madwifi/net80211/ieee80211_proto.c

1964 lines
56 KiB
C

/*-
* Copyright (c) 2001 Atsushi Onoe
* Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL") version 2 as published by the Free
* Software Foundation.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* $Id$
*/
#ifndef EXPORT_SYMTAB
#define EXPORT_SYMTAB
#endif
/*
* IEEE 802.11 protocol support.
*/
#ifndef AUTOCONF_INCLUDED
#include <linux/config.h>
#endif
#include <linux/version.h>
#include <linux/kmod.h>
#include <linux/module.h>
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include "if_media.h"
#include <net80211/ieee80211_var.h>
/* XXX tunables */
#define AGGRESSIVE_MODE_SWITCH_HYSTERESIS 3 /* pkts / 100ms */
#define HIGH_PRI_SWITCH_THRESH 10 /* pkts / 100ms */
#define IEEE80211_RATE2MBS(r) (((r) & IEEE80211_RATE_VAL) / 2)
const char *ieee80211_mgt_subtype_name[] = {
"assoc_req", "assoc_resp", "reassoc_req", "reassoc_resp",
"probe_req", "probe_resp", "reserved#6", "reserved#7",
"beacon", "atim", "disassoc", "auth",
"deauth", "reserved#13", "reserved#14", "reserved#15"
};
EXPORT_SYMBOL(ieee80211_mgt_subtype_name);
const char *ieee80211_ctl_subtype_name[] = {
"reserved#0", "reserved#1", "reserved#2", "reserved#3",
"reserved#3", "reserved#5", "reserved#6", "reserved#7",
"reserved#8", "reserved#9", "ps_poll", "rts",
"cts", "ack", "cf_end", "cf_end_ack"
};
EXPORT_SYMBOL(ieee80211_ctl_subtype_name);
const char *ieee80211_state_name[IEEE80211_S_MAX] = {
"INIT", /* IEEE80211_S_INIT */
"SCAN", /* IEEE80211_S_SCAN */
"AUTH", /* IEEE80211_S_AUTH */
"ASSOC", /* IEEE80211_S_ASSOC */
"RUN" /* IEEE80211_S_RUN */
};
EXPORT_SYMBOL(ieee80211_state_name);
const char *ieee80211_wme_acnames[] = {
"WME_AC_BE",
"WME_AC_BK",
"WME_AC_VI",
"WME_AC_VO",
"WME_UPSD",
};
EXPORT_SYMBOL(ieee80211_wme_acnames);
static int ieee80211_newstate(struct ieee80211vap *, enum ieee80211_state, int);
static void ieee80211_tx_timeout(unsigned long);
#ifdef ATH_SUPERG_XR
static void ieee80211_start_xrvap(unsigned long);
#endif
void ieee80211_auth_setup(void);
void
ieee80211_proto_attach(struct ieee80211com *ic)
{
ic->ic_protmode = IEEE80211_PROT_CTSONLY;
ic->ic_wme.wme_hipri_switch_hysteresis =
AGGRESSIVE_MODE_SWITCH_HYSTERESIS;
/* initialize management frame handlers */
ic->ic_recv_mgmt = ieee80211_recv_mgmt;
ic->ic_send_mgmt = ieee80211_send_mgmt;
ieee80211_auth_setup();
}
void
ieee80211_proto_detach(struct ieee80211com *ic)
{
}
void
ieee80211_proto_vattach(struct ieee80211vap *vap)
{
#ifdef notdef
vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT;
#else
vap->iv_rtsthreshold = IEEE80211_RTS_MAX;
#endif
vap->iv_fragthreshold = 2346; /* XXX not used yet */
vap->iv_fixed_rate = IEEE80211_FIXED_RATE_NONE;
init_timer(&vap->iv_mgtsend);
init_timer(&vap->iv_xrvapstart);
init_timer(&vap->iv_swbmiss);
init_timer(&vap->iv_csa_timer);
vap->iv_mgtsend.function = ieee80211_tx_timeout;
vap->iv_mgtsend.data = (unsigned long) vap;
/* protocol state change handler */
vap->iv_newstate = ieee80211_newstate;
}
void
ieee80211_proto_vdetach(struct ieee80211vap *vap)
{
/*
* This should not be needed as we detach when reseting
* the state but be conservative here since the
* authenticator may do things like spawn kernel threads.
*/
if (vap->iv_auth->ia_detach)
vap->iv_auth->ia_detach(vap);
/*
* Detach any ACL'ator.
*/
if (vap->iv_acl != NULL)
vap->iv_acl->iac_detach(vap);
}
/*
* Simple-minded authenticator module support.
*/
#define IEEE80211_AUTH_MAX (IEEE80211_AUTH_WPA+1)
/* XXX well-known names */
static const char *auth_modnames[IEEE80211_AUTH_MAX] = {
"wlan_internal", /* IEEE80211_AUTH_NONE */
"wlan_internal", /* IEEE80211_AUTH_OPEN */
"wlan_internal", /* IEEE80211_AUTH_SHARED */
"wlan_xauth", /* IEEE80211_AUTH_8021X */
"wlan_internal", /* IEEE80211_AUTH_AUTO */
"wlan_xauth", /* IEEE80211_AUTH_WPA */
};
static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX];
static const struct ieee80211_authenticator auth_internal = {
.ia_name = "wlan_internal",
.ia_attach = NULL,
.ia_detach = NULL,
.ia_node_join = NULL,
.ia_node_leave = NULL,
};
/*
* Setup internal authenticators once; they are never unregistered.
*/
void
ieee80211_auth_setup(void)
{
ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal);
ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal);
ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal);
}
const struct ieee80211_authenticator *
ieee80211_authenticator_get(int auth)
{
if (auth >= IEEE80211_AUTH_MAX)
return NULL;
if (authenticators[auth] == NULL)
ieee80211_load_module(auth_modnames[auth]);
return authenticators[auth];
}
void
ieee80211_authenticator_register(int type,
const struct ieee80211_authenticator *auth)
{
if (type >= IEEE80211_AUTH_MAX)
return;
authenticators[type] = auth;
}
EXPORT_SYMBOL(ieee80211_authenticator_register);
void
ieee80211_authenticator_unregister(int type)
{
if (type >= IEEE80211_AUTH_MAX)
return;
authenticators[type] = NULL;
}
EXPORT_SYMBOL(ieee80211_authenticator_unregister);
/*
* Very simple-minded authenticator backend module support.
*/
/* XXX just one for now */
static const struct ieee80211_authenticator_backend *backend = NULL;
void
ieee80211_authenticator_backend_register(
const struct ieee80211_authenticator_backend *be)
{
printk(KERN_INFO "wlan: %s backend registered\n", be->iab_name);
backend = be;
}
EXPORT_SYMBOL(ieee80211_authenticator_backend_register);
void
ieee80211_authenticator_backend_unregister(
const struct ieee80211_authenticator_backend * be)
{
if (backend == be)
backend = NULL;
printk(KERN_INFO "wlan: %s backend unregistered\n",
be->iab_name);
}
EXPORT_SYMBOL(ieee80211_authenticator_backend_unregister);
const struct ieee80211_authenticator_backend *
ieee80211_authenticator_backend_get(const char *name)
{
return backend && strcmp(backend->iab_name, name) == 0 ? backend : NULL;
}
EXPORT_SYMBOL(ieee80211_authenticator_backend_get);
/*
* Very simple-minded ACL module support.
*/
/* XXX just one for now */
static const struct ieee80211_aclator *acl = NULL;
void
ieee80211_aclator_register(const struct ieee80211_aclator *iac)
{
printk(KERN_INFO "wlan: %s acl policy registered\n", iac->iac_name);
acl = iac;
}
EXPORT_SYMBOL(ieee80211_aclator_register);
void
ieee80211_aclator_unregister(const struct ieee80211_aclator *iac)
{
if (acl == iac)
acl = NULL;
printk(KERN_INFO "wlan: %s acl policy unregistered\n", iac->iac_name);
}
EXPORT_SYMBOL(ieee80211_aclator_unregister);
const struct ieee80211_aclator *
ieee80211_aclator_get(const char *name)
{
if (acl == NULL)
ieee80211_load_module("wlan_acl");
return acl && strcmp(acl->iac_name, name) == 0 ? acl : NULL;
}
EXPORT_SYMBOL(ieee80211_aclator_get);
#ifdef IEEE80211_DEBUG
void
ieee80211_print_essid(const u_int8_t *essid, int len)
{
int i;
const u_int8_t *p;
if (len > IEEE80211_NWID_LEN)
len = IEEE80211_NWID_LEN;
/* determine printable or not */
for (i = 0, p = essid; i < len; i++, p++) {
if (*p < ' ' || *p > 0x7e)
break;
}
if (i == len) {
printf("\"");
for (i = 0, p = essid; i < len; i++, p++)
printf("%c", *p);
printf("\"");
} else {
printf("0x");
for (i = 0, p = essid; i < len; i++, p++)
printf("%02x", *p);
}
}
EXPORT_SYMBOL(ieee80211_print_essid);
void
ieee80211_dump_pkt(struct ieee80211com *ic,
const u_int8_t *buf, int len, int rate, int rssi)
{
const struct ieee80211_frame *wh;
int i;
wh = (const struct ieee80211_frame *)buf;
switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
case IEEE80211_FC1_DIR_NODS:
printf("NODS " MAC_FMT, MAC_ADDR(wh->i_addr2));
printf("->" MAC_FMT, MAC_ADDR(wh->i_addr1));
printf("(" MAC_FMT ")", MAC_ADDR(wh->i_addr3));
break;
case IEEE80211_FC1_DIR_TODS:
printf("TODS " MAC_FMT, MAC_ADDR(wh->i_addr2));
printf("->" MAC_FMT, MAC_ADDR(wh->i_addr3));
printf("(" MAC_FMT ")", MAC_ADDR(wh->i_addr1));
break;
case IEEE80211_FC1_DIR_FROMDS:
printf("FRDS " MAC_FMT, MAC_ADDR(wh->i_addr3));
printf("->" MAC_FMT, MAC_ADDR(wh->i_addr1));
printf("(" MAC_FMT ")", MAC_ADDR(wh->i_addr2));
break;
case IEEE80211_FC1_DIR_DSTODS:
printf("DSDS " MAC_FMT, MAC_ADDR((u_int8_t *)&wh[1]));
printf("->" MAC_FMT, MAC_ADDR(wh->i_addr3));
printf("(" MAC_FMT, MAC_ADDR(wh->i_addr2));
printf("->" MAC_FMT ")", MAC_ADDR(wh->i_addr1));
break;
}
switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
case IEEE80211_FC0_TYPE_DATA:
printf(" data");
break;
case IEEE80211_FC0_TYPE_MGT:
printf(" %s", ieee80211_mgt_subtype_name[
(wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK)
>> IEEE80211_FC0_SUBTYPE_SHIFT]);
break;
default:
printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK);
break;
}
if (IEEE80211_QOS_HAS_SEQ(wh)) {
const struct ieee80211_qosframe *qwh =
(const struct ieee80211_qosframe *)buf;
printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID,
qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : "");
}
if (wh->i_fc[1] & IEEE80211_FC1_PROT) {
int off;
off = ieee80211_anyhdrspace(ic, wh);
printf(" WEP [IV %.02x %.02x %.02x",
buf[off+0], buf[off+1], buf[off+2]);
if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)
printf(" %.02x %.02x %.02x",
buf[off+4], buf[off+5], buf[off+6]);
printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6);
}
if (rate >= 0)
printf(" %dM", rate / 2);
if (rssi >= 0)
printf(" +%d", rssi);
printf("\n");
if (len > 0) {
for (i = 0; i < len; i++) {
if ((i % 8) == 0)
printf(" ");
if ((i % 16) == 0)
printf("\n");
printf("%02x ", buf[i]);
}
printf("\n\n");
}
}
EXPORT_SYMBOL(ieee80211_dump_pkt);
#endif
int
ieee80211_fix_rate(struct ieee80211_node *ni, int flags)
{
#define RV(v) ((v) & IEEE80211_RATE_VAL)
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211com *ic = ni->ni_ic;
int i, j, ignore, error;
int okrate, badrate, fixedrate;
struct ieee80211_rateset *srs, *nrs;
u_int8_t r;
error = 0;
okrate = badrate = fixedrate = 0;
srs = &ic->ic_sup_rates[ieee80211_chan2mode(ni->ni_chan)];
nrs = &ni->ni_rates;
fixedrate = IEEE80211_FIXED_RATE_NONE;
for (i = 0; i < nrs->rs_nrates;) {
ignore = 0;
if (flags & IEEE80211_F_DOSORT) {
/*
* Sort rates.
*/
for (j = i + 1; j < nrs->rs_nrates; j++) {
if (RV(nrs->rs_rates[i]) > RV(nrs->rs_rates[j])) {
r = nrs->rs_rates[i];
nrs->rs_rates[i] = nrs->rs_rates[j];
nrs->rs_rates[j] = r;
}
}
}
r = nrs->rs_rates[i] & IEEE80211_RATE_VAL;
badrate = r;
/*
* remove 0 rates
* they don't make sense and can lead to trouble later
*/
if (r == 0) {
nrs->rs_nrates--;
for (j = i; j < nrs->rs_nrates; j++)
nrs->rs_rates[j] = nrs->rs_rates[j + 1];
nrs->rs_rates[j] = 0;
continue;
}
/*
* Check for fixed rate.
*/
if (r == vap->iv_fixed_rate)
fixedrate = r;
if (flags & IEEE80211_F_DONEGO) {
/*
* Check against supported rates.
*/
for (j = 0; j < srs->rs_nrates; j++) {
if (r == RV(srs->rs_rates[j])) {
/*
* Overwrite with the supported rate
* value so any basic rate bit is set.
* This ensures that response we send
* to stations have the necessary basic
* rate bit set.
*/
nrs->rs_rates[i] = srs->rs_rates[j];
break;
}
}
if (j == srs->rs_nrates) {
/*
* A rate in the node's rate set is not
* supported. If this is a basic rate and we
* are operating as an AP then this is an error.
* Otherwise we just discard/ignore the rate.
* Note that this is important for 11b stations
* when they want to associate with an 11g AP.
*/
if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
(nrs->rs_rates[i] & IEEE80211_RATE_BASIC))
error++;
ignore++;
}
}
if (flags & IEEE80211_F_DODEL) {
/*
* Delete unacceptable rates.
*/
if (ignore) {
nrs->rs_nrates--;
for (j = i; j < nrs->rs_nrates; j++)
nrs->rs_rates[j] = nrs->rs_rates[j + 1];
nrs->rs_rates[j] = 0;
continue;
}
}
if (!ignore)
okrate = nrs->rs_rates[i];
i++;
}
if (okrate == 0 || error != 0 ||
((flags & IEEE80211_F_DOFRATE) && fixedrate != vap->iv_fixed_rate))
return badrate | IEEE80211_RATE_BASIC;
else
return RV(okrate);
#undef RV
}
/*
* Reset 11g-related state.
*/
void
ieee80211_reset_erp(struct ieee80211com *ic, enum ieee80211_phymode mode)
{
#define IS_11G(m) \
((m) == IEEE80211_MODE_11G || (m) == IEEE80211_MODE_TURBO_G)
ic->ic_flags &= ~IEEE80211_F_USEPROT;
/*
* Preserve the long slot and nonerp station count if
* switching between 11g and turboG. Otherwise, inactivity
* will cause the turbo station to disassociate and possibly
* try to leave the network.
* XXX not right if really trying to reset state
*/
if (IS_11G(mode) ^ IS_11G(ic->ic_curmode)) {
ic->ic_nonerpsta = 0;
ic->ic_longslotsta = 0;
}
/*
* Short slot time is enabled only when operating in 11g
* and not in an IBSS. We must also honor whether or not
* the driver is capable of doing it.
*/
ieee80211_set_shortslottime(ic,
IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
(IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
ic->ic_opmode == IEEE80211_M_HOSTAP &&
(ic->ic_caps & IEEE80211_C_SHSLOT)));
/*
* Set short preamble and ERP barker-preamble flags.
*/
if (IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
(ic->ic_caps & IEEE80211_C_SHPREAMBLE)) {
ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
ic->ic_flags &= ~IEEE80211_F_USEBARKER;
} else {
ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
ic->ic_flags |= IEEE80211_F_USEBARKER;
}
#undef IS_11G
}
/*
* Set the short slot time state and notify the driver.
*/
void
ieee80211_set_shortslottime(struct ieee80211com *ic, int onoff)
{
if (onoff)
ic->ic_flags |= IEEE80211_F_SHSLOT;
else
ic->ic_flags &= ~IEEE80211_F_SHSLOT;
/* notify driver */
if (ic->ic_updateslot != NULL)
ic->ic_updateslot(ic->ic_dev);
}
/*
* Check if the specified rate set supports ERP.
* NB: the rate set is assumed to be sorted.
*/
int
ieee80211_iserp_rateset(struct ieee80211com *ic, struct ieee80211_rateset *rs)
{
static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 };
int i, j;
if (rs->rs_nrates < ARRAY_SIZE(rates))
return 0;
for (i = 0; i < ARRAY_SIZE(rates); i++) {
for (j = 0; j < rs->rs_nrates; j++) {
int r = rs->rs_rates[j] & IEEE80211_RATE_VAL;
if (rates[i] == r)
goto next;
if (r > rates[i])
return 0;
}
return 0;
next:
;
}
return 1;
}
static const struct ieee80211_rateset basic11g[IEEE80211_MODE_MAX] = {
{ 0 }, /* IEEE80211_MODE_AUTO */
{ 3, { 12, 24, 48 } }, /* IEEE80211_MODE_11A */
{ 2, { 2, 4 } }, /* IEEE80211_MODE_11B */
{ 4, { 2, 4, 11, 22 } }, /* IEEE80211_MODE_11G (mixed b/g) */
{ 0 }, /* IEEE80211_MODE_FH */
{ 3, { 12, 24, 48 } }, /* IEEE80211_MODE_TURBO_A */
{ 4, { 2, 4, 11, 22 } }, /* IEEE80211_MODE_TURBO_G (mixed b/g) */
};
/*
* Mark the basic rates for the 11g rate table based on the
* specified mode. For 11b compatibility we mark only 11b
* rates. There's also a pseudo 11a-mode used to mark only
* the basic OFDM rates; this is used to exclude 11b stations
* from an 11g bss.
*/
void
ieee80211_set11gbasicrates(struct ieee80211_rateset *rs, enum ieee80211_phymode mode)
{
int i, j;
KASSERT(mode < IEEE80211_MODE_MAX, ("invalid mode %u", mode));
for (i = 0; i < rs->rs_nrates; i++) {
rs->rs_rates[i] &= IEEE80211_RATE_VAL;
for (j = 0; j < basic11g[mode].rs_nrates; j++)
if (basic11g[mode].rs_rates[j] == rs->rs_rates[i]) {
rs->rs_rates[i] |= IEEE80211_RATE_BASIC;
break;
}
}
}
/*
* Deduce the 11g setup by examining the rates
* that are marked basic.
*/
enum ieee80211_phymode
ieee80211_get11gbasicrates(struct ieee80211_rateset *rs)
{
struct ieee80211_rateset basic;
int i;
memset(&basic, 0, sizeof(basic));
for (i = 0; i < rs->rs_nrates; i++)
if (rs->rs_rates[i] & IEEE80211_RATE_BASIC)
basic.rs_rates[basic.rs_nrates++] =
rs->rs_rates[i] & IEEE80211_RATE_VAL;
for (i = 0; i < IEEE80211_MODE_MAX; i++)
if (memcmp(&basic, &basic11g[i], sizeof(basic)) == 0)
return i;
return IEEE80211_MODE_AUTO;
}
void
ieee80211_wme_initparams(struct ieee80211vap *vap)
{
struct ieee80211com *ic = vap->iv_ic;
IEEE80211_LOCK_IRQ(ic);
ieee80211_wme_initparams_locked(vap);
IEEE80211_UNLOCK_IRQ(ic);
}
void
ieee80211_wme_initparams_locked(struct ieee80211vap *vap)
{
struct ieee80211com *ic = vap->iv_ic;
struct ieee80211_wme_state *wme = &ic->ic_wme;
struct phyParamType {
u_int8_t aifsn;
u_int8_t logcwmin;
u_int8_t logcwmax;
u_int16_t txopLimit;
u_int8_t acm;
};
enum ieee80211_phymode mode;
struct phyParamType *pPhyParam, *pBssPhyParam;
static struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = {
/* IEEE80211_MODE_AUTO */ { 3, 4, 6, 0, 0 },
/* IEEE80211_MODE_11A */ { 3, 4, 6, 0, 0 },
/* IEEE80211_MODE_11B */ { 3, 5, 7, 0, 0 },
/* IEEE80211_MODE_11G */ { 3, 4, 6, 0, 0 },
/* IEEE80211_MODE_FH */ { 3, 5, 7, 0, 0 },
/* IEEE80211_MODE_TURBO */ { 2, 3, 5, 0, 0 },
/* IEEE80211_MODE_TURBO */ { 2, 3, 5, 0, 0 }};
static struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = {
/* IEEE80211_MODE_AUTO */ { 7, 4, 10, 0, 0 },
/* IEEE80211_MODE_11A */ { 7, 4, 10, 0, 0 },
/* IEEE80211_MODE_11B */ { 7, 5, 10, 0, 0 },
/* IEEE80211_MODE_11G */ { 7, 4, 10, 0, 0 },
/* IEEE80211_MODE_FH */ { 7, 5, 10, 0, 0 },
/* IEEE80211_MODE_TURBO */ { 7, 3, 10, 0, 0 },
/* IEEE80211_MODE_TURBO */ { 7, 3, 10, 0, 0 }};
static struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = {
/* IEEE80211_MODE_AUTO */ { 1, 3, 4, 94, 0 },
/* IEEE80211_MODE_11A */ { 1, 3, 4, 94, 0 },
/* IEEE80211_MODE_11B */ { 1, 4, 5, 188, 0 },
/* IEEE80211_MODE_11G */ { 1, 3, 4, 94, 0 },
/* IEEE80211_MODE_FH */ { 1, 4, 5, 188, 0 },
/* IEEE80211_MODE_TURBO */ { 1, 2, 3, 94, 0 },
/* IEEE80211_MODE_TURBO */ { 1, 2, 3, 94, 0 }};
static struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = {
/* IEEE80211_MODE_AUTO */ { 1, 2, 3, 47, 0 },
/* IEEE80211_MODE_11A */ { 1, 2, 3, 47, 0 },
/* IEEE80211_MODE_11B */ { 1, 3, 4, 102, 0 },
/* IEEE80211_MODE_11G */ { 1, 2, 3, 47, 0 },
/* IEEE80211_MODE_FH */ { 1, 3, 4, 102, 0 },
/* IEEE80211_MODE_TURBO */ { 1, 2, 2, 47, 0 },
/* IEEE80211_MODE_TURBO */ { 1, 2, 2, 47, 0 }};
static struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = {
/* IEEE80211_MODE_AUTO */ { 3, 4, 10, 0, 0 },
/* IEEE80211_MODE_11A */ { 3, 4, 10, 0, 0 },
/* IEEE80211_MODE_11B */ { 3, 5, 10, 0, 0 },
/* IEEE80211_MODE_11G */ { 3, 4, 10, 0, 0 },
/* IEEE80211_MODE_FH */ { 3, 5, 10, 0, 0 },
/* IEEE80211_MODE_TURBO */ { 2, 3, 10, 0, 0 },
/* IEEE80211_MODE_TURBO */ { 2, 3, 10, 0, 0 }};
static struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = {
/* IEEE80211_MODE_AUTO */ { 2, 3, 4, 94, 0 },
/* IEEE80211_MODE_11A */ { 2, 3, 4, 94, 0 },
/* IEEE80211_MODE_11B */ { 2, 4, 5, 188, 0 },
/* IEEE80211_MODE_11G */ { 2, 3, 4, 94, 0 },
/* IEEE80211_MODE_FH */ { 2, 4, 5, 188, 0 },
/* IEEE80211_MODE_TURBO */ { 2, 2, 3, 94, 0 },
/* IEEE80211_MODE_TURBO */ { 2, 2, 3, 94, 0 }};
static struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = {
/* IEEE80211_MODE_AUTO */ { 2, 2, 3, 47, 0 },
/* IEEE80211_MODE_11A */ { 2, 2, 3, 47, 0 },
/* IEEE80211_MODE_11B */ { 2, 3, 4, 102, 0 },
/* IEEE80211_MODE_11G */ { 2, 2, 3, 47, 0 },
/* IEEE80211_MODE_FH */ { 2, 3, 4, 102, 0 },
/* IEEE80211_MODE_TURBO */ { 1, 2, 2, 47, 0 },
/* IEEE80211_MODE_TURBO */ { 1, 2, 2, 47, 0 }};
int i;
IEEE80211_LOCK_ASSERT(ic);
if ((ic->ic_caps & IEEE80211_C_WME) == 0)
return;
/*
* Select mode; we can be called early in which case we
* always use auto mode. We know we'll be called when
* entering the RUN state with bsschan setup properly
* so state will eventually get set correctly
*/
if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
mode = ieee80211_chan2mode(ic->ic_bsschan);
else
mode = IEEE80211_MODE_AUTO;
for (i = 0; i < WME_NUM_AC; i++) {
switch (i) {
case WME_AC_BK:
pPhyParam = &phyParamForAC_BK[mode];
pBssPhyParam = &phyParamForAC_BK[mode];
break;
case WME_AC_VI:
pPhyParam = &phyParamForAC_VI[mode];
pBssPhyParam = &bssPhyParamForAC_VI[mode];
break;
case WME_AC_VO:
pPhyParam = &phyParamForAC_VO[mode];
pBssPhyParam = &bssPhyParamForAC_VO[mode];
break;
case WME_AC_BE:
default:
pPhyParam = &phyParamForAC_BE[mode];
pBssPhyParam = &bssPhyParamForAC_BE[mode];
break;
}
if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
wme->wme_wmeChanParams.cap_wmeParams[i].wmep_acm =
pPhyParam->acm;
wme->wme_wmeChanParams.cap_wmeParams[i].wmep_aifsn =
pPhyParam->aifsn;
wme->wme_wmeChanParams.cap_wmeParams[i].wmep_logcwmin =
pPhyParam->logcwmin;
wme->wme_wmeChanParams.cap_wmeParams[i].wmep_logcwmax =
pPhyParam->logcwmax;
wme->wme_wmeChanParams.cap_wmeParams[i].wmep_txopLimit =
pPhyParam->txopLimit;
} else {
wme->wme_wmeChanParams.cap_wmeParams[i].wmep_acm =
pBssPhyParam->acm;
wme->wme_wmeChanParams.cap_wmeParams[i].wmep_aifsn =
pBssPhyParam->aifsn;
wme->wme_wmeChanParams.cap_wmeParams[i].wmep_logcwmin =
pBssPhyParam->logcwmin;
wme->wme_wmeChanParams.cap_wmeParams[i].wmep_logcwmax =
pBssPhyParam->logcwmax;
wme->wme_wmeChanParams.cap_wmeParams[i].wmep_txopLimit =
pBssPhyParam->txopLimit;
}
wme->wme_wmeBssChanParams.cap_wmeParams[i].wmep_acm =
pBssPhyParam->acm;
wme->wme_wmeBssChanParams.cap_wmeParams[i].wmep_aifsn =
pBssPhyParam->aifsn;
wme->wme_wmeBssChanParams.cap_wmeParams[i].wmep_logcwmin =
pBssPhyParam->logcwmin;
wme->wme_wmeBssChanParams.cap_wmeParams[i].wmep_logcwmax =
pBssPhyParam->logcwmax;
wme->wme_wmeBssChanParams.cap_wmeParams[i].wmep_txopLimit =
pBssPhyParam->txopLimit;
}
/* NB: check ic_bss to avoid NULL deref on initial attach */
if (vap->iv_bss != NULL) {
/*
* Calculate aggressive mode switching threshold based
* on beacon interval.
*/
wme->wme_hipri_switch_thresh =
(HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100;
ieee80211_wme_updateparams_locked(vap);
}
}
/*
* Update WME parameters for ourself and the BSS.
*/
void
ieee80211_wme_updateparams_locked(struct ieee80211vap *vap)
{
static const struct { u_int8_t aifsn; u_int8_t logcwmin; u_int8_t logcwmax; u_int16_t txopLimit;}
phyParam[IEEE80211_MODE_MAX] = {
/* IEEE80211_MODE_AUTO */ { 2, 4, 10, 64 },
/* IEEE80211_MODE_11A */ { 2, 4, 10, 64 },
/* IEEE80211_MODE_11B */ { 2, 5, 10, 64 },
/* IEEE80211_MODE_11G */ { 2, 4, 10, 64 },
/* IEEE80211_MODE_FH */ { 2, 5, 10, 64 },
/* IEEE80211_MODE_TURBO */ { 1, 3, 10, 64 }};
struct ieee80211com *ic = vap->iv_ic;
struct ieee80211_wme_state *wme = &ic->ic_wme;
enum ieee80211_phymode mode;
int i;
IEEE80211_LOCK_ASSERT(vap->iv_ic);
/* set up the channel access parameters for the physical device */
for (i = 0; i < WME_NUM_AC; i++) {
wme->wme_chanParams.cap_wmeParams[i].wmep_aifsn =
wme->wme_wmeChanParams.cap_wmeParams[i].wmep_aifsn;
wme->wme_chanParams.cap_wmeParams[i].wmep_logcwmin =
wme->wme_wmeChanParams.cap_wmeParams[i].wmep_logcwmin;
wme->wme_chanParams.cap_wmeParams[i].wmep_logcwmax =
wme->wme_wmeChanParams.cap_wmeParams[i].wmep_logcwmax;
wme->wme_chanParams.cap_wmeParams[i].wmep_txopLimit =
wme->wme_wmeChanParams.cap_wmeParams[i].wmep_txopLimit;
wme->wme_bssChanParams.cap_wmeParams[i].wmep_aifsn =
wme->wme_wmeBssChanParams.cap_wmeParams[i].wmep_aifsn;
wme->wme_bssChanParams.cap_wmeParams[i].wmep_logcwmin =
wme->wme_wmeBssChanParams.cap_wmeParams[i].wmep_logcwmin;
wme->wme_bssChanParams.cap_wmeParams[i].wmep_logcwmax =
wme->wme_wmeBssChanParams.cap_wmeParams[i].wmep_logcwmax;
wme->wme_bssChanParams.cap_wmeParams[i].wmep_txopLimit =
wme->wme_wmeBssChanParams.cap_wmeParams[i].wmep_txopLimit;
}
/*
* Select mode; we can be called early in which case we
* always use auto mode. We know we'll be called when
* entering the RUN state with bsschan setup properly
* so state will eventually get set correctly
*/
if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
mode = ieee80211_chan2mode(ic->ic_bsschan);
else
mode = IEEE80211_MODE_AUTO;
if ((vap->iv_opmode == IEEE80211_M_HOSTAP &&
(wme->wme_flags & WME_F_AGGRMODE) != 0) ||
(vap->iv_opmode != IEEE80211_M_HOSTAP &&
(vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0) ||
(vap->iv_flags & IEEE80211_F_WME) == 0) {
struct ieee80211vap *tmpvap;
u_int8_t burstEnabled = 0;
/* check if bursting enabled on at least one vap */
TAILQ_FOREACH(tmpvap, &ic->ic_vaps, iv_next) {
if (tmpvap->iv_ath_cap & IEEE80211_ATHC_BURST) {
burstEnabled = 1;
break;
}
}
wme->wme_chanParams.cap_wmeParams[WME_AC_BE].wmep_aifsn =
phyParam[mode].aifsn;
wme->wme_chanParams.cap_wmeParams[WME_AC_BE].wmep_logcwmin =
phyParam[mode].logcwmin;
wme->wme_chanParams.cap_wmeParams[WME_AC_BE].wmep_logcwmax =
phyParam[mode].logcwmax;
wme->wme_chanParams.cap_wmeParams[WME_AC_BE].wmep_txopLimit =
burstEnabled ? phyParam[mode].txopLimit : 0;
wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE].wmep_aifsn =
phyParam[mode].aifsn;
wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE].wmep_logcwmin =
phyParam[mode].logcwmin;
wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE].wmep_logcwmax =
phyParam[mode].logcwmax;
wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE].wmep_txopLimit =
burstEnabled ? phyParam[mode].txopLimit : 0;
}
if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
ic->ic_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) {
static const u_int8_t logCwMin[IEEE80211_MODE_MAX] = {
/* IEEE80211_MODE_AUTO */ 3,
/* IEEE80211_MODE_11A */ 3,
/* IEEE80211_MODE_11B */ 4,
/* IEEE80211_MODE_11G */ 3,
/* IEEE80211_MODE_FH */ 4,
/* IEEE80211_MODE_TURBO_A */ 3,
/* IEEE80211_MODE_TURBO_G */ 3
};
wme->wme_chanParams.cap_wmeParams[WME_AC_BE].wmep_logcwmin =
wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE].wmep_logcwmin =
logCwMin[mode];
}
if (vap->iv_opmode == IEEE80211_M_HOSTAP) { /* XXX ibss? */
/*
* Arrange for a beacon update and bump the parameter
* set number so associated stations load the new values.
*/
wme->wme_bssChanParams.cap_info_count =
(wme->wme_bssChanParams.cap_info_count + 1) & WME_QOSINFO_COUNT;
vap->iv_flags |= IEEE80211_F_WMEUPDATE;
}
wme->wme_update(ic);
IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
"%s: WME params updated, cap_info 0x%x\n", __func__,
vap->iv_opmode == IEEE80211_M_STA ?
wme->wme_wmeChanParams.cap_info_count :
wme->wme_bssChanParams.cap_info_count);
}
EXPORT_SYMBOL(ieee80211_wme_updateparams);
void
ieee80211_wme_updateparams(struct ieee80211vap *vap)
{
struct ieee80211com *ic = vap->iv_ic;
if (ic->ic_caps & IEEE80211_C_WME) {
IEEE80211_LOCK_IRQ(ic);
ieee80211_wme_updateparams_locked(vap);
IEEE80211_UNLOCK_IRQ(ic);
}
}
/*
* Start a vap. If this is the first vap running on the
* underlying device then we first bring it up.
*/
int
ieee80211_init(struct net_device *dev, int forcescan)
{
#define IS_RUNNING(_dev) \
((_dev->flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP))
struct ieee80211vap *vap = dev->priv;
struct ieee80211com *ic = vap->iv_ic;
struct net_device *parent = ic->ic_dev;
IEEE80211_DPRINTF(vap,
IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
"start running (state=%d)\n", vap->iv_state);
if ((dev->flags & IFF_RUNNING) == 0) {
if (ic->ic_nopened++ == 0 &&
(parent->flags & IFF_RUNNING) == 0)
dev_open(parent);
/*
* Mark us running. Note that we do this after
* opening the parent device to avoid recursion.
*/
dev->flags |= IFF_RUNNING; /* mark us running */
}
/*
* If the parent is up and running, then kick the
* 802.11 state machine as appropriate.
* XXX parent should always be up+running
*/
if (IS_RUNNING(ic->ic_dev)) {
if (vap->iv_opmode == IEEE80211_M_STA) {
if(ic->ic_roaming != IEEE80211_ROAMING_MANUAL) {
/* Try to be intelligent about clocking the
* state machine. If we're currently in RUN
* state then we should be able to apply any
* new state/parameters simply by
* re-associating. Otherwise we need to
* re-scan to select an appropriate ap. */
if (vap->iv_state != IEEE80211_S_RUN ||
forcescan) {
IEEE80211_DPRINTF(vap,
IEEE80211_MSG_STATE |
IEEE80211_MSG_DEBUG,
"Bringing vap %p[%s] "
"to %s\n",
vap, vap->iv_nickname,
ieee80211_state_name
[IEEE80211_S_SCAN]);
ieee80211_new_state(vap,
IEEE80211_S_SCAN, 0);
} else {
IEEE80211_DPRINTF(vap,
IEEE80211_MSG_STATE |
IEEE80211_MSG_DEBUG,
"Bringing vap %p[%s] "
"to %s\n",
vap, vap->iv_nickname,
ieee80211_state_name
[IEEE80211_S_ASSOC]);
ieee80211_new_state(vap,
IEEE80211_S_ASSOC, 1);
}
}
} else {
/*
* When the old state is running the vap must
* be brought to init.
*/
if (vap->iv_state == IEEE80211_S_RUN) {
IEEE80211_DPRINTF(vap,
IEEE80211_MSG_STATE |
IEEE80211_MSG_DEBUG,
"Bringing vap %p[%s] to %s\n",
vap, vap->iv_nickname,
ieee80211_state_name
[IEEE80211_S_INIT]);
ieee80211_new_state(vap,
IEEE80211_S_INIT, -1);
}
/*
* For monitor+wds modes there's nothing to do but
* start running. Otherwise, if this is the first
* vap to be brought up, start a scan which may be
* preempted if the station is locked to a particular
* channel.
*/
if (vap->iv_opmode == IEEE80211_M_MONITOR ||
vap->iv_opmode == IEEE80211_M_WDS) {
IEEE80211_DPRINTF(vap,
IEEE80211_MSG_STATE |
IEEE80211_MSG_DEBUG,
"Bringing vap %p[%s] to %s\n",
vap, vap->iv_nickname,
ieee80211_state_name
[IEEE80211_S_RUN]);
ieee80211_new_state(vap, IEEE80211_S_RUN, -1);
} else {
IEEE80211_DPRINTF(vap,
IEEE80211_MSG_STATE |
IEEE80211_MSG_DEBUG,
"Bringing vap %p[%s] to %s\n",
vap, vap->iv_nickname,
ieee80211_state_name
[IEEE80211_S_SCAN]);
ieee80211_new_state(vap, IEEE80211_S_SCAN, 0);
}
}
}
return 0;
#undef IS_RUNNING
}
int
ieee80211_open(struct net_device *dev)
{
return ieee80211_init(dev, 0);
}
/*
* Start all runnable VAPs on a device.
*/
void
ieee80211_start_running(struct ieee80211com *ic)
{
struct ieee80211vap *vap;
struct net_device *dev;
/* XXX locking */
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
dev = vap->iv_dev;
/* NB: avoid recursion */
if ((dev->flags & IFF_UP) && !(dev->flags & IFF_RUNNING))
ieee80211_open(dev);
}
}
EXPORT_SYMBOL(ieee80211_start_running);
/*
* Stop a vap. We force it down using the state machine
* then mark its device not running. If this is the last
* vap running on the underlying device then we close it
* too to ensure it will be properly initialized when the
* next vap is brought up.
*/
int
ieee80211_stop(struct net_device *dev)
{
struct ieee80211vap *vap = dev->priv;
struct ieee80211com *ic = vap->iv_ic;
struct net_device *parent = ic->ic_dev;
IEEE80211_DPRINTF(vap,
IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
"%s\n", "stop running");
ieee80211_new_state(vap, IEEE80211_S_INIT, -1);
if (dev->flags & IFF_RUNNING) {
dev->flags &= ~IFF_RUNNING; /* mark us stopped */
del_timer(&vap->iv_mgtsend);
if (--ic->ic_nopened == 0 && (parent->flags & IFF_RUNNING))
dev_close(parent);
}
#ifdef ATH_SUPERG_XR
/*
* also stop the XR vap.
*/
if (vap->iv_xrvap && !(vap->iv_flags & IEEE80211_F_XR)) {
ieee80211_stop(vap->iv_xrvap->iv_dev);
del_timer(&vap->iv_xrvapstart);
vap->iv_xrvap->iv_dev->flags = dev->flags;
}
#endif
return 0;
}
EXPORT_SYMBOL(ieee80211_stop);
/*
* Stop all VAPs running on a device.
*/
void
ieee80211_stop_running(struct ieee80211com *ic)
{
struct ieee80211vap *vap;
struct net_device *dev;
/* XXX locking */
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
dev = vap->iv_dev;
if (dev->flags & IFF_RUNNING) /* NB: avoid recursion */
ieee80211_stop(dev);
}
}
EXPORT_SYMBOL(ieee80211_stop_running);
#ifdef ATH_SUPERG_DYNTURBO
/*
* Switch between turbo and non-turbo operating modes.
* Use the specified channel flags to locate the new
* channel, update 802.11 state, and then call back into
* the driver to effect the change.
*/
void
ieee80211_dturbo_switch(struct ieee80211com *ic, int newflags)
{
#ifdef IEEE80211_DEBUG
/* XXX use first vap for debug flags */
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
#endif
struct ieee80211_channel *chan;
chan = ieee80211_find_channel(ic, ic->ic_bsschan->ic_freq, newflags);
if (chan == NULL) { /* XXX should not happen */
IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPG,
"%s: no channel with freq %u flags 0x%x\n",
__func__, ic->ic_bsschan->ic_freq, newflags);
return;
}
IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPG,
"%s: %s -> %s (freq %u flags 0x%x)\n", __func__,
ieee80211_phymode_name[ieee80211_chan2mode(ic->ic_bsschan)],
ieee80211_phymode_name[ieee80211_chan2mode(chan)],
chan->ic_freq, chan->ic_flags);
ic->ic_bsschan = chan;
ic->ic_curchan = chan;
ic->ic_set_channel(ic);
/* NB: do not need to reset ERP state because in sta mode */
}
EXPORT_SYMBOL(ieee80211_dturbo_switch);
#endif /* ATH_SUPERG_DYNTURBO */
void
ieee80211_beacon_miss(struct ieee80211com *ic)
{
struct ieee80211vap *vap;
if (ic->ic_flags & IEEE80211_F_SCAN) {
/* XXX check ic_curchan != ic_bsschan? */
return;
}
/* XXX locking */
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
IEEE80211_DPRINTF(vap,
IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
"%s\n", "beacon miss");
/*
* Our handling is only meaningful for stations that are
* associated; any other conditions else will be handled
* through different means (e.g. the tx timeout on mgt frames).
*/
if (vap->iv_opmode != IEEE80211_M_STA ||
vap->iv_state != IEEE80211_S_RUN)
continue;
if (ic->ic_roaming == IEEE80211_ROAMING_AUTO) {
#ifdef ATH_SUPERG_DYNTURBO
/*
* If we receive a beacon miss interrupt when using
* dynamic turbo, attempt to switch modes before
* reassociating.
*/
if (IEEE80211_ATH_CAP(vap, vap->iv_bss, IEEE80211_ATHC_TURBOP))
ieee80211_dturbo_switch(ic,
ic->ic_bsschan->ic_flags ^
IEEE80211_CHAN_TURBO);
#endif /* ATH_SUPERG_DYNTURBO */
/*
* Try to reassociate before scanning for a new ap.
*/
ieee80211_new_state(vap, IEEE80211_S_ASSOC, 1);
} else {
/*
* Somebody else is controlling state changes (e.g.
* a user-mode app) don't do anything that would
* confuse them; just drop into scan mode so they'll
* notified of the state change and given control.
*/
ieee80211_new_state(vap, IEEE80211_S_SCAN, 0);
}
}
}
EXPORT_SYMBOL(ieee80211_beacon_miss);
/*
* STA software beacon timer callback. This is called
* only when we have a series beacon misses.
*/
static void
ieee80211_sta_swbmiss(unsigned long arg)
{
struct ieee80211vap *vap = (struct ieee80211vap *) arg;
ieee80211_beacon_miss(vap->iv_ic);
}
/*
* Per-ieee80211vap watchdog timer callback. This
* is used only to timeout the xmit of management frames.
*/
static void
ieee80211_tx_timeout(unsigned long arg)
{
struct ieee80211vap *vap = (struct ieee80211vap *) arg;
IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
"%s: state %s%s\n", __func__,
ieee80211_state_name[vap->iv_state],
vap->iv_ic->ic_flags & IEEE80211_F_SCAN ? ", scan active" : "");
if (vap->iv_state != IEEE80211_S_INIT &&
(vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
/*
* NB: it's safe to specify a timeout as the reason here;
* it'll only be used in the right state.
*/
ieee80211_new_state(vap, IEEE80211_S_SCAN,
IEEE80211_SCAN_FAIL_TIMEOUT);
}
}
static void
sta_disassoc(void *arg, struct ieee80211_node *ni)
{
struct ieee80211vap *vap = arg;
if (ni->ni_vap == vap && ni->ni_associd != 0) {
IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_DISASSOC,
IEEE80211_REASON_ASSOC_LEAVE);
ieee80211_node_leave(ni);
}
}
static void
sta_deauth(void *arg, struct ieee80211_node *ni)
{
struct ieee80211vap *vap = arg;
if (ni->ni_vap == vap)
IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_DEAUTH,
IEEE80211_REASON_ASSOC_LEAVE);
}
/*
* Context: softIRQ (tasklet) and process
*/
int
ieee80211_new_state(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
{
struct ieee80211com *ic = vap->iv_ic;
int rc;
IEEE80211_VAPS_LOCK_BH(ic);
rc = vap->iv_newstate(vap, nstate, arg);
IEEE80211_VAPS_UNLOCK_BH(ic);
return rc;
}
static int
__ieee80211_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
{
struct ieee80211com *ic = vap->iv_ic;
struct ieee80211_node *ni;
enum ieee80211_state ostate;
ostate = vap->iv_state;
vap->iv_state = nstate; /* state transition */
del_timer(&vap->iv_mgtsend);
if ((vap->iv_opmode != IEEE80211_M_HOSTAP) &&
(ostate != IEEE80211_S_SCAN))
ieee80211_cancel_scan(vap); /* background scan */
ni = vap->iv_bss; /* NB: no reference held */
switch (nstate) {
case IEEE80211_S_INIT:
switch (ostate) {
case IEEE80211_S_INIT:
break;
case IEEE80211_S_RUN:
switch (vap->iv_opmode) {
case IEEE80211_M_STA:
IEEE80211_SEND_MGMT(ni,
IEEE80211_FC0_SUBTYPE_DISASSOC,
IEEE80211_REASON_ASSOC_LEAVE);
ieee80211_sta_leave(ni);
break;
case IEEE80211_M_HOSTAP:
ieee80211_iterate_nodes(&ic->ic_sta,
sta_disassoc, vap);
break;
default:
break;
}
goto reset;
case IEEE80211_S_ASSOC:
switch (vap->iv_opmode) {
case IEEE80211_M_STA:
IEEE80211_SEND_MGMT(ni,
IEEE80211_FC0_SUBTYPE_DEAUTH,
IEEE80211_REASON_AUTH_LEAVE);
break;
case IEEE80211_M_HOSTAP:
ieee80211_iterate_nodes(&ic->ic_sta,
sta_deauth, vap);
break;
default:
break;
}
goto reset;
case IEEE80211_S_SCAN:
ieee80211_cancel_scan(vap);
goto reset;
case IEEE80211_S_AUTH:
reset:
ieee80211_reset_bss(vap);
break;
}
if (vap->iv_auth->ia_detach != NULL)
vap->iv_auth->ia_detach(vap);
break;
case IEEE80211_S_SCAN:
switch (ostate) {
case IEEE80211_S_INIT:
createibss:
if ((vap->iv_opmode == IEEE80211_M_HOSTAP ||
vap->iv_opmode == IEEE80211_M_IBSS ||
vap->iv_opmode == IEEE80211_M_AHDEMO) &&
vap->iv_des_chan != IEEE80211_CHAN_ANYC) {
/*
* AP operation and we already have a channel;
* bypass the scan and startup immediately.
*/
ieee80211_create_ibss(vap, vap->iv_des_chan);
} else {
ieee80211_check_scan(vap,
IEEE80211_SCAN_ACTIVE |
IEEE80211_SCAN_FLUSH,
IEEE80211_SCAN_FOREVER,
vap->iv_des_nssid, vap->iv_des_ssid,
NULL);
}
break;
case IEEE80211_S_SCAN:
case IEEE80211_S_AUTH:
case IEEE80211_S_ASSOC:
/*
* These can happen either because of a timeout
* on an assoc/auth response or because of a
* change in state that requires a reset. For
* the former we're called with a non-zero arg
* that is the cause for the failure; pass this
* to the scan code so it can update state.
* Otherwise trigger a new scan unless we're in
* manual roaming mode in which case an application
* must issue an explicit scan request.
*/
if (arg != 0)
ieee80211_scan_assoc_fail(ic,
vap->iv_bss->ni_macaddr, arg);
if (ic->ic_roaming == IEEE80211_ROAMING_AUTO)
ieee80211_check_scan(vap,
IEEE80211_SCAN_ACTIVE,
IEEE80211_SCAN_FOREVER,
vap->iv_des_nssid, vap->iv_des_ssid,
NULL);
break;
case IEEE80211_S_RUN: /* beacon miss */
if (vap->iv_opmode == IEEE80211_M_STA) {
ieee80211_sta_leave(ni);
vap->iv_flags &= ~IEEE80211_F_SIBSS; /* XXX */
if (ic->ic_roaming == IEEE80211_ROAMING_AUTO)
ieee80211_check_scan(vap,
IEEE80211_SCAN_ACTIVE,
IEEE80211_SCAN_FOREVER,
vap->iv_des_nssid,
vap->iv_des_ssid,
NULL);
} else {
ieee80211_iterate_nodes(&ic->ic_sta,
sta_disassoc, vap);
goto createibss;
}
break;
}
break;
case IEEE80211_S_AUTH:
/* auth frames are possible between IBSS nodes,
* see 802.11-1999, chapter 5.7.6 */
KASSERT(vap->iv_opmode == IEEE80211_M_STA ||
vap->iv_opmode == IEEE80211_M_IBSS,
("switch to %s state when operating in mode %u",
ieee80211_state_name[nstate], vap->iv_opmode));
switch (ostate) {
case IEEE80211_S_INIT:
case IEEE80211_S_SCAN:
IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_AUTH, 1);
break;
case IEEE80211_S_AUTH:
case IEEE80211_S_ASSOC:
switch (arg) {
case IEEE80211_FC0_SUBTYPE_AUTH:
/* ??? */
IEEE80211_SEND_MGMT(ni,
IEEE80211_FC0_SUBTYPE_AUTH, 2);
break;
case IEEE80211_FC0_SUBTYPE_DEAUTH:
IEEE80211_SEND_MGMT(ni,
IEEE80211_FC0_SUBTYPE_AUTH, 1);
break;
}
break;
case IEEE80211_S_RUN:
switch (arg) {
case IEEE80211_FC0_SUBTYPE_AUTH:
IEEE80211_SEND_MGMT(ni,
IEEE80211_FC0_SUBTYPE_AUTH, 2);
vap->iv_state = ostate; /* stay RUN */
break;
case IEEE80211_FC0_SUBTYPE_DEAUTH:
ieee80211_sta_leave(ni);
if (ic->ic_roaming == IEEE80211_ROAMING_AUTO) {
/* try to reauth */
IEEE80211_SEND_MGMT(ni,
IEEE80211_FC0_SUBTYPE_AUTH, 1);
}
break;
}
break;
}
break;
case IEEE80211_S_ASSOC:
KASSERT(vap->iv_opmode == IEEE80211_M_STA,
("switch to %s state when operating in mode %u",
ieee80211_state_name[nstate], vap->iv_opmode));
switch (ostate) {
case IEEE80211_S_INIT:
case IEEE80211_S_SCAN:
IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
"%s: invalid transition\n", __func__);
break;
case IEEE80211_S_AUTH:
case IEEE80211_S_ASSOC:
IEEE80211_SEND_MGMT(ni,
IEEE80211_FC0_SUBTYPE_ASSOC_REQ, 0);
break;
case IEEE80211_S_RUN:
ieee80211_sta_leave(ni);
if (ic->ic_roaming == IEEE80211_ROAMING_AUTO) {
/* NB: caller specifies ASSOC/REASSOC by arg */
IEEE80211_SEND_MGMT(ni, arg ?
IEEE80211_FC0_SUBTYPE_REASSOC_REQ :
IEEE80211_FC0_SUBTYPE_ASSOC_REQ, 0);
}
break;
}
break;
case IEEE80211_S_RUN:
if (vap->iv_flags & IEEE80211_F_WPA) {
/* XXX validate prerequisites */
}
switch (ostate) {
case IEEE80211_S_INIT:
if (vap->iv_opmode == IEEE80211_M_MONITOR ||
vap->iv_opmode == IEEE80211_M_WDS ||
vap->iv_opmode == IEEE80211_M_HOSTAP) {
/*
* Already have a channel; bypass the
* scan and startup immediately.
*/
ieee80211_create_ibss(vap, ic->ic_curchan);
/* In WDS mode, allocate and initialize peer node. */
if (vap->iv_opmode == IEEE80211_M_WDS) {
/* XXX: This is horribly non-atomic. */
struct ieee80211_node *wds_ni =
ieee80211_find_node(&ic->ic_sta,
vap->wds_mac);
if (wds_ni == NULL) {
wds_ni = ieee80211_alloc_node_table(
vap,
vap->wds_mac);
if (wds_ni != NULL)
ieee80211_add_wds_addr(
&ic->ic_sta,
wds_ni,
vap->wds_mac,
1);
else
IEEE80211_DPRINTF(
vap,
IEEE80211_MSG_NODE,
"%s: Unable to "
"allocate node for "
"WDS: " MAC_FMT "\n",
__func__,
MAC_ADDR(
vap->wds_mac)
);
}
if (wds_ni != NULL) {
ieee80211_ref_node(wds_ni); /* pin in memory */
ieee80211_node_authorize(wds_ni);
wds_ni->ni_chan =
vap->iv_bss->ni_chan;
wds_ni->ni_capinfo =
ni->ni_capinfo;
wds_ni->ni_associd = 1;
wds_ni->ni_ath_flags =
vap->iv_ath_cap;
}
}
break;
}
/* fall thru... */
case IEEE80211_S_AUTH:
IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
"%s: invalid transition\n", __func__);
break;
case IEEE80211_S_RUN:
break;
case IEEE80211_S_SCAN: /* adhoc/hostap mode */
case IEEE80211_S_ASSOC: /* infra mode */
KASSERT(ni->ni_txrate < ni->ni_rates.rs_nrates,
("%s: bogus xmit rate %u setup\n", __func__,
ni->ni_txrate));
#ifdef IEEE80211_DEBUG
if (ieee80211_msg_debug(vap)) {
ieee80211_note(vap, "%s with " MAC_FMT " ssid ",
(vap->iv_opmode == IEEE80211_M_STA ?
"associated" : "synchronized "),
MAC_ADDR(ni->ni_bssid));
ieee80211_print_essid(vap->iv_bss->ni_essid,
ni->ni_esslen);
printf(" channel %d start %uMb\n",
ieee80211_chan2ieee(ic, ic->ic_curchan),
IEEE80211_RATE2MBS(ni->ni_rates.rs_rates[ni->ni_txrate]));
}
#endif
if (vap->iv_opmode == IEEE80211_M_STA) {
ieee80211_scan_assoc_success(ic,
ni->ni_macaddr);
ieee80211_notify_node_join(ni,
(arg == IEEE80211_FC0_SUBTYPE_ASSOC_RESP) | \
(arg == IEEE80211_FC0_SUBTYPE_REASSOC_RESP));
}
break;
}
/* WDS/Repeater: Start software beacon timer for STA */
if (ostate != IEEE80211_S_RUN &&
(vap->iv_opmode == IEEE80211_M_STA &&
vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS)) {
vap->iv_swbmiss.function = ieee80211_sta_swbmiss;
vap->iv_swbmiss.data = (unsigned long) vap;
vap->iv_swbmiss_period = IEEE80211_TU_TO_JIFFIES(
IEEE80211_SWBMISS_THRESHOLD * ni->ni_intval);
mod_timer(&vap->iv_swbmiss, jiffies + vap->iv_swbmiss_period);
}
/*
* Start/stop the authenticator when operating as an
* AP. We delay until here to allow configuration to
* happen out of order.
*/
/* XXX WDS? */
if (vap->iv_opmode == IEEE80211_M_HOSTAP && /* XXX IBSS/AHDEMO */
vap->iv_auth->ia_attach != NULL) {
/* XXX check failure */
vap->iv_auth->ia_attach(vap);
} else if (vap->iv_auth->ia_detach != NULL)
vap->iv_auth->ia_detach(vap);
/*
* When 802.1x is not in use mark the port authorized
* at this point so traffic can flow.
*/
if (ni->ni_authmode != IEEE80211_AUTH_8021X)
ieee80211_node_authorize(ni);
#ifdef ATH_SUPERG_XR
/*
* fire a timer to bring up XR vap if configured.
*/
if (ostate != IEEE80211_S_RUN &&
vap->iv_xrvap &&
!(vap->iv_flags & IEEE80211_F_XR)) {
vap->iv_xrvapstart.function = ieee80211_start_xrvap;
vap->iv_xrvapstart.data = (unsigned long) vap->iv_xrvap;
mod_timer(&vap->iv_xrvapstart, jiffies + HZ); /* start xr vap on next second */
/*
* do not let the normal vap automatically bring up XR vap.
* let the timer handler start the XR vap. if you let the
* normal vap automatically start the XR vap normal vap will not
* have the bssid initialized and the XR vap will use the
* invalid bssid in XRIE of its beacon.
*/
if (vap->iv_xrvap->iv_flags_ext & IEEE80211_FEXT_SCAN_PENDING)
vap->iv_xrvap->iv_flags_ext &= ~IEEE80211_FEXT_SCAN_PENDING;
}
/*
* when an XR vap transitions to RUN state,
* normal vap needs to update the XR IE
* with the xr vaps MAC address.
*/
if (vap->iv_flags & IEEE80211_F_XR)
vap->iv_xrvap->iv_flags |= IEEE80211_F_XRUPDATE;
#endif
break;
}
return 0;
}
/* Get the dominant state of the device (init, running, or scanning
* (and/or associating)) */
static int get_dominant_state(struct ieee80211com *ic) {
int nscanning = 0;
int nrunning = 0;
struct ieee80211vap *tmpvap;
TAILQ_FOREACH(tmpvap, &ic->ic_vaps, iv_next) {
if (tmpvap->iv_opmode == IEEE80211_M_MONITOR)
/* skip monitor vaps as their
* S_RUN shouldn't have any
* influence on modifying state
* transition */
continue;
if (tmpvap->iv_state == IEEE80211_S_RUN)
nrunning++;
else if (tmpvap->iv_state == IEEE80211_S_SCAN ||
tmpvap->iv_state == IEEE80211_S_AUTH ||
tmpvap->iv_state == IEEE80211_S_ASSOC) {
KASSERT((nscanning <= 1), ("Two VAPs cannot scan at "
"the same time\n"));
nscanning++;
}
}
KASSERT(!(nscanning && nrunning), ("SCAN and RUN can't happen at the "
"same time\n"));
KASSERT((nscanning <= 1), ("Two VAPs must not SCAN at the "
"same time\n"));
if (nrunning > 0)
return IEEE80211_S_RUN;
else if (nscanning > 0)
return IEEE80211_S_SCAN;
else
return IEEE80211_S_INIT;
}
static void
dump_vap_states(struct ieee80211com *ic, struct ieee80211vap* highlighed)
{
/* RE-count the number of VAPs in RUN, SCAN states */
int nrunning = 0;
int nscanning = 0;
struct ieee80211vap *tmpvap;
TAILQ_FOREACH(tmpvap, &ic->ic_vaps, iv_next) {
IEEE80211_DPRINTF(tmpvap, IEEE80211_MSG_STATE,
"%s: VAP %s%p[%24s]%s = %s%s%s.\n", __func__,
(highlighed == tmpvap ? "*" : " "),
tmpvap, tmpvap->iv_nickname,
(highlighed == tmpvap ? "*" : " "),
ieee80211_state_name[tmpvap->iv_state],
(tmpvap->iv_state == IEEE80211_S_RUN) ?
"[RUNNING]" : "",
(tmpvap->iv_state == IEEE80211_S_SCAN ||
tmpvap->iv_state == IEEE80211_S_AUTH ||
tmpvap->iv_state == IEEE80211_S_ASSOC) ?
"[SCANNING]" : ""
);
/* Ignore monitors they are passive */
if (tmpvap->iv_opmode == IEEE80211_M_MONITOR) {
continue;
}
if (tmpvap->iv_state == IEEE80211_S_RUN) {
KASSERT((nscanning == 0), ("SCAN and RUN can't happen "
"at the same time\n"));
nrunning++;
}
if (tmpvap->iv_state == IEEE80211_S_SCAN ||
/* STA in WDS/Repeater */
tmpvap->iv_state == IEEE80211_S_AUTH ||
tmpvap->iv_state == IEEE80211_S_ASSOC) {
KASSERT((nscanning == 0), ("Two VAPs cannot scan at "
"the same time\n"));
KASSERT((nrunning == 0), ("SCAN and RUN can't happen "
"at the same time\n"));
nscanning++;
}
}
}
static int
ieee80211_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
{
struct ieee80211com *ic = vap->iv_ic;
enum ieee80211_state ostate;
enum ieee80211_state dstate;
int blocked = 0;
struct ieee80211vap *tmpvap;
ostate = vap->iv_state;
dstate = get_dominant_state(ic);
IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
"%s: %p[%s] %s -> %s (dominant %s)\n",
__func__, vap, vap->iv_nickname,
ieee80211_state_name[ostate],
ieee80211_state_name[nstate],
ieee80211_state_name[dstate]);
switch (nstate) {
case IEEE80211_S_AUTH:
case IEEE80211_S_ASSOC:
case IEEE80211_S_SCAN:
switch (dstate) {
case IEEE80211_S_RUN:
if(vap->iv_opmode == IEEE80211_M_MONITOR ||
vap->iv_opmode == IEEE80211_M_WDS ||
vap->iv_opmode == IEEE80211_M_HOSTAP) {
IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
"%s: Jumping directly to RUN "
"on VAP %p [%s].\n",
__func__, vap,
vap->iv_nickname);
/* One or more VAPs are running, so
* non-station VAPs can skip SCAN/AUTH/ASSOC
* states and just run. */
__ieee80211_newstate(vap, IEEE80211_S_RUN, arg);
} else {
/* We'll use this flag briefly to mark
* transition in progress */
ic->ic_flags_ext |= IEEE80211_FEXT_SCAN_PENDING;
/* IEEE80211_M_IBSS or IEEE80211_M_STA VAP
* is forced to scan, we need to change
* all other VAPs state to S_INIT and pend for
* the scan completion */
TAILQ_FOREACH(tmpvap, &ic->ic_vaps, iv_next) {
if ((vap != tmpvap) &&
(tmpvap->iv_opmode !=
IEEE80211_M_MONITOR)) {
IEEE80211_DPRINTF(vap,
IEEE80211_MSG_STATE,
"%s: Setting "
"SCAN_PENDING "
"flag on "
"VAP %p "
"[%s].\n",
__func__,
tmpvap,
tmpvap->
iv_nickname);
tmpvap->iv_flags_ext |=
IEEE80211_FEXT_SCAN_PENDING;
if (tmpvap->iv_state !=
IEEE80211_S_INIT) {
IEEE80211_DPRINTF(vap,
IEEE80211_MSG_STATE,
"%s: "
"Forcing "
"INIT "
"state "
"on "
"VAP "
"%p "
"[%s].\n",
__func__,
tmpvap,
tmpvap->
iv_nickname);
tmpvap->iv_newstate(tmpvap,
IEEE80211_S_INIT,
0);
} else {
IEEE80211_DPRINTF(vap,
IEEE80211_MSG_STATE,
"%s: "
"NOT "
"forcing "
"INIT "
"state "
"on "
"VAP "
"%p "
"[%s].\n",
__func__,
tmpvap,
tmpvap->
iv_nickname);
}
}
}
/* We used this flag briefly to mark transition in progress */
ic->ic_flags_ext &= ~IEEE80211_FEXT_SCAN_PENDING;
/* Transition S_INIT -> S_SCAN */
__ieee80211_newstate(vap, nstate, arg);
break;
}
break;
case IEEE80211_S_SCAN:
case IEEE80211_S_AUTH:
case IEEE80211_S_ASSOC:
/* this VAP was scanning */
/* STA in WDS/Repeater needs to bring up other VAPs */
if (ostate == IEEE80211_S_SCAN ||
ostate == IEEE80211_S_AUTH ||
ostate == IEEE80211_S_ASSOC) {
/* Transition (S_SCAN|S_AUTH|S_ASSOC) ->
* S_SCAN */
__ieee80211_newstate(vap, nstate, arg);
} else {
/* Someone else is scanning, so block the
* transition */
vap->iv_flags_ext |=
IEEE80211_FEXT_SCAN_PENDING;
__ieee80211_newstate(vap, IEEE80211_S_INIT,
arg);
blocked = 1;
}
break;
case IEEE80211_S_INIT:
/* Transition S_INIT -> S_SCAN */
__ieee80211_newstate(vap, nstate, arg);
break;
}
break;
case IEEE80211_S_RUN:
/* this VAP was scanning */
/* STA in WDS/Repeater needs to bring up other VAPs */
if (ostate == IEEE80211_S_SCAN ||
ostate == IEEE80211_S_AUTH ||
ostate == IEEE80211_S_ASSOC) {
/* Transition (S_SCAN|S_AUTH|S_ASSOC) -> S_RUN */
__ieee80211_newstate(vap, nstate, arg);
/* Then bring up all other vaps pending on the scan */
dstate = get_dominant_state(ic);
if (dstate == IEEE80211_S_RUN) {
TAILQ_FOREACH(tmpvap, &ic->ic_vaps, iv_next) {
if ((vap != tmpvap) &&
(tmpvap->iv_opmode !=
IEEE80211_M_MONITOR) &&
(tmpvap->iv_flags_ext &
IEEE80211_FEXT_SCAN_PENDING)) {
IEEE80211_DPRINTF(vap,
IEEE80211_MSG_STATE,
"%s: Clearing "
"SCAN_PENDING "
"flag from VAP "
"%p [%s] and "
"transitioning "
"to RUN state.\n",
__func__, tmpvap,
tmpvap->iv_nickname);
tmpvap->iv_flags_ext &=
~IEEE80211_FEXT_SCAN_PENDING;
if(tmpvap->iv_state !=
IEEE80211_S_RUN) {
tmpvap->iv_newstate(tmpvap,
IEEE80211_S_RUN, 0);
} else if(tmpvap->iv_opmode ==
IEEE80211_M_HOSTAP) {
/* Force other AP through
* -> INIT -> RUN to make
* sure beacons are
* reallocated */
tmpvap->iv_newstate(tmpvap,
IEEE80211_S_INIT, 0);
tmpvap->iv_newstate(tmpvap,
IEEE80211_S_RUN, 0);
}
}
}
}
} else if (dstate == IEEE80211_S_SCAN) {
/* Force to scan pending... someone is scanning */
vap->iv_flags_ext |= IEEE80211_FEXT_SCAN_PENDING;
__ieee80211_newstate(vap, IEEE80211_S_INIT, arg);
blocked = 1;
} else {
__ieee80211_newstate(vap, nstate, arg);
}
break;
default:
__ieee80211_newstate(vap, nstate, arg);
}
IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
"%s: %s requested transition %s -> %s on VAP %p [%s]. "
"Dominant state is %s.\n",
__func__,
(blocked ? "BLOCKED" : "ALLOWED"),
ieee80211_state_name[ostate],
ieee80211_state_name[nstate],
vap,
vap->iv_nickname,
ieee80211_state_name[dstate]);
dump_vap_states(ic, vap);
return 0;
}
#ifdef ATH_SUPERG_XR
/*
* start the XR vap .
* called from a timer when normal vap enters RUN state .
*/
static void
ieee80211_start_xrvap(unsigned long data)
{
struct ieee80211vap *vap = (struct ieee80211vap *)data;
/* make sure that the normal vap is still in RUN state */
if (vap->iv_xrvap->iv_state == IEEE80211_S_RUN)
ieee80211_init(vap->iv_dev, 0);
}
#endif