
|
|
uint16_t rfsilent = AH_PRIVATE(ah)->ah_rfsilent;
|
|
int select = MS(rfsilent, AR_EEPROM_RFSILENT_GPIO_SEL);
|
|
int polarity = MS(rfsilent, AR_EEPROM_RFSILENT_POLARITY);
|
|
|
|
/*
|
|
* If radio disable switch connection to GPIO bit 0 is enabled
|
|
* program GPIO interrupt.
|
|
* If rfkill bit on eeprom is 1, setupeeprommap routine has already
|
|
* verified that it is a later version of eeprom, it has a place for
|
|
* rfkill bit and it is set to 1, indicating that GPIO bit 0 hardware
|
|
* connection is present.
|
|
*/
|
|
ar5210Gpio0SetIntr(ah, select, (ar5210GpioGet(ah, select) == polarity));
|
|
}
|
|
|
|
/*
|
|
* Configure GPIO Output lines
|
|
*/
|
|
HAL_BOOL
|
|
ar5210GpioCfgOutput(struct ath_hal *ah, uint32_t gpio)
|
|
{
|
|
HALASSERT(gpio < AR_NUM_GPIO);
|
|
|
|
OS_REG_WRITE(ah, AR_GPIOCR,
|
|
(OS_REG_READ(ah, AR_GPIOCR) &~ AR_GPIOCR_ALL(gpio))
|
|
| AR_GPIOCR_OUT1(gpio));
|
|
|
|
return AH_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Configure GPIO Input lines
|
|
*/
|
|
HAL_BOOL
|
|
ar5210GpioCfgInput(struct ath_hal *ah, uint32_t gpio)
|
|
{
|
|
HALASSERT(gpio < AR_NUM_GPIO);
|
|
|
|
OS_REG_WRITE(ah, AR_GPIOCR,
|
|
(OS_REG_READ(ah, AR_GPIOCR) &~ AR_GPIOCR_ALL(gpio))
|
|
| AR_GPIOCR_IN(gpio));
|
|
|
|
return AH_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Once configured for I/O - set output lines
|
|
*/
|
|
HAL_BOOL
|
|
ar5210GpioSet(struct ath_hal *ah, uint32_t gpio, uint32_t val)
|
|
{
|
|
uint32_t reg;
|
|
|
|
HALASSERT(gpio < AR_NUM_GPIO);
|
|
|
|
reg = OS_REG_READ(ah, AR_GPIODO);
|
|
reg &= ~(1 << gpio);
|
|
reg |= (val&1) << gpio;
|
|
|
|
OS_REG_WRITE(ah, AR_GPIODO, reg);
|
|
return AH_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Once configured for I/O - get input lines
|
|
*/
|
|
uint32_t
|
|
ar5210GpioGet(struct ath_hal *ah, uint32_t gpio)
|
|
{
|
|
if (gpio < AR_NUM_GPIO) {
|
|
uint32_t val = OS_REG_READ(ah, AR_GPIODI);
|
|
val = ((val & AR_GPIOD_MASK) >> gpio) & 0x1;
|
|
return val;
|
|
} else {
|
|
return 0xffffffff;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set the GPIO 0 Interrupt
|
|
*/
|
|
void
|
|
ar5210Gpio0SetIntr(struct ath_hal *ah, u_int gpio, uint32_t ilevel)
|
|
{
|
|
uint32_t val = OS_REG_READ(ah, AR_GPIOCR);
|
|
|
|
/* Clear the bits that we will modify. */
|
|
val &= ~(AR_GPIOCR_INT_SEL(gpio) | AR_GPIOCR_INT_SELH | AR_GPIOCR_INT_ENA |
|
|
AR_GPIOCR_ALL(gpio));
|
|
|
|
val |= AR_GPIOCR_INT_SEL(gpio) | AR_GPIOCR_INT_ENA;
|
|
if (ilevel)
|
|
val |= AR_GPIOCR_INT_SELH;
|
|
|
|
/* Don't need to change anything for low level interrupt. */
|
|
OS_REG_WRITE(ah, AR_GPIOCR, val);
|
|
|
|
/* Change the interrupt mask. */
|
|
ar5210SetInterrupts(ah, AH5210(ah)->ah_maskReg | HAL_INT_GPIO);
|
|
}
|
|
|
|
/*
|
|
* Change the LED blinking pattern to correspond to the connectivity
|
|
*/
|
|
void
|
|
ar5210SetLedState(struct ath_hal *ah, HAL_LED_STATE state)
|
|
{
|
|
uint32_t val;
|
|
|
|
val = OS_REG_READ(ah, AR_PCICFG);
|
|
switch (state) {
|
|
case HAL_LED_INIT:
|
|
val &= ~(AR_PCICFG_LED_PEND | AR_PCICFG_LED_ACT);
|
|
break;
|
|
case HAL_LED_RUN:
|
|
/* normal blink when connected */
|
|
val &= ~AR_PCICFG_LED_PEND;
|
|
val |= AR_PCICFG_LED_ACT;
|
|
break;
|
|
default:
|
|
val |= AR_PCICFG_LED_PEND;
|
|
val &= ~AR_PCICFG_LED_ACT;
|
|
break;
|
|
}
|
|
OS_REG_WRITE(ah, AR_PCICFG, val);
|
|
}
|
|
|
|
/*
|
|
* Return 1 or 2 for the corresponding antenna that is in use
|
|
*/
|
|
u_int
|
|
ar5210GetDefAntenna(struct ath_hal *ah)
|
|
{
|
|
uint32_t val = OS_REG_READ(ah, AR_STA_ID1);
|
|
return (val & AR_STA_ID1_DEFAULT_ANTENNA ? 2 : 1);
|
|
}
|
|
|
|
void
|
|
ar5210SetDefAntenna(struct ath_hal *ah, u_int antenna)
|
|
{
|
|
uint32_t val = OS_REG_READ(ah, AR_STA_ID1);
|
|
|
|
if (antenna != (val & AR_STA_ID1_DEFAULT_ANTENNA ? 2 : 1)) {
|
|
/*
|
|
* Antenna change requested, force a toggle of the default.
|
|
*/
|
|
OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_DEFAULT_ANTENNA);
|
|
}
|
|
}
|
|
|
|
HAL_ANT_SETTING
|
|
ar5210GetAntennaSwitch(struct ath_hal *ah)
|
|
{
|
|
return HAL_ANT_VARIABLE;
|
|
}
|
|
|
|
HAL_BOOL
|
|
ar5210SetAntennaSwitch(struct ath_hal *ah, HAL_ANT_SETTING settings)
|
|
{
|
|
/* XXX not sure how to fix antenna */
|
|
return (settings == HAL_ANT_VARIABLE);
|
|
}
|
|
|
|
/*
|
|
* Change association related fields programmed into the hardware.
|
|
* Writing a valid BSSID to the hardware effectively enables the hardware
|
|
* to synchronize its TSF to the correct beacons and receive frames coming
|
|
* from that BSSID. It is called by the SME JOIN operation.
|
|
*/
|
|
void
|
|
ar5210WriteAssocid(struct ath_hal *ah, const uint8_t *bssid, uint16_t assocId)
|
|
{
|
|
struct ath_hal_5210 *ahp = AH5210(ah);
|
|
|
|
/* XXX save bssid for possible re-use on reset */
|
|
OS_MEMCPY(ahp->ah_bssid, bssid, IEEE80211_ADDR_LEN);
|
|
OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
|
|
OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid+4) |
|
|
((assocId & 0x3fff)<<AR_BSS_ID1_AID_S));
|
|
if (assocId == 0)
|
|
OS_REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_NO_PSPOLL);
|
|
else
|
|
OS_REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_NO_PSPOLL);
|
|
}
|
|
|
|
/*
|
|
* Get the current hardware tsf for stamlme.
|
|
*/
|
|
uint64_t
|
|
ar5210GetTsf64(struct ath_hal *ah)
|
|
{
|
|
uint32_t low1, low2, u32;
|
|
|
|
/* sync multi-word read */
|
|
low1 = OS_REG_READ(ah, AR_TSF_L32);
|
|
u32 = OS_REG_READ(ah, AR_TSF_U32);
|
|
low2 = OS_REG_READ(ah, AR_TSF_L32);
|
|
if (low2 < low1) { /* roll over */
|
|
/*
|
|
* If we are not preempted this will work. If we are
|
|
* then we re-reading AR_TSF_U32 does no good as the
|
|
* low bits will be meaningless. Likewise reading
|
|
* L32, U32, U32, then comparing the last two reads
|
|
* to check for rollover doesn't help if preempted--so
|
|
* we take this approach as it costs one less PCI
|
|
* read which can be noticeable when doing things
|
|
* like timestamping packets in monitor mode.
|
|
*/
|
|
u32++;
|
|
}
|
|
return (((uint64_t) u32) << 32) | ((uint64_t) low2);
|
|
}
|
|
|
|
/*
|
|
* Get the current hardware tsf for stamlme.
|
|
*/
|
|
uint32_t
|
|
ar5210GetTsf32(struct ath_hal *ah)
|
|
{
|
|
return OS_REG_READ(ah, AR_TSF_L32);
|
|
}
|
|
|
|
/*
|
|
* Reset the current hardware tsf for stamlme
|
|
*/
|
|
void
|
|
ar5210ResetTsf(struct ath_hal *ah)
|
|
{
|
|
uint32_t val = OS_REG_READ(ah, AR_BEACON);
|
|
|
|
OS_REG_WRITE(ah, AR_BEACON, val | AR_BEACON_RESET_TSF);
|
|
}
|
|
|
|
/*
|
|
* Grab a semi-random value from hardware registers - may not
|
|
* change often
|
|
*/
|
|
uint32_t
|
|
ar5210GetRandomSeed(struct ath_hal *ah)
|
|
{
|
|
uint32_t nf;
|
|
|
|
nf = (OS_REG_READ(ah, AR_PHY_BASE + (25 << 2)) >> 19) & 0x1ff;
|
|
if (nf & 0x100)
|
|
nf = 0 - ((nf ^ 0x1ff) + 1);
|
|
return (OS_REG_READ(ah, AR_TSF_U32) ^
|
|
OS_REG_READ(ah, AR_TSF_L32) ^ nf);
|
|
}
|
|
|
|
/*
|
|
* Detect if our card is present
|
|
*/
|
|
HAL_BOOL
|
|
ar5210DetectCardPresent(struct ath_hal *ah)
|
|
{
|
|
/*
|
|
* Read the Silicon Revision register and compare that
|
|
* to what we read at attach time. If the same, we say
|
|
* a card/device is present.
|
|
*/
|
|
return (AH_PRIVATE(ah)->ah_macRev == (OS_REG_READ(ah, AR_SREV) & 0xff));
|
|
}
|
|
|
|
/*
|
|
* Update MIB Counters
|
|
*/
|
|
void
|
|
ar5210UpdateMibCounters(struct ath_hal *ah, HAL_MIB_STATS *stats)
|
|
{
|
|
stats->ackrcv_bad += OS_REG_READ(ah, AR_ACK_FAIL);
|
|
stats->rts_bad += OS_REG_READ(ah, AR_RTS_FAIL);
|
|
stats->fcs_bad += OS_REG_READ(ah, AR_FCS_FAIL);
|
|
stats->rts_good += OS_REG_READ(ah, AR_RTS_OK);
|
|
stats->beacons += OS_REG_READ(ah, AR_BEACON_CNT);
|
|
}
|
|
|
|
HAL_BOOL
|
|
ar5210SetSifsTime(struct ath_hal *ah, u_int us)
|
|
{
|
|
struct ath_hal_5210 *ahp = AH5210(ah);
|
|
|
|
if (us > ath_hal_mac_usec(ah, 0x7ff)) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad SIFS time %u\n",
|
|
__func__, us);
|
|
ahp->ah_sifstime = (u_int) -1; /* restore default handling */
|
|
return AH_FALSE;
|
|
} else {
|
|
/* convert to system clocks */
|
|
OS_REG_RMW_FIELD(ah, AR_IFS0, AR_IFS0_SIFS,
|
|
ath_hal_mac_clks(ah, us));
|
|
ahp->ah_sifstime = us;
|
|
return AH_TRUE;
|
|
}
|
|
}
|
|
|
|
u_int
|
|
ar5210GetSifsTime(struct ath_hal *ah)
|
|
{
|
|
u_int clks = OS_REG_READ(ah, AR_IFS0) & 0x7ff;
|
|
return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
|
|
}
|
|
|
|
HAL_BOOL
|
|
ar5210SetSlotTime(struct ath_hal *ah, u_int us)
|
|
{
|
|
struct ath_hal_5210 *ahp = AH5210(ah);
|
|
|
|
if (us < HAL_SLOT_TIME_9 || us > ath_hal_mac_usec(ah, 0xffff)) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad slot time %u\n",
|
|
__func__, us);
|
|
ahp->ah_slottime = (u_int) -1; /* restore default handling */
|
|
return AH_FALSE;
|
|
} else {
|
|
/* convert to system clocks */
|
|
OS_REG_WRITE(ah, AR_SLOT_TIME, ath_hal_mac_clks(ah, us));
|
|
ahp->ah_slottime = us;
|
|
return AH_TRUE;
|
|
}
|
|
}
|
|
|
|
u_int
|
|
ar5210GetSlotTime(struct ath_hal *ah)
|
|
{
|
|
u_int clks = OS_REG_READ(ah, AR_SLOT_TIME) & 0xffff;
|
|
return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
|
|
}
|
|
|
|
HAL_BOOL
|
|
ar5210SetAckTimeout(struct ath_hal *ah, u_int us)
|
|
{
|
|
struct ath_hal_5210 *ahp = AH5210(ah);
|
|
|
|
if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad ack timeout %u\n",
|
|
__func__, us);
|
|
ahp->ah_acktimeout = (u_int) -1; /* restore default handling */
|
|
return AH_FALSE;
|
|
} else {
|
|
/* convert to system clocks */
|
|
OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
|
|
AR_TIME_OUT_ACK, ath_hal_mac_clks(ah, us));
|
|
ahp->ah_acktimeout = us;
|
|
return AH_TRUE;
|
|
}
|
|
}
|
|
|
|
u_int
|
|
ar5210GetAckTimeout(struct ath_hal *ah)
|
|
{
|
|
u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_ACK);
|
|
return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
|
|
}
|
|
|
|
u_int
|
|
ar5210GetAckCTSRate(struct ath_hal *ah)
|
|
{
|
|
return ((AH5210(ah)->ah_staId1Defaults & AR_STA_ID1_ACKCTS_6MB) == 0);
|
|
}
|
|
|
|
HAL_BOOL
|
|
ar5210SetAckCTSRate(struct ath_hal *ah, u_int high)
|
|
{
|
|
struct ath_hal_5210 *ahp = AH5210(ah);
|
|
|
|
if (high) {
|
|
OS_REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
|
|
ahp->ah_staId1Defaults &= ~AR_STA_ID1_ACKCTS_6MB;
|
|
} else {
|
|
OS_REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
|
|
ahp->ah_staId1Defaults |= AR_STA_ID1_ACKCTS_6MB;
|
|
}
|
|
return AH_TRUE;
|
|
}
|
|
|
|
HAL_BOOL
|
|
ar5210SetCTSTimeout(struct ath_hal *ah, u_int us)
|
|
{
|
|
struct ath_hal_5210 *ahp = AH5210(ah);
|
|
|
|
if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad cts timeout %u\n",
|
|
__func__, us);
|
|
ahp->ah_ctstimeout = (u_int) -1; /* restore default handling */
|
|
return AH_FALSE;
|
|
} else {
|
|
/* convert to system clocks */
|
|
OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
|
|
AR_TIME_OUT_CTS, ath_hal_mac_clks(ah, us));
|
|
ahp->ah_ctstimeout = us;
|
|
return AH_TRUE;
|
|
}
|
|
}
|
|
|
|
u_int
|
|
ar5210GetCTSTimeout(struct ath_hal *ah)
|
|
{
|
|
u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_CTS);
|
|
return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
|
|
}
|
|
|
|
HAL_BOOL
|
|
ar5210SetDecompMask(struct ath_hal *ah, uint16_t keyidx, int en)
|
|
{
|
|
/* nothing to do */
|
|
return AH_TRUE;
|
|
}
|
|
|
|
void
|
|
ar5210SetCoverageClass(struct ath_hal *ah, uint8_t coverageclass, int now)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Control Adaptive Noise Immunity Parameters
|
|
*/
|
|
HAL_BOOL
|
|
ar5210AniControl(struct ath_hal *ah, HAL_ANI_CMD cmd, int param)
|
|
{
|
|
return AH_FALSE;
|
|
}
|
|
|
|
void
|
|
ar5210AniPoll(struct ath_hal *ah, const HAL_NODE_STATS *stats, HAL_CHANNEL *chan)
|
|
{
|
|
}
|
|
|
|
void
|
|
ar5210MibEvent(struct ath_hal *ah, const HAL_NODE_STATS *stats)
|
|
{
|
|
}
|
|
|
|
#define AR_DIAG_SW_DIS_CRYPTO (AR_DIAG_SW_DIS_ENC | AR_DIAG_SW_DIS_DEC)
|
|
|
|
HAL_STATUS
|
|
ar5210GetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
|
|
uint32_t capability, uint32_t *result)
|
|
{
|
|
|
|
switch (type) {
|
|
case HAL_CAP_CIPHER: /* cipher handled in hardware */
|
|
return (capability == HAL_CIPHER_WEP ? HAL_OK : HAL_ENOTSUPP);
|
|
default:
|
|
return ath_hal_getcapability(ah, type, capability, result);
|
|
}
|
|
}
|
|
|
|
HAL_BOOL
|
|
ar5210SetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
|
|
uint32_t capability, uint32_t setting, HAL_STATUS *status)
|
|
{
|
|
|
|
switch (type) {
|
|
case HAL_CAP_DIAG: /* hardware diagnostic support */
|
|
/*
|
|
* NB: could split this up into virtual capabilities,
|
|
* (e.g. 1 => ACK, 2 => CTS, etc.) but it hardly
|
|
* seems worth the additional complexity.
|
|
*/
|
|
#ifdef AH_DEBUG
|
|
AH_PRIVATE(ah)->ah_diagreg = setting;
|
|
#else
|
|
AH_PRIVATE(ah)->ah_diagreg = setting & 0x6; /* ACK+CTS */
|
|
#endif
|
|
OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
|
|
return AH_TRUE;
|
|
case HAL_CAP_RXORN_FATAL: /* HAL_INT_RXORN treated as fatal */
|
|
return AH_FALSE; /* NB: disallow */
|
|
default:
|
|
return ath_hal_setcapability(ah, type, capability,
|
|
setting, status);
|
|
}
|
|
}
|
|
|
|
HAL_BOOL
|
|
ar5210GetDiagState(struct ath_hal *ah, int request,
|
|
const void *args, uint32_t argsize,
|
|
void **result, uint32_t *resultsize)
|
|
{
|
|
#ifdef AH_PRIVATE_DIAG
|
|
uint32_t pcicfg;
|
|
HAL_BOOL ok;
|
|
|
|
switch (request) {
|
|
case HAL_DIAG_EEPROM:
|
|
/* XXX */
|
|
break;
|
|
case HAL_DIAG_EEREAD:
|
|
if (argsize != sizeof(uint16_t))
|
|
return AH_FALSE;
|
|
pcicfg = OS_REG_READ(ah, AR_PCICFG);
|
|
OS_REG_WRITE(ah, AR_PCICFG, pcicfg | AR_PCICFG_EEPROMSEL);
|
|
ok = ath_hal_eepromRead(ah, *(const uint16_t *)args, *result);
|
|
OS_REG_WRITE(ah, AR_PCICFG, pcicfg);
|
|
if (ok)
|
|
*resultsize = sizeof(uint16_t);
|
|
return ok;
|
|
}
|
|
#endif
|
|
return ath_hal_getdiagstate(ah, request,
|
|
args, argsize, result, resultsize);
|
|
}
|