madwifi/ath_hal/ar5212/ar2317.c
proski 1c2147eb68 Fix compiler errors with -O3
When the compiler tries inlining static functions, it can notice that
some variables may not be initialized in the functions being inlined.
Provide initialization for output variables in all branches of
execution, no matter how anomalous.  Add asserts in some cases.


git-svn-id: http://madwifi-project.org/svn/madwifi/trunk@3988 0192ed92-7a03-0410-a25b-9323aeb14dbd
2009-04-08 09:15:22 +00:00

747 lines
23 KiB
C

/*
* Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
* Copyright (c) 2002-2008 Atheros Communications, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* $Id: ar2317.c,v 1.8 2008/11/15 22:15:46 sam Exp $
*/
#include "opt_ah.h"
#include "ah.h"
#include "ah_internal.h"
#include "ar5212/ar5212.h"
#include "ar5212/ar5212reg.h"
#include "ar5212/ar5212phy.h"
#include "ah_eeprom_v3.h"
#define AH_5212_2317
#include "ar5212/ar5212.ini"
#define N(a) (sizeof(a)/sizeof(a[0]))
typedef RAW_DATA_STRUCT_2413 RAW_DATA_STRUCT_2317;
typedef RAW_DATA_PER_CHANNEL_2413 RAW_DATA_PER_CHANNEL_2317;
#define PWR_TABLE_SIZE_2317 PWR_TABLE_SIZE_2413
struct ar2317State {
RF_HAL_FUNCS base; /* public state, must be first */
uint16_t pcdacTable[PWR_TABLE_SIZE_2317];
uint32_t Bank1Data[N(ar5212Bank1_2317)];
uint32_t Bank2Data[N(ar5212Bank2_2317)];
uint32_t Bank3Data[N(ar5212Bank3_2317)];
uint32_t Bank6Data[N(ar5212Bank6_2317)];
uint32_t Bank7Data[N(ar5212Bank7_2317)];
/*
* Private state for reduced stack usage.
*/
/* filled out Vpd table for all pdGains (chanL) */
uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL]
[MAX_PWR_RANGE_IN_HALF_DB];
/* filled out Vpd table for all pdGains (chanR) */
uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL]
[MAX_PWR_RANGE_IN_HALF_DB];
/* filled out Vpd table for all pdGains (interpolated) */
uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL]
[MAX_PWR_RANGE_IN_HALF_DB];
};
#define AR2317(ah) ((struct ar2317State *) AH5212(ah)->ah_rfHal)
extern void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
uint32_t numBits, uint32_t firstBit, uint32_t column);
static void
ar2317WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
int writes)
{
HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2317, modesIndex, writes);
HAL_INI_WRITE_ARRAY(ah, ar5212Common_2317, 1, writes);
HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2317, freqIndex, writes);
}
/*
* Take the MHz channel value and set the Channel value
*
* ASSUMES: Writes enabled to analog bus
*/
static HAL_BOOL
ar2317SetChannel(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
{
uint32_t channelSel = 0;
uint32_t bModeSynth = 0;
uint32_t aModeRefSel = 0;
uint32_t reg32 = 0;
OS_MARK(ah, AH_MARK_SETCHANNEL, chan->channel);
if (chan->channel < 4800) {
uint32_t txctl;
channelSel = chan->channel - 2272 ;
channelSel = ath_hal_reverseBits(channelSel, 8);
txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
if (chan->channel == 2484) {
/* Enable channel spreading for channel 14 */
OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
} else {
OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
}
} else if ((chan->channel % 20) == 0 && chan->channel >= 5120) {
channelSel = ath_hal_reverseBits(
((chan->channel - 4800) / 20 << 2), 8);
aModeRefSel = ath_hal_reverseBits(3, 2);
} else if ((chan->channel % 10) == 0) {
channelSel = ath_hal_reverseBits(
((chan->channel - 4800) / 10 << 1), 8);
aModeRefSel = ath_hal_reverseBits(2, 2);
} else if ((chan->channel % 5) == 0) {
channelSel = ath_hal_reverseBits(
(chan->channel - 4800) / 5, 8);
aModeRefSel = ath_hal_reverseBits(1, 2);
} else {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
__func__, chan->channel);
return AH_FALSE;
}
reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
(1 << 12) | 0x1;
OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
reg32 >>= 8;
OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
AH_PRIVATE(ah)->ah_curchan = chan;
return AH_TRUE;
}
/*
* Reads EEPROM header info from device structure and programs
* all rf registers
*
* REQUIRES: Access to the analog rf device
*/
static HAL_BOOL
ar2317SetRfRegs(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, uint16_t modesIndex, uint16_t *rfXpdGain)
{
#define RF_BANK_SETUP(_priv, _ix, _col) do { \
int i; \
for (i = 0; i < N(ar5212Bank##_ix##_2317); i++) \
(_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2317[i][_col];\
} while (0)
struct ath_hal_5212 *ahp = AH5212(ah);
const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
uint16_t ob2GHz = 0, db2GHz = 0;
struct ar2317State *priv = AR2317(ah);
int regWrites = 0;
HALDEBUG(ah, HAL_DEBUG_RFPARAM,
"%s: chan 0x%x flag 0x%x modesIndex 0x%x\n",
__func__, chan->channel, chan->channelFlags, modesIndex);
HALASSERT(priv);
/* Setup rf parameters */
switch (chan->channelFlags & CHANNEL_ALL) {
case CHANNEL_B:
ob2GHz = ee->ee_obFor24;
db2GHz = ee->ee_dbFor24;
break;
case CHANNEL_G:
case CHANNEL_108G:
ob2GHz = ee->ee_obFor24g;
db2GHz = ee->ee_dbFor24g;
break;
default:
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
__func__, chan->channelFlags);
return AH_FALSE;
}
/* Bank 1 Write */
RF_BANK_SETUP(priv, 1, 1);
/* Bank 2 Write */
RF_BANK_SETUP(priv, 2, modesIndex);
/* Bank 3 Write */
RF_BANK_SETUP(priv, 3, modesIndex);
/* Bank 6 Write */
RF_BANK_SETUP(priv, 6, modesIndex);
ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 193, 0);
ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 190, 0);
/* Bank 7 Setup */
RF_BANK_SETUP(priv, 7, modesIndex);
/* Write Analog registers */
HAL_INI_WRITE_BANK(ah, ar5212Bank1_2317, priv->Bank1Data, regWrites);
HAL_INI_WRITE_BANK(ah, ar5212Bank2_2317, priv->Bank2Data, regWrites);
HAL_INI_WRITE_BANK(ah, ar5212Bank3_2317, priv->Bank3Data, regWrites);
HAL_INI_WRITE_BANK(ah, ar5212Bank6_2317, priv->Bank6Data, regWrites);
HAL_INI_WRITE_BANK(ah, ar5212Bank7_2317, priv->Bank7Data, regWrites);
/* Now that we have reprogrammed rfgain value, clear the flag. */
ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
return AH_TRUE;
#undef RF_BANK_SETUP
}
/*
* Return a reference to the requested RF Bank.
*/
static uint32_t *
ar2317GetRfBank(struct ath_hal *ah, int bank)
{
struct ar2317State *priv = AR2317(ah);
HALASSERT(priv != AH_NULL);
switch (bank) {
case 1: return priv->Bank1Data;
case 2: return priv->Bank2Data;
case 3: return priv->Bank3Data;
case 6: return priv->Bank6Data;
case 7: return priv->Bank7Data;
}
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
__func__, bank);
return AH_NULL;
}
/*
* Return indices surrounding the value in sorted integer lists.
*
* NB: the input list is assumed to be sorted in ascending order
*/
static void
GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
uint32_t *vlo, uint32_t *vhi)
{
int16_t target = v;
const int16_t *ep = lp+listSize;
const int16_t *tp;
/*
* Check first and last elements for out-of-bounds conditions.
*/
if (target < lp[0]) {
*vlo = *vhi = 0;
return;
}
if (target >= ep[-1]) {
*vlo = *vhi = listSize - 1;
return;
}
/* look for value being near or between 2 values in list */
for (tp = lp; tp < ep; tp++) {
/*
* If value is close to the current value of the list
* then target is not between values, it is one of the values
*/
if (*tp == target) {
*vlo = *vhi = tp - (const int16_t *) lp;
return;
}
/*
* Look for value being between current value and next value
* if so return these 2 values
*/
if (target < tp[1]) {
*vlo = tp - (const int16_t *) lp;
*vhi = *vlo + 1;
return;
}
}
HALASSERT(AH_FALSE); /* should not reach here */
*vlo = *vhi = 0;
}
/*
* Fill the Vpdlist for indices Pmax-Pmin
*/
static HAL_BOOL
ar2317FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t Pmax,
const int16_t *pwrList, const int16_t *VpdList,
uint16_t numIntercepts, uint16_t retVpdList[][64])
{
uint16_t ii, jj, kk;
int16_t currPwr = (int16_t)(2*Pmin);
/* since Pmin is pwr*2 and pwrList is 4*pwr */
uint32_t idxL, idxR;
ii = 0;
jj = 0;
if (numIntercepts < 2)
return AH_FALSE;
while (ii <= (uint16_t)(Pmax - Pmin)) {
GetLowerUpperIndex(currPwr, pwrList, numIntercepts,
&(idxL), &(idxR));
if (idxR < 1)
idxR = 1; /* extrapolate below */
if (idxL == (uint32_t)(numIntercepts - 1))
idxL = numIntercepts - 2; /* extrapolate above */
if (pwrList[idxL] == pwrList[idxR])
kk = VpdList[idxL];
else
kk = (uint16_t)
(((currPwr - pwrList[idxL])*VpdList[idxR]+
(pwrList[idxR] - currPwr)*VpdList[idxL])/
(pwrList[idxR] - pwrList[idxL]));
retVpdList[pdGainIdx][ii] = kk;
ii++;
currPwr += 2; /* half dB steps */
}
return AH_TRUE;
}
/*
* Returns interpolated or the scaled up interpolated value
*/
static int16_t
interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
int16_t targetLeft, int16_t targetRight)
{
int16_t rv;
if (srcRight != srcLeft) {
rv = ((target - srcLeft)*targetRight +
(srcRight - target)*targetLeft) / (srcRight - srcLeft);
} else {
rv = targetLeft;
}
return rv;
}
/*
* Uses the data points read from EEPROM to reconstruct the pdadc power table
* Called by ar2317SetPowerTable()
*/
static int
ar2317getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
const RAW_DATA_STRUCT_2317 *pRawDataset,
uint16_t pdGainOverlap_t2,
int16_t *pMinCalPower, uint16_t pPdGainBoundaries[],
uint16_t pPdGainValues[], uint16_t pPDADCValues[])
{
struct ar2317State *priv = AR2317(ah);
#define VpdTable_L priv->vpdTable_L
#define VpdTable_R priv->vpdTable_R
#define VpdTable_I priv->vpdTable_I
/* XXX excessive stack usage? */
uint32_t ii, jj, kk;
int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
uint32_t idxL, idxR;
uint32_t numPdGainsUsed = 0;
/*
* If desired to support -ve power levels in future, just
* change pwr_I_0 to signed 5-bits.
*/
int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
/* to accomodate -ve power levels later on. */
int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
/* to accomodate -ve power levels later on */
uint16_t numVpd = 0;
uint16_t Vpd_step;
int16_t tmpVal ;
uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
/* Get upper lower index */
GetLowerUpperIndex(channel, pRawDataset->pChannels,
pRawDataset->numChannels, &(idxL), &(idxR));
for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
/* work backwards 'cause highest pdGain for lowest power */
numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
if (numVpd > 0) {
pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
}
Pmin_t2[numPdGainsUsed] = (int16_t)
(Pmin_t2[numPdGainsUsed] / 2);
Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
Pmax_t2[numPdGainsUsed] =
pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
ar2317FillVpdTable(
numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
&(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]),
&(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
);
ar2317FillVpdTable(
numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
&(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
&(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
);
for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
VpdTable_I[numPdGainsUsed][kk] =
interpolate_signed(
channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
(int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
}
/* fill VpdTable_I for this pdGain */
numPdGainsUsed++;
}
/* if this pdGain is used */
}
*pMinCalPower = Pmin_t2[0];
kk = 0; /* index for the final table */
for (ii = 0; ii < numPdGainsUsed; ii++) {
if (ii == (numPdGainsUsed - 1))
pPdGainBoundaries[ii] = Pmax_t2[ii] +
PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
else
pPdGainBoundaries[ii] = (uint16_t)
((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
if (pPdGainBoundaries[ii] > 63) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: clamp pPdGainBoundaries[%d] %d\n",
__func__, ii, pPdGainBoundaries[ii]);/*XXX*/
pPdGainBoundaries[ii] = 63;
}
/* Find starting index for this pdGain */
if (ii == 0)
ss = 0; /* for the first pdGain, start from index 0 */
else
ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) -
pdGainOverlap_t2;
Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
/*
*-ve ss indicates need to extrapolate data below for this pdGain
*/
while (ss < 0) {
tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
ss++;
}
sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
while (ss < (int16_t)maxIndex)
pPDADCValues[kk++] = VpdTable_I[ii][ss++];
Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
VpdTable_I[ii][sizeCurrVpdTable-2]);
Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
/*
* for last gain, pdGainBoundary == Pmax_t2, so will
* have to extrapolate
*/
if (tgtIndex > maxIndex) { /* need to extrapolate above */
while(ss < (int16_t)tgtIndex) {
tmpVal = (uint16_t)
(VpdTable_I[ii][sizeCurrVpdTable-1] +
(ss-maxIndex)*Vpd_step);
pPDADCValues[kk++] = (tmpVal > 127) ?
127 : tmpVal;
ss++;
}
} /* extrapolated above */
} /* for all pdGainUsed */
while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
ii++;
}
while (kk < 128) {
pPDADCValues[kk] = pPDADCValues[kk-1];
kk++;
}
return numPdGainsUsed;
#undef VpdTable_L
#undef VpdTable_R
#undef VpdTable_I
}
static HAL_BOOL
ar2317SetPowerTable(struct ath_hal *ah,
int16_t *minPower, int16_t *maxPower, HAL_CHANNEL_INTERNAL *chan,
uint16_t *rfXpdGain)
{
struct ath_hal_5212 *ahp = AH5212(ah);
const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
const RAW_DATA_STRUCT_2317 *pRawDataset = AH_NULL;
uint16_t pdGainOverlap_t2;
int16_t minCalPower2317_t2;
uint16_t *pdadcValues = ahp->ah_pcdacTable;
uint16_t gainBoundaries[4];
uint32_t reg32, regoffset;
int i, numPdGainsUsed;
#ifndef AH_USE_INIPDGAIN
uint32_t tpcrg1;
#endif
HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
__func__, chan->channel,chan->channelFlags);
if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
else if (IS_CHAN_B(chan))
pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
else {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: illegal mode\n", __func__);
return AH_FALSE;
}
pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
numPdGainsUsed = ar2317getGainBoundariesAndPdadcsForPowers(ah,
chan->channel, pRawDataset, pdGainOverlap_t2,
&minCalPower2317_t2,gainBoundaries, rfXpdGain, pdadcValues);
HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);
#ifdef AH_USE_INIPDGAIN
/*
* Use pd_gains curve from eeprom; Atheros always uses
* the default curve from the ini file but some vendors
* (e.g. Zcomax) want to override this curve and not
* honoring their settings results in tx power 5dBm low.
*/
OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
(pRawDataset->pDataPerChannel[0].numPdGains - 1));
#else
tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
| SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
switch (numPdGainsUsed) {
case 3:
tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
/* fall thru... */
case 2:
tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
/* fall thru... */
case 1:
tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
break;
}
#ifdef AH_DEBUG
if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
"pd_gains (default 0x%x, calculated 0x%x)\n",
__func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
#endif
OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
#endif
/*
* Note the pdadc table may not start at 0 dBm power, could be
* negative or greater than 0. Need to offset the power
* values by the amount of minPower for griffin
*/
if (minCalPower2317_t2 != 0)
ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2317_t2);
else
ahp->ah_txPowerIndexOffset = 0;
/* Finally, write the power values into the baseband power table */
regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
for (i = 0; i < 32; i++) {
reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0) |
((pdadcValues[4*i + 1] & 0xFF) << 8) |
((pdadcValues[4*i + 2] & 0xFF) << 16) |
((pdadcValues[4*i + 3] & 0xFF) << 24) ;
OS_REG_WRITE(ah, regoffset, reg32);
regoffset += 4;
}
OS_REG_WRITE(ah, AR_PHY_TPCRG5,
SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
return AH_TRUE;
}
static int16_t
ar2317GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2317 *data)
{
uint32_t ii,jj;
uint16_t Pmin=0,numVpd;
for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
/* work backwards 'cause highest pdGain for lowest power */
numVpd = data->pDataPerPDGain[jj].numVpd;
if (numVpd > 0) {
Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
return(Pmin);
}
}
return(Pmin);
}
static int16_t
ar2317GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2317 *data)
{
uint32_t ii;
uint16_t Pmax=0,numVpd;
uint16_t vpdmax;
for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
/* work forwards cuase lowest pdGain for highest power */
numVpd = data->pDataPerPDGain[ii].numVpd;
if (numVpd > 0) {
Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
vpdmax = data->pDataPerPDGain[ii].Vpd[numVpd-1];
return(Pmax);
}
}
return(Pmax);
}
static HAL_BOOL
ar2317GetChannelMaxMinPower(struct ath_hal *ah, HAL_CHANNEL *chan,
int16_t *maxPow, int16_t *minPow)
{
const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
const RAW_DATA_STRUCT_2317 *pRawDataset = AH_NULL;
const RAW_DATA_PER_CHANNEL_2317 *data=AH_NULL;
uint16_t numChannels;
int totalD,totalF, totalMin,last, i;
*maxPow = 0;
if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
else if (IS_CHAN_B(chan))
pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
else
return(AH_FALSE);
numChannels = pRawDataset->numChannels;
data = pRawDataset->pDataPerChannel;
/* Make sure the channel is in the range of the TP values
* (freq piers)
*/
if (numChannels < 1)
return(AH_FALSE);
if ((chan->channel < data[0].channelValue) ||
(chan->channel > data[numChannels-1].channelValue)) {
if (chan->channel < data[0].channelValue) {
*maxPow = ar2317GetMaxPower(ah, &data[0]);
*minPow = ar2317GetMinPower(ah, &data[0]);
return(AH_TRUE);
} else {
*maxPow = ar2317GetMaxPower(ah, &data[numChannels - 1]);
*minPow = ar2317GetMinPower(ah, &data[numChannels - 1]);
return(AH_TRUE);
}
}
/* Linearly interpolate the power value now */
for (last=0,i=0; (i<numChannels) && (chan->channel > data[i].channelValue);
last = i++);
totalD = data[i].channelValue - data[last].channelValue;
if (totalD > 0) {
totalF = ar2317GetMaxPower(ah, &data[i]) - ar2317GetMaxPower(ah, &data[last]);
*maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) +
ar2317GetMaxPower(ah, &data[last])*totalD)/totalD);
totalMin = ar2317GetMinPower(ah, &data[i]) - ar2317GetMinPower(ah, &data[last]);
*minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) +
ar2317GetMinPower(ah, &data[last])*totalD)/totalD);
return(AH_TRUE);
} else {
if (chan->channel == data[i].channelValue) {
*maxPow = ar2317GetMaxPower(ah, &data[i]);
*minPow = ar2317GetMinPower(ah, &data[i]);
return(AH_TRUE);
} else
return(AH_FALSE);
}
}
/*
* Free memory for analog bank scratch buffers
*/
static void
ar2317RfDetach(struct ath_hal *ah)
{
struct ath_hal_5212 *ahp = AH5212(ah);
HALASSERT(ahp->ah_rfHal != AH_NULL);
ath_hal_free(ahp->ah_rfHal);
ahp->ah_rfHal = AH_NULL;
}
/*
* Allocate memory for analog bank scratch buffers
* Scratch Buffer will be reinitialized every reset so no need to zero now
*/
static HAL_BOOL
ar2317RfAttach(struct ath_hal *ah, HAL_STATUS *status)
{
struct ath_hal_5212 *ahp = AH5212(ah);
struct ar2317State *priv;
HALASSERT(ah->ah_magic == AR5212_MAGIC);
HALASSERT(ahp->ah_rfHal == AH_NULL);
priv = ath_hal_malloc(sizeof(struct ar2317State));
if (priv == AH_NULL) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: cannot allocate private state\n", __func__);
*status = HAL_ENOMEM; /* XXX */
return AH_FALSE;
}
priv->base.rfDetach = ar2317RfDetach;
priv->base.writeRegs = ar2317WriteRegs;
priv->base.getRfBank = ar2317GetRfBank;
priv->base.setChannel = ar2317SetChannel;
priv->base.setRfRegs = ar2317SetRfRegs;
priv->base.setPowerTable = ar2317SetPowerTable;
priv->base.getChannelMaxMinPower = ar2317GetChannelMaxMinPower;
priv->base.getNfAdjust = ar5212GetNfAdjust;
ahp->ah_pcdacTable = priv->pcdacTable;
ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
ahp->ah_rfHal = &priv->base;
return AH_TRUE;
}
static HAL_BOOL
ar2317Probe(struct ath_hal *ah)
{
return IS_2317(ah);
}
AH_RF(RF2317, ar2317Probe, ar2317RfAttach);