madwifi/ath_rate/sample/sample.c

1161 lines
32 KiB
C

/*-
* Copyright (c) 2005 John Bicket
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
* redistribution must be conditioned upon including a substantially
* similar Disclaimer requirement for further binary redistribution.
* 3. Neither the names of the above-listed copyright holders nor the names
* of any contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL") version 2 as published by the Free
* Software Foundation.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGES.
*
* $Id$
*/
/*
* John Bicket's SampleRate control algorithm.
*/
#if !defined(AUTOCONF_INCLUDED) && !defined(CONFIG_LOCALVERSION)
#include <linux/config.h>
#endif
#include <linux/version.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/random.h>
#include <linux/delay.h>
#include <linux/cache.h>
#include <linux/proc_fs.h>
#include <linux/if_arp.h>
#include <linux/vmalloc.h>
#include <asm/uaccess.h>
#include <net80211/if_media.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_rate.h>
#include "if_athvar.h"
#include "if_ath_hal.h"
#include "ah_desc.h"
#include "sample.h"
#define SAMPLE_DEBUG
#ifdef SAMPLE_DEBUG
enum {
ATH_DEBUG_RATE = 0x00000010, /* rate control */
ATH_DEBUG_ANY = 0xffffffff
};
#define DPRINTF(sc, m, fmt, ...) do { \
if (sc->sc_debug & (m)) \
printk(fmt, __VA_ARGS__); \
} while (0)
#else
#define DPRINTF(sc, m, fmt, ...) do { \
(void) sc; \
} while (0)
#endif
/*
* This file is an implementation of the SampleRate algorithm
* in "Bit-rate Selection in Wireless Networks"
* (http://www.pdos.lcs.mit.edu/papers/jbicket-ms.ps)
*
* SampleRate chooses the bit-rate it predicts will provide the most
* throughput based on estimates of the expected per-packet
* transmission time for each bit-rate. SampleRate periodically sends
* packets at bit-rates other than the current one to estimate when
* another bit-rate will provide better performance. SampleRate
* switches to another bit-rate when its estimated per-packet
* transmission time becomes smaller than the current bit-rate's.
* SampleRate reduces the number of bit-rates it must sample by
* eliminating those that could not perform better than the one
* currently being used. SampleRate also stops probing at a bit-rate
* if it experiences several successive losses.
*
* The difference between the algorithm in the thesis and the one in this
* file is that the one in this file uses a ewma instead of a window.
*
* Also, this implementation tracks the average transmission time for
* a few different packet sizes independently for each link.
*
*/
#include "release.h"
#if 0
static char *version = "1.2 (" RELEASE_VERSION ")";
#endif
static char *dev_info = "ath_rate_sample";
#define STALE_FAILURE_TIMEOUT_MS 10000
#define MIN_SWITCH_MS 1000
#define ENABLE_MRR 1
static int ath_smoothing_rate = 95; /* ewma percentage (out of 100) */
static int ath_sample_rate = 10; /* use x% of transmission time
* sending at a different bit-rate */
static int packet_size_bins[NUM_PACKET_SIZE_BINS] = {250, 1600, 3000};
static void ath_rate_ctl_reset(struct ath_softc *, struct ieee80211_node *);
static __inline int
size_to_bin(int size)
{
unsigned int x;
for (x = 0; x < NUM_PACKET_SIZE_BINS; x++)
if (size <= packet_size_bins[x])
return x;
return NUM_PACKET_SIZE_BINS - 1;
}
static __inline int
bin_to_size(int index) {
return packet_size_bins[index];
}
static __inline int
rate_to_ndx(struct sample_node *sn, int rate)
{
unsigned int x;
for (x = 0; x < sn->num_rates; x++)
if (sn->rates[x].rate == rate)
return x;
return -1;
}
/*
* Calculate the transmit duration of a frame.
*/
static unsigned
calc_usecs_unicast_packet(struct ath_softc *sc, int length,
int rix, int short_retries, int long_retries)
{
const HAL_RATE_TABLE *rt = sc->sc_currates;
int rts, cts;
unsigned t_slot;
unsigned t_difs;
unsigned t_sifs;
struct ieee80211com *ic = &sc->sc_ic;
unsigned int tt = 0;
unsigned int x;
unsigned int cw = ATH_DEFAULT_CWMIN;
unsigned int cix = rt->info[rix].controlRate;
KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
if (!rt->info[rix].rateKbps) {
printk(KERN_WARNING "rix %u (%u) bad ratekbps %u mode %u\n",
rix, rt->info[rix].dot11Rate,
rt->info[rix].rateKbps,
sc->sc_curmode);
return 0;
}
cix = rt->info[rix].controlRate;
/*
* XXX getting mac/phy level timings should be fixed for turbo
* rates, and there is probably a way to get this from the
* hal...
*/
switch (rt->info[rix].phy) {
case IEEE80211_T_OFDM:
t_slot = 9;
t_sifs = 16;
t_difs = 28;
/* fall through */
case IEEE80211_T_TURBO:
t_slot = 9;
t_sifs = 8;
t_difs = 28;
break;
case IEEE80211_T_DS:
/* fall through to default */
default:
/* pg 205 ieee.802.11.pdf */
t_slot = 20;
t_difs = 50;
t_sifs = 10;
}
rts = cts = 0;
if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
rt->info[rix].phy == IEEE80211_T_OFDM) {
if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
rts = 1;
else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
cts = 1;
cix = rt->info[sc->sc_protrix].controlRate;
}
if (0 /*length > ic->ic_rtsthreshold */)
rts = 1;
if (rts || cts) {
int ctsduration = 0;
if (!rt->info[cix].rateKbps) {
printk(KERN_WARNING "cix %u (%u) bad ratekbps %u mode %u\n",
cix, rt->info[cix].dot11Rate,
rt->info[cix].rateKbps,
sc->sc_curmode);
return 0;
}
if (rts) /* SIFS + CTS */
ctsduration += rt->info[cix].spAckDuration;
ctsduration += ath_hal_computetxtime(sc->sc_ah,
rt, length, rix, AH_TRUE);
if (cts) /* SIFS + ACK */
ctsduration += rt->info[cix].spAckDuration;
tt += (short_retries + 1) * ctsduration;
}
tt += t_difs;
tt += (long_retries+1)*(t_sifs + rt->info[rix].spAckDuration);
tt += (long_retries+1)*ath_hal_computetxtime(sc->sc_ah, rt, length,
rix, AH_TRUE);
for (x = 0; x <= short_retries + long_retries; x++) {
cw = MIN(ATH_DEFAULT_CWMAX, (cw << 1) | 1);
tt += (t_slot * cw / 2);
}
return tt;
}
static void
ath_rate_node_init(struct ath_softc *sc, struct ath_node *an)
{
/* NB: assumed to be zero'd by caller */
ath_rate_ctl_reset(sc, &an->an_node);
}
static void
ath_rate_node_cleanup(struct ath_softc *sc, struct ath_node *an)
{
}
#if 0
static void
ath_rate_node_copy(struct ath_softc *sc,
struct ath_node *dst, const struct ath_node *src)
{
struct sample_node *odst = ATH_NODE_SAMPLE(dst);
const struct sample_node *osrc = (const struct sample_node *)&src[1];
memcpy(odst, osrc, sizeof(struct sample_node));
}
#endif
/*
* returns the ndx with the lowest average_tx_time,
* or -1 if all the average_tx_times are 0.
*/
static __inline int best_rate_ndx(struct sample_node *sn, int size_bin,
int require_acked_before)
{
unsigned int x;
unsigned int best_rate_tt = 0;
unsigned int best_rate_ndx = -1;
for (x = 0; x < sn->num_rates; x++) {
unsigned int tt = sn->stats[size_bin][x].average_tx_time;
if (tt <= 0 || (require_acked_before &&
!sn->stats[size_bin][x].packets_acked))
continue;
/* 9 megabits never works better than 12 */
if (sn->rates[x].rate == 18)
continue;
/* don't use a bit-rate that has been failing */
if (sn->stats[size_bin][x].successive_failures > 3)
continue;
if (!best_rate_tt || best_rate_tt > tt) {
best_rate_tt = tt;
best_rate_ndx = x;
}
}
return best_rate_ndx;
}
/*
* pick a good "random" bit-rate to sample other than the current one
*/
static __inline int
pick_sample_ndx(struct sample_node *sn, int size_bin)
{
unsigned int x;
unsigned current_tt;
int current_ndx;
current_ndx = sn->current_rate[size_bin];
if (current_ndx < 0) {
/* no successes yet, send at the lowest bit-rate */
return 0;
}
current_tt = sn->stats[size_bin][current_ndx].average_tx_time;
for (x = 0; x < sn->num_rates; x++) {
unsigned int ndx = (sn->last_sample_ndx[size_bin] + 1 + x) % sn->num_rates;
/* don't sample the current bit-rate */
if (ndx == current_ndx)
continue;
/* this bit-rate is always worse than the current one */
if (sn->stats[size_bin][ndx].perfect_tx_time > current_tt)
continue;
/* rarely sample bit-rates that fail a lot */
if (time_before(jiffies, sn->stats[size_bin][ndx].last_tx +
((HZ * STALE_FAILURE_TIMEOUT_MS) / 1000)) &&
sn->stats[size_bin][ndx].successive_failures > 3)
continue;
/* don't sample more than 2 indexes higher
* for rates higher than 11 megabits
*/
if (sn->rates[ndx].rate > 22 && ndx > current_ndx + 2)
continue;
/* 9 megabits never works better than 12 */
if (sn->rates[ndx].rate == 18)
continue;
/* if we're using 11 megabits, only sample up to 12 megabits
*/
if (sn->rates[current_ndx].rate == 22 && ndx > current_ndx + 1)
continue;
sn->last_sample_ndx[size_bin] = ndx;
return ndx;
}
return current_ndx;
}
static void
ath_rate_findrate(struct ath_softc *sc, struct ath_node *an,
int shortPreamble, size_t frameLen,
u_int8_t *rix, unsigned int *try0, u_int8_t *txrate)
{
struct sample_node *sn = ATH_NODE_SAMPLE(an);
struct sample_softc *ssc = ATH_SOFTC_SAMPLE(sc);
struct ieee80211com *ic = &sc->sc_ic;
unsigned int size_bin, mrr, change_rates;
int ndx, best_ndx;
unsigned average_tx_time;
if (sn->num_rates <= 0) {
printk(KERN_WARNING "%s: no rates for " MAC_FMT "?\n",
dev_info,
MAC_ADDR(an->an_node.ni_macaddr));
return;
}
mrr = sc->sc_mrretry && !(ic->ic_flags & IEEE80211_F_USEPROT) && ENABLE_MRR;
size_bin = size_to_bin(frameLen);
best_ndx = best_rate_ndx(sn, size_bin, !mrr);
if (best_ndx >= 0)
average_tx_time = sn->stats[size_bin][best_ndx].average_tx_time;
else
average_tx_time = 0;
if (sn->static_rate_ndx != -1) {
ndx = sn->static_rate_ndx;
*try0 = ATH_TXMAXTRY;
} else {
*try0 = mrr ? 2 : ATH_TXMAXTRY;
if (sn->sample_tt[size_bin] < average_tx_time * (sn->packets_since_sample[size_bin] * ssc->ath_sample_rate / 100)) {
/*
* we want to limit the time measuring the performance
* of other bit-rates to ath_sample_rate% of the
* total transmission time.
*/
ndx = pick_sample_ndx(sn, size_bin);
if (ndx != sn->current_rate[size_bin])
sn->current_sample_ndx[size_bin] = ndx;
else
sn->current_sample_ndx[size_bin] = -1;
sn->packets_since_sample[size_bin] = 0;
} else {
change_rates = 0;
if (!sn->packets_sent[size_bin] || best_ndx == -1) {
/* no packet has been sent successfully yet, so
* pick an rssi-appropriate bit-rate. We know if
* the rssi is very low that the really high
* bit rates will not work.
*/
int initial_rate = 72;
if (an->an_avgrssi > 50) {
initial_rate = 108; /* 54 mbps */
} else if (an->an_avgrssi > 30) {
initial_rate = 72; /* 36 mbps */
} else {
initial_rate = 22; /* 11 mbps */
}
for (ndx = sn->num_rates-1; ndx > 0; ndx--) {
/*
* pick the highest rate <= initial_rate/2 Mbps
* that hasn't failed.
*/
if (sn->rates[ndx].rate <= initial_rate &&
sn->stats[size_bin][ndx].successive_failures == 0)
break;
}
change_rates = 1;
best_ndx = ndx;
} else if (sn->packets_sent[size_bin] < 20) {
/* let the bit-rate switch quickly during the first few packets */
change_rates = 1;
} else if (time_after(jiffies,
sn->jiffies_since_switch[size_bin] +
((HZ * MIN_SWITCH_MS) / 1000))) {
/* 2 seconds have gone by */
change_rates = 1;
} else if (average_tx_time * 2 < sn->stats[size_bin][sn->current_rate[size_bin]].average_tx_time) {
/* the current bit-rate is twice as slow as the best one */
change_rates = 1;
}
sn->packets_since_sample[size_bin]++;
if (change_rates) {
if (best_ndx != sn->current_rate[size_bin]) {
DPRINTF(sc, ATH_DEBUG_RATE, "%s: " MAC_FMT " size %u switch rate %u (%u/%u) -> %u (%u/%u) after %u packets mrr %u\n",
dev_info,
MAC_ADDR(an->an_node.ni_macaddr),
packet_size_bins[size_bin],
sn->rates[sn->current_rate[size_bin]].rate,
sn->stats[size_bin][sn->current_rate[size_bin]].average_tx_time,
sn->stats[size_bin][sn->current_rate[size_bin]].perfect_tx_time,
sn->rates[best_ndx].rate,
sn->stats[size_bin][best_ndx].average_tx_time,
sn->stats[size_bin][best_ndx].perfect_tx_time,
sn->packets_since_switch[size_bin],
mrr);
}
sn->packets_since_switch[size_bin] = 0;
sn->current_rate[size_bin] = best_ndx;
sn->jiffies_since_switch[size_bin] = jiffies;
}
ndx = sn->current_rate[size_bin];
sn->packets_since_switch[size_bin]++;
if (size_bin == 0) {
/*
* set the visible txrate for this node
* to the rate of small packets
*/
an->an_node.ni_txrate = ndx;
}
}
}
KASSERT(ndx >= 0 && ndx < sn->num_rates,
("%s: bad ndx (%u/%u) for " MAC_FMT "?",
dev_info, ndx, sn->num_rates,
MAC_ADDR(an->an_node.ni_macaddr)));
*rix = sn->rates[ndx].rix;
if (shortPreamble)
*txrate = sn->rates[ndx].shortPreambleRateCode;
else
*txrate = sn->rates[ndx].rateCode;
sn->packets_sent[size_bin]++;
}
static void
ath_rate_get_mrr(struct ath_softc *sc, struct ath_node *an, int shortPreamble,
size_t frame_size, u_int8_t rix, struct ieee80211_mrr *mrr)
{
struct sample_node *sn = ATH_NODE_SAMPLE(an);
unsigned int size_bin;
int ndx;
size_bin = size_to_bin(frame_size);
ndx = sn->current_rate[size_bin]; /* retry at the current bit-rate */
if (!sn->stats[size_bin][ndx].packets_acked)
ndx = 0; /* use the lowest bit-rate */
if (shortPreamble)
mrr->rate1 = sn->rates[ndx].shortPreambleRateCode;
else
mrr->rate1 = sn->rates[ndx].rateCode;
mrr->retries1 = 3;
mrr->rate2 = sn->rates[0].rateCode;
mrr->retries2 = 3;
mrr->rate3 = 0;
mrr->retries3 = 0;
}
static void
update_stats(struct ath_softc *sc, struct ath_node *an,
int frame_size,
int ndx0, int tries0,
int ndx1, int tries1,
int ndx2, int tries2,
int ndx3, int tries3,
int short_tries, int tries, int status)
{
const HAL_RATE_TABLE *rt = sc->sc_currates;
struct sample_node *sn = ATH_NODE_SAMPLE(an);
struct sample_softc *ssc = ATH_SOFTC_SAMPLE(sc);
unsigned int tt = 0;
unsigned int tries_so_far = 0;
unsigned int size_bin;
unsigned int size;
unsigned int rate;
size_bin = size_to_bin(frame_size);
size = bin_to_size(size_bin);
if (!(0 <= ndx0 && ndx0 < sn->num_rates)) {
printk("%s: bogus ndx0 %d, max %u, mode %u\n",
__func__, ndx0, sn->num_rates, sc->sc_curmode);
return;
}
rate = sn->rates[ndx0].rate;
if (!rt->info[ndx0].rateKbps) {
/*
* sometimes we get feedback back for packets we didn't send.
* just ignore these packets.
*/
return;
}
tt += calc_usecs_unicast_packet(sc, size, sn->rates[ndx0].rix,
short_tries,
MIN(tries0, tries) - 1);
tries_so_far += tries0;
if (tries1 && (tries0 < tries)) {
if (!(0 <= ndx1 && ndx1 < sn->num_rates)) {
printk("%s: bogus ndx1 %d, max %u, mode %u\n",
__func__, ndx1, sn->num_rates, sc->sc_curmode);
return;
}
tt += calc_usecs_unicast_packet(sc, size, sn->rates[ndx1].rix,
short_tries,
MIN(tries1 + tries_so_far, tries) - tries_so_far - 1);
}
tries_so_far += tries1;
if (tries2 && ((tries0 + tries1) < tries)) {
if (!(0 <= ndx2 && ndx2 < sn->num_rates)) {
printk("%s: bogus ndx2 %d, max %u, mode %u\n",
__func__, ndx2, sn->num_rates, sc->sc_curmode);
return;
}
tt += calc_usecs_unicast_packet(sc, size, sn->rates[ndx2].rix,
short_tries,
MIN(tries2 + tries_so_far, tries) - tries_so_far - 1);
}
tries_so_far += tries2;
if (tries3 && ((tries0 + tries1 + tries2) < tries)) {
if (!(0 <= ndx3 && ndx3 < sn->num_rates)) {
printk("%s: bogus ndx3 %d, max %u, mode %u\n",
__func__, ndx3, sn->num_rates, sc->sc_curmode);
return;
}
tt += calc_usecs_unicast_packet(sc, size, sn->rates[ndx3].rix,
short_tries,
MIN(tries3 + tries_so_far, tries) - tries_so_far - 1);
}
if (sn->stats[size_bin][ndx0].total_packets < (100 / (100 - ssc->ath_smoothing_rate))) {
/* just average the first few packets */
unsigned int avg_tx = sn->stats[size_bin][ndx0].average_tx_time;
unsigned int packets = sn->stats[size_bin][ndx0].total_packets;
sn->stats[size_bin][ndx0].average_tx_time =
(tt + (avg_tx * packets)) / (packets + 1);
} else {
/* use a ewma */
sn->stats[size_bin][ndx0].average_tx_time =
((sn->stats[size_bin][ndx0].average_tx_time * ssc->ath_smoothing_rate) +
(tt * (100 - ssc->ath_smoothing_rate))) / 100;
}
if (status) {
unsigned int y;
sn->stats[size_bin][ndx0].successive_failures++;
for (y = size_bin + 1; y < NUM_PACKET_SIZE_BINS; y++) {
/* also say larger packets failed since we
* assume if a small packet fails at a lower
* bit-rate then a larger one will also.
*/
sn->stats[y][ndx0].successive_failures++;
sn->stats[y][ndx0].last_tx = jiffies;
sn->stats[y][ndx0].tries += tries;
sn->stats[y][ndx0].total_packets++;
}
} else {
sn->stats[size_bin][ndx0].packets_acked++;
sn->stats[size_bin][ndx0].successive_failures = 0;
}
sn->stats[size_bin][ndx0].tries += tries;
sn->stats[size_bin][ndx0].last_tx = jiffies;
sn->stats[size_bin][ndx0].total_packets++;
if (ndx0 == sn->current_sample_ndx[size_bin]) {
DPRINTF(sc, ATH_DEBUG_RATE, "%s: " MAC_FMT " size %u sample rate %u tries (%u/%u) tt %u avg_tt (%u/%u) status %u\n",
dev_info, MAC_ADDR(an->an_node.ni_macaddr),
size, rate, short_tries, tries, tt,
sn->stats[size_bin][ndx0].average_tx_time,
sn->stats[size_bin][ndx0].perfect_tx_time,
status);
sn->sample_tt[size_bin] = tt;
sn->current_sample_ndx[size_bin] = -1;
}
}
static void
ath_rate_tx_complete(struct ath_softc *sc,
struct ath_node *an, const struct ath_buf *bf)
{
struct sample_node *sn = ATH_NODE_SAMPLE(an);
struct ieee80211com *ic = &sc->sc_ic;
const struct ath_tx_status *ts = &bf->bf_dsstatus.ds_txstat;
const struct ath_desc *ds = &bf->bf_desc[0];
unsigned int final_rate;
unsigned int short_tries;
unsigned int long_tries;
unsigned int frame_size;
unsigned int mrr;
final_rate = sc->sc_hwmap[ts->ts_rate &~ HAL_TXSTAT_ALTRATE].ieeerate;
short_tries = ts->ts_shortretry + 1;
long_tries = ts->ts_longretry + 1;
frame_size = ds->ds_ctl0 & 0x0fff; /* low-order 12 bits of ds_ctl0 */
if (frame_size == 0)
frame_size = 1500;
if (sn->num_rates <= 0) {
DPRINTF(sc, ATH_DEBUG_RATE, "%s: " MAC_FMT " %s no rates yet\n", dev_info,
MAC_ADDR(an->an_node.ni_macaddr), __func__);
return;
}
mrr = sc->sc_mrretry && !(ic->ic_flags & IEEE80211_F_USEPROT) && ENABLE_MRR;
if (!mrr || !(ts->ts_rate & HAL_TXSTAT_ALTRATE)) {
/* only one rate was used */
int ndx = rate_to_ndx(sn, final_rate);
if ((ndx >= 0) && (ndx < sn->num_rates)) {
update_stats(sc, an, frame_size,
ndx, long_tries,
0, 0,
0, 0,
0, 0,
short_tries, long_tries, ts->ts_status);
}
} else {
unsigned int rate[4], tries[4], hwrate[4];
int ndx[4];
int finalTSIdx = ts->ts_finaltsi;
/*
* Process intermediate rates that failed.
*/
if (sc->sc_ah->ah_magic != 0x20065416) {
hwrate[0] = MS(ds->ds_ctl3, AR_XmitRate0);
hwrate[1] = MS(ds->ds_ctl3, AR_XmitRate1);
hwrate[2] = MS(ds->ds_ctl3, AR_XmitRate2);
hwrate[3] = MS(ds->ds_ctl3, AR_XmitRate3);
} else {
hwrate[0] = MS(ds->ds_ctl3, AR5416_XmitRate0);
hwrate[1] = MS(ds->ds_ctl3, AR5416_XmitRate1);
hwrate[2] = MS(ds->ds_ctl3, AR5416_XmitRate2);
hwrate[3] = MS(ds->ds_ctl3, AR5416_XmitRate3);
}
rate[0] = sc->sc_hwmap[hwrate[0]].ieeerate;
tries[0] = MS(ds->ds_ctl2, AR_XmitDataTries0);
ndx[0] = rate_to_ndx(sn, rate[0]);
rate[1] = sc->sc_hwmap[hwrate[1]].ieeerate;
tries[1] = MS(ds->ds_ctl2, AR_XmitDataTries1);
ndx[1] = rate_to_ndx(sn, rate[1]);
rate[2] = sc->sc_hwmap[hwrate[2]].ieeerate;
tries[2] = MS(ds->ds_ctl2, AR_XmitDataTries2);
ndx[2] = rate_to_ndx(sn, rate[2]);
rate[3] = sc->sc_hwmap[hwrate[3]].ieeerate;
tries[3] = MS(ds->ds_ctl2, AR_XmitDataTries3);
ndx[3] = rate_to_ndx(sn, rate[3]);
#if 0
DPRINTF(sc, "%s: " MAC_FMT " size %u finaltsidx %u tries %u status %u rate/try %u/%u %u/%u %u/%u %u/%u\n",
dev_info, MAC_ADDR(an->an_node.ni_macaddr),
bin_to_size(size_to_bin(frame_size)),
finalTSIdx,
long_tries,
ts->ts_status,
rate[0], tries[0],
rate[1], tries[1],
rate[2], tries[2],
rate[3], tries[3]);
#endif
/* NB: series > 0 are not penalized for failure
* based on the try counts under the assumption
* that losses are often bursty and since we
* sample higher rates 1 try at a time doing so
* may unfairly penalize them.
*/
if (tries[0] && ndx[0] >= 0) {
update_stats(sc, an, frame_size,
ndx[0], tries[0],
ndx[1], tries[1],
ndx[2], tries[2],
ndx[3], tries[3],
short_tries, long_tries,
long_tries > tries[0]);
long_tries -= tries[0];
}
if (tries[1] && ndx[1] >= 0 && finalTSIdx > 0) {
update_stats(sc, an, frame_size,
ndx[1], tries[1],
ndx[2], tries[2],
ndx[3], tries[3],
0, 0,
short_tries, long_tries,
ts->ts_status);
long_tries -= tries[1];
}
if (tries[2] && ndx[2] >= 0 && finalTSIdx > 1) {
update_stats(sc, an, frame_size,
ndx[2], tries[2],
ndx[3], tries[3],
0, 0,
0, 0,
short_tries, long_tries,
ts->ts_status);
long_tries -= tries[2];
}
if (tries[3] && ndx[3] >= 0 && finalTSIdx > 2) {
update_stats(sc, an, frame_size,
ndx[3], tries[3],
0, 0,
0, 0,
0, 0,
short_tries, long_tries,
ts->ts_status);
}
}
}
static void
ath_rate_newassoc(struct ath_softc *sc, struct ath_node *an, int isnew)
{
DPRINTF(sc, ATH_DEBUG_RATE, "%s: " MAC_FMT " %s isnew %d\n", dev_info,
MAC_ADDR(an->an_node.ni_macaddr), __func__, isnew);
if (isnew)
ath_rate_ctl_reset(sc, &an->an_node);
}
/*
* Initialize the tables for a node.
*/
static void
ath_rate_ctl_reset(struct ath_softc *sc, struct ieee80211_node *ni)
{
struct ath_node *an = ATH_NODE(ni);
struct sample_node *sn = ATH_NODE_SAMPLE(an);
struct ieee80211vap *vap = ni->ni_vap;
const HAL_RATE_TABLE *rt = sc->sc_currates;
unsigned int x, y;
sn->num_rates = 0;
if (rt == NULL) {
printk(KERN_WARNING "no rates yet! mode %u\n", sc->sc_curmode);
return;
}
sn->static_rate_ndx = -1;
sn->num_rates = ni->ni_rates.rs_nrates;
for (x = 0; x < ni->ni_rates.rs_nrates; x++) {
sn->rates[x].rate = ni->ni_rates.rs_rates[x] & IEEE80211_RATE_VAL;
sn->rates[x].rix = sc->sc_rixmap[sn->rates[x].rate];
if (sn->rates[x].rix == 0xff) {
DPRINTF(sc, ATH_DEBUG_RATE, "%s: %s ignore bogus rix at %u\n",
dev_info, __func__, x);
continue;
}
sn->rates[x].rateCode = rt->info[sn->rates[x].rix].rateCode;
sn->rates[x].shortPreambleRateCode =
rt->info[sn->rates[x].rix].rateCode |
rt->info[sn->rates[x].rix].shortPreamble;
}
ni->ni_txrate = 0;
sn->num_rates = ni->ni_rates.rs_nrates;
if (sn->num_rates <= 0) {
DPRINTF(sc, ATH_DEBUG_RATE,"%s: %s " MAC_FMT " no rates (fixed %u) \n",
dev_info, __func__, MAC_ADDR(ni->ni_macaddr),
vap->iv_fixed_rate);
/* there are no rates yet we're done */
return;
}
if (vap->iv_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
int srate;
/*
* A fixed rate is to be used. Find the corresponding
* index in the rate table.
*/
for (srate = 0; srate < sn->num_rates; srate++)
if (vap->iv_fixed_rate ==
(ni->ni_rates.rs_rates[srate] & IEEE80211_RATE_VAL)) {
sn->static_rate_ndx = srate;
ni->ni_txrate = srate;
return;
}
printk(KERN_WARNING "%s: %s: fixed rate %u%sMbps is not "
"available and will be ignored\n", vap->iv_dev->name,
dev_info, vap->iv_fixed_rate / 2,
(vap->iv_fixed_rate & 1) ? ".5" : "");
}
for (y = 0; y < NUM_PACKET_SIZE_BINS; y++) {
unsigned int size = bin_to_size(y);
int ndx = 0;
sn->packets_sent[y] = 0;
sn->current_sample_ndx[y] = -1;
sn->last_sample_ndx[y] = 0;
for (x = 0; x < ni->ni_rates.rs_nrates; x++) {
if (sn->rates[x].rix == 0xff) {
DPRINTF(sc, ATH_DEBUG_RATE, "%s: %s ignore bogus rix at %u\n",
dev_info, __func__, x);
continue;
}
sn->stats[y][x].successive_failures = 0;
sn->stats[y][x].tries = 0;
sn->stats[y][x].total_packets = 0;
sn->stats[y][x].packets_acked = 0;
sn->stats[y][x].last_tx = 0;
sn->stats[y][x].perfect_tx_time =
calc_usecs_unicast_packet(sc, size,
sn->rates[x].rix,
0, 0);
sn->stats[y][x].average_tx_time =
sn->stats[y][x].perfect_tx_time;
}
/* set the initial rate */
for (ndx = sn->num_rates - 1; ndx > 0; ndx--)
if (sn->rates[ndx].rate <= 72)
break;
sn->current_rate[y] = ndx;
}
DPRINTF(sc, ATH_DEBUG_RATE, "%s: %s " MAC_FMT
" %u rates %u%sMbps (%uus)- %u%sMbps (%uus)\n",
dev_info, __func__, MAC_ADDR(ni->ni_macaddr),
sn->num_rates,
sn->rates[0].rate / 2, sn->rates[0].rate % 0x1 ? ".5" : "",
sn->stats[1][0].perfect_tx_time,
sn->rates[sn->num_rates-1].rate / 2,
sn->rates[sn->num_rates-1].rate % 0x1 ? ".5" : "",
sn->stats[1][sn->num_rates-1].perfect_tx_time);
ni->ni_txrate = sn->current_rate[0];
}
static void
ath_rate_cb(void *arg, struct ieee80211_node *ni)
{
ath_rate_ctl_reset(netdev_priv(ni->ni_ic->ic_dev), ni);
}
/*
* Reset the rate control state for each 802.11 state transition.
*/
static void
ath_rate_newstate(struct ieee80211vap *vap, enum ieee80211_state newstate)
{
struct ieee80211com *ic = vap->iv_ic;
if (newstate == IEEE80211_S_RUN) {
if (ic->ic_opmode != IEEE80211_M_STA) {
/*
* Sync rates for associated stations and neighbors.
*/
ieee80211_iterate_nodes(&ic->ic_sta, ath_rate_cb, NULL);
}
ath_rate_newassoc(netdev_priv(ic->ic_dev), ATH_NODE(vap->iv_bss), 1);
}
}
static struct ath_ratectrl *
ath_rate_attach(struct ath_softc *sc)
{
struct sample_softc *osc;
DPRINTF(sc, ATH_DEBUG_ANY, "%s: %s\n", dev_info, __func__);
_MOD_INC_USE(THIS_MODULE, return NULL);
osc = kmalloc(sizeof(struct sample_softc), GFP_ATOMIC);
if (osc == NULL) {
_MOD_DEC_USE(THIS_MODULE);
return NULL;
}
osc->arc.arc_space = sizeof(struct sample_node);
osc->arc.arc_vap_space = 0;
osc->ath_smoothing_rate = ath_smoothing_rate;
osc->ath_sample_rate = ath_sample_rate;
return &osc->arc;
}
static void
ath_rate_detach(struct ath_ratectrl *arc)
{
struct sample_softc *osc = (struct sample_softc *)arc;
kfree(osc);
_MOD_DEC_USE(THIS_MODULE);
}
static int
proc_read_nodes(struct ieee80211vap *vap, const int size, char *buf, int space)
{
char *p = buf;
struct ieee80211_node *ni;
struct ath_node *an;
struct sample_node *sn;
struct ieee80211_node_table *nt =
(struct ieee80211_node_table *)&vap->iv_ic->ic_sta;
unsigned int ndx;
unsigned int size_bin;
IEEE80211_NODE_TABLE_LOCK_IRQ(nt);
TAILQ_FOREACH(ni, &nt->nt_node, ni_list) {
/* Assume each node needs 500 bytes */
if (buf + space < p + 500)
break;
an = ATH_NODE(ni);
sn = ATH_NODE_SAMPLE(an);
/* Skip ourself */
if (memcmp(vap->iv_myaddr, ni->ni_macaddr,
IEEE80211_ADDR_LEN)==0) {
continue;
}
size_bin = size_to_bin(size);
p += sprintf(p, MAC_FMT "\n", MAC_ADDR(ni->ni_macaddr));
p += sprintf(p,
"rate\ttt\tperfect\tfailed\tpkts\tavg_tries\tlast_tx\n");
for (ndx = 0; ndx < sn->num_rates; ndx++) {
unsigned int a = 1;
unsigned int t = 1;
p += sprintf(p, "%s",
(ndx == sn->current_rate[size_bin]) ? "*" : " ");
p += sprintf(p, "%3u%s",
sn->rates[ndx].rate / 2,
(sn->rates[ndx].rate & 0x1) ? ".5" : ".0");
p += sprintf(p, "\t%4u\t%4u\t%2u\t%6u",
sn->stats[size_bin][ndx].average_tx_time,
sn->stats[size_bin][ndx].perfect_tx_time,
sn->stats[size_bin][ndx].successive_failures,
sn->stats[size_bin][ndx].total_packets);
if (sn->stats[size_bin][ndx].total_packets) {
a = sn->stats[size_bin][ndx].total_packets;
t = sn->stats[size_bin][ndx].tries;
}
p += sprintf(p, "\t%u.%02u\t\t", t / a, (t * 100 / a) % 100);
if (sn->stats[size_bin][ndx].last_tx) {
unsigned long d = jiffies -
sn->stats[size_bin][ndx].last_tx;
p += sprintf(p, "%lu.%02lu", d / HZ, d % HZ);
} else {
p += sprintf(p, "-");
}
p += sprintf(p, "\n");
}
}
IEEE80211_NODE_TABLE_UNLOCK_IRQ(nt);
return (p - buf);
}
static int
proc_ratesample_open(struct inode *inode, struct file *file, unsigned long size)
{
struct proc_ieee80211_priv *pv;
struct ieee80211vap *vap = PDE_DATA(inode);
if (!(file->private_data = kzalloc(sizeof(struct proc_ieee80211_priv),
GFP_KERNEL)))
return -ENOMEM;
/* initially allocate both read and write buffers */
pv = (struct proc_ieee80211_priv *)file->private_data;
pv->rbuf = vmalloc(MAX_PROC_IEEE80211_SIZE);
if (!pv->rbuf) {
kfree(pv);
return -ENOMEM;
}
pv->wbuf = vmalloc(MAX_PROC_IEEE80211_SIZE);
if (!pv->wbuf) {
vfree(pv->rbuf);
kfree(pv);
return -ENOMEM;
}
memset(pv->wbuf, 0, MAX_PROC_IEEE80211_SIZE);
memset(pv->rbuf, 0, MAX_PROC_IEEE80211_SIZE);
pv->max_wlen = MAX_PROC_IEEE80211_SIZE;
pv->max_rlen = MAX_PROC_IEEE80211_SIZE;
/* now read the data into the buffer */
pv->rlen = proc_read_nodes(vap, size, pv->rbuf, MAX_PROC_IEEE80211_SIZE);
return 0;
}
static int
proc_ratesample_open_250(struct inode *inode, struct file *file, unsigned long size)
{
proc_ratesample_open(inode, file, 250);
}
static int
proc_ratesample_open_1600(struct inode *inode, struct file *file, unsigned long size)
{
proc_ratesample_open(inode, file, 1600);
}
static int
proc_ratesample_open_3000(struct inode *inode, struct file *file, unsigned long size)
{
proc_ratesample_open(inode, file, 3000);
}
static struct file_operations proc_ratesample_ops_250 = {
.read = NULL,
.write = NULL,
.open = proc_ratesample_open_250,
.release = NULL,
};
static struct file_operations proc_ratesample_ops_1600 = {
.read = NULL,
.write = NULL,
.open = proc_ratesample_open_1600,
.release = NULL,
};
static struct file_operations proc_ratesample_ops_3000 = {
.read = NULL,
.write = NULL,
.open = proc_ratesample_open_3000,
.release = NULL,
};
static void
ath_rate_dynamic_proc_register(struct ieee80211vap *vap)
{
/* Create proc entries for the rate control algorithm */
ieee80211_proc_vcreate(vap, &proc_ratesample_ops_250, "ratestats_250");
ieee80211_proc_vcreate(vap, &proc_ratesample_ops_1600, "ratestats_1600");
ieee80211_proc_vcreate(vap, &proc_ratesample_ops_3000, "ratestats_3000");
}
static struct ieee80211_rate_ops ath_rate_ops = {
.ratectl_id = IEEE80211_RATE_SAMPLE,
.node_init = ath_rate_node_init,
.node_cleanup = ath_rate_node_cleanup,
.findrate = ath_rate_findrate,
.get_mrr = ath_rate_get_mrr,
.tx_complete = ath_rate_tx_complete,
.newassoc = ath_rate_newassoc,
.newstate = ath_rate_newstate,
.attach = ath_rate_attach,
.detach = ath_rate_detach,
.dynamic_proc_register = ath_rate_dynamic_proc_register,
};
MODULE_AUTHOR("John Bicket");
MODULE_DESCRIPTION("SampleRate bit-rate selection algorithm for Atheros devices");
#ifdef MODULE_VERSION
MODULE_VERSION(RELEASE_VERSION);
#endif
#ifdef MODULE_LICENSE
MODULE_LICENSE("Dual BSD/GPL");
#endif
static int __init
init_ath_rate_sample(void)
{
return ieee80211_rate_register(&ath_rate_ops);
}
module_init(init_ath_rate_sample);
static void __exit
exit_ath_rate_sample(void)
{
ieee80211_rate_unregister(&ath_rate_ops);
}
module_exit(exit_ath_rate_sample);