madwifi/ath_hal/ar5416/ar5416_reset.c

2901 lines
98 KiB
C

/*
* Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
* Copyright (c) 2002-2008 Atheros Communications, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* $FreeBSD$
*/
#include "opt_ah.h"
#include "ah.h"
#include "ah_internal.h"
#include "ah_devid.h"
#include "ah_eeprom_v14.h"
#include "ar5416/ar5416.h"
#include "ar5416/ar5416reg.h"
#include "ar5416/ar5416phy.h"
#ifdef AH_SUPPORT_AR9280
#include "ar5416/ar9280.h"
#endif
/* Eeprom versioning macros. Returns true if the version is equal or newer than the ver specified */
#define EEP_MINOR(_ah) \
(AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK)
#define IS_EEP_MINOR_V2(_ah) (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_2)
#define IS_EEP_MINOR_V3(_ah) (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_3)
/* Additional Time delay to wait after activiting the Base band */
#define BASE_ACTIVATE_DELAY 100 /* 100 usec */
#define PLL_SETTLE_DELAY 300 /* 300 usec */
#define RTC_PLL_SETTLE_DELAY 1000 /* 1 ms */
static void ar5416InitDMA(struct ath_hal *ah);
static void ar5416InitBB(struct ath_hal *ah, HAL_CHANNEL *chan);
static void ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode);
static void ar5416InitQoS(struct ath_hal *ah);
static void ar5416InitUserSettings(struct ath_hal *ah);
static HAL_BOOL ar5416SetTransmitPower(struct ath_hal *ah,
HAL_CHANNEL_INTERNAL *chan, uint16_t *rfXpdGain);
#if 0
static HAL_BOOL ar5416ChannelChange(struct ath_hal *, HAL_CHANNEL *);
#endif
static void ar5416SetDeltaSlope(struct ath_hal *, HAL_CHANNEL_INTERNAL *);
static void ar5416SpurMitigate(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan);
#ifdef AH_SUPPORT_AR9280
static void ar9280SpurMitigate(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan);
#endif
static HAL_BOOL ar5416SetResetPowerOn(struct ath_hal *ah);
static HAL_BOOL ar5416SetReset(struct ath_hal *ah, int type);
static void ar5416InitPLL(struct ath_hal *ah, HAL_CHANNEL *chan);
static HAL_BOOL ar5416SetBoardValues(struct ath_hal *, HAL_CHANNEL_INTERNAL *);
static HAL_BOOL ar5416SetPowerPerRateTable(struct ath_hal *ah,
struct ar5416eeprom *pEepData,
HAL_CHANNEL_INTERNAL *chan, int16_t *ratesArray,
uint16_t cfgCtl, uint16_t AntennaReduction,
uint16_t twiceMaxRegulatoryPower,
uint16_t powerLimit);
static HAL_BOOL ar5416SetPowerCalTable(struct ath_hal *ah,
struct ar5416eeprom *pEepData,
HAL_CHANNEL_INTERNAL *chan,
int16_t *pTxPowerIndexOffset);
static uint16_t ar5416GetMaxEdgePower(uint16_t freq,
CAL_CTL_EDGES *pRdEdgesPower, HAL_BOOL is2GHz);
static void ar5416GetTargetPowers(struct ath_hal *ah,
HAL_CHANNEL_INTERNAL *chan, CAL_TARGET_POWER_HT *powInfo,
uint16_t numChannels, CAL_TARGET_POWER_HT *pNewPower,
uint16_t numRates, HAL_BOOL isHt40Target);
static void ar5416GetTargetPowersLeg(struct ath_hal *ah,
HAL_CHANNEL_INTERNAL *chan, CAL_TARGET_POWER_LEG *powInfo,
uint16_t numChannels, CAL_TARGET_POWER_LEG *pNewPower,
uint16_t numRates, HAL_BOOL isExtTarget);
static int16_t interpolate(uint16_t target, uint16_t srcLeft,
uint16_t srcRight, int16_t targetLeft, int16_t targetRight);
static void ar5416Set11nRegs(struct ath_hal *ah, HAL_CHANNEL *chan);
static void ar5416GetGainBoundariesAndPdadcs(struct ath_hal *ah,
HAL_CHANNEL_INTERNAL *chan, CAL_DATA_PER_FREQ *pRawDataSet,
uint8_t * bChans, uint16_t availPiers,
uint16_t tPdGainOverlap, int16_t *pMinCalPower,
uint16_t * pPdGainBoundaries, uint8_t * pPDADCValues,
uint16_t numXpdGains);
static HAL_BOOL getLowerUpperIndex(uint8_t target, uint8_t *pList,
uint16_t listSize, uint16_t *indexL, uint16_t *indexR);
static HAL_BOOL ar5416FillVpdTable(uint8_t pwrMin, uint8_t pwrMax,
uint8_t *pPwrList, uint8_t *pVpdList,
uint16_t numIntercepts, uint8_t *pRetVpdList);
/*
* Places the device in and out of reset and then places sane
* values in the registers based on EEPROM config, initialization
* vectors (as determined by the mode), and station configuration
*
* bChannelChange is used to preserve DMA/PCU registers across
* a HW Reset during channel change.
*/
HAL_BOOL
ar5416Reset(struct ath_hal *ah, HAL_OPMODE opmode,
HAL_CHANNEL *chan, HAL_BOOL bChannelChange, HAL_STATUS *status)
{
#define N(a) (sizeof (a) / sizeof (a[0]))
#define FAIL(_code) do { ecode = _code; goto bad; } while (0)
struct ath_hal_5212 *ahp = AH5212(ah);
HAL_CHANNEL_INTERNAL *ichan;
uint32_t softLedCfg;
uint32_t saveDefAntenna, saveLedState;
uint32_t macStaId1;
uint16_t rfXpdGain[2];
u_int modesIndex, freqIndex;
HAL_STATUS ecode;
int i, regWrites = 0;
uint32_t powerVal, rssiThrReg;
uint32_t ackTpcPow, ctsTpcPow, chirpTpcPow;
OS_MARK(ah, AH_MARK_RESET, bChannelChange);
#define IS(_c,_f) (((_c)->channelFlags & _f) || 0)
if ((IS(chan, CHANNEL_2GHZ) ^ IS(chan, CHANNEL_5GHZ)) == 0) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: invalid channel %u/0x%x; not marked as 2GHz or 5GHz\n",
__func__, chan->channel, chan->channelFlags);
FAIL(HAL_EINVAL);
}
if ((IS(chan, CHANNEL_OFDM) ^ IS(chan, CHANNEL_CCK)) == 0) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: invalid channel %u/0x%x; not marked as OFDM or CCK\n",
__func__, chan->channel, chan->channelFlags);
FAIL(HAL_EINVAL);
}
#undef IS
/* Bring out of sleep mode */
if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip did not wakeup\n",
__func__);
FAIL(HAL_EIO);
}
/*
* Map public channel to private.
*/
ichan = ath_hal_checkchannel(ah, chan);
if (ichan == AH_NULL) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: invalid channel %u/0x%x; no mapping\n",
__func__, chan->channel, chan->channelFlags);
FAIL(HAL_EINVAL);
} else {
HALDEBUG(ah, HAL_DEBUG_RESET,
"%s: Ch=%u Max=%d Min=%d\n",__func__,
ichan->channel, ichan->maxTxPower, ichan->minTxPower);
}
switch (opmode) {
case HAL_M_STA:
case HAL_M_IBSS:
case HAL_M_HOSTAP:
case HAL_M_MONITOR:
break;
default:
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n",
__func__, opmode);
FAIL(HAL_EINVAL);
break;
}
HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
/* XXX Turn on fast channel change for 5416 */
/*
* Preserve the bmiss rssi threshold and count threshold
* across resets
*/
rssiThrReg = OS_REG_READ(ah, AR_RSSI_THR);
/* If reg is zero, first time thru set to default val */
if (rssiThrReg == 0)
rssiThrReg = INIT_RSSI_THR;
/*
* Preserve the antenna on a channel change
*/
saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
if (saveDefAntenna == 0) /* XXX magic constants */
saveDefAntenna = 1;
/* Save hardware flag before chip reset clears the register */
macStaId1 = OS_REG_READ(ah, AR_STA_ID1) &
(AR_STA_ID1_BASE_RATE_11B | AR_STA_ID1_USE_DEFANT);
/* Save led state from pci config register */
saveLedState = OS_REG_READ(ah, AR_MAC_LED) &
(AR_MAC_LED_ASSOC | AR_MAC_LED_MODE |
AR_MAC_LED_BLINK_THRESH_SEL | AR_MAC_LED_BLINK_SLOW);
softLedCfg = OS_REG_READ(ah, AR_GPIO_INTR_OUT);
/*
* Adjust gain parameters before reset if
* there's an outstanding gain updated.
*/
(void) ar5416GetRfgain(ah);
if (!ar5416ChipReset(ah, chan)) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
FAIL(HAL_EIO);
}
/* Restore bmiss rssi & count thresholds */
OS_REG_WRITE(ah, AR_RSSI_THR, rssiThrReg);
/* Setup the indices for the next set of register array writes */
/* XXX Ignore 11n dynamic mode on the AR5416 for the moment */
switch (chan->channelFlags & CHANNEL_ALL) {
case CHANNEL_A:
case CHANNEL_A_HT20:
modesIndex = 1;
freqIndex = 1;
break;
case CHANNEL_T:
case CHANNEL_A_HT40PLUS:
case CHANNEL_A_HT40MINUS:
modesIndex = 2;
freqIndex = 1;
break;
case CHANNEL_PUREG:
case CHANNEL_G_HT20:
case CHANNEL_B: /* treat as channel G , no B mode suport in owl */
modesIndex = 4;
freqIndex = 2;
break;
case CHANNEL_G_HT40PLUS:
case CHANNEL_G_HT40MINUS:
modesIndex = 3;
freqIndex = 2;
break;
case CHANNEL_108G:
modesIndex = 5;
freqIndex = 2;
break;
default:
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
__func__, chan->channelFlags);
FAIL(HAL_EINVAL);
}
OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
/* Set correct Baseband to analog shift setting to access analog chips. */
OS_REG_WRITE(ah, AR_PHY(0), 0x00000007);
/*
* Write addac shifts
*/
OS_REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
#if 0
/* NB: only required for Sowl */
ar5416EepromSetAddac(ah, ichan);
#endif
regWrites = ath_hal_ini_write(ah, &AH5416(ah)->ah_ini_addac, 1,
regWrites);
OS_REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
/* XXX Merlin ini fixups */
/* XXX Merlin 100us delay for shift registers */
regWrites = ath_hal_ini_write(ah, &ahp->ah_ini_modes, modesIndex,
regWrites);
#ifdef AH_SUPPORT_AR9280
if (AR_SREV_MERLIN_20_OR_LATER(ah)) {
regWrites = ath_hal_ini_write(ah, &AH9280(ah)->ah_ini_rxgain,
modesIndex, regWrites);
regWrites = ath_hal_ini_write(ah, &AH9280(ah)->ah_ini_txgain,
modesIndex, regWrites);
}
#endif
/* XXX Merlin 100us delay for shift registers */
regWrites = ath_hal_ini_write(ah, &ahp->ah_ini_common, 1, regWrites);
/* Setup 11n MAC/Phy mode registers */
ar5416Set11nRegs(ah,chan);
/* XXX updated regWrites? */
ahp->ah_rfHal->writeRegs(ah, modesIndex, freqIndex, regWrites);
#ifdef AH_SUPPORT_AR9280
if (AR_SREV_MERLIN_20(ah) && IS_5GHZ_FAST_CLOCK_EN(ah, chan)) {
/* 5GHz channels w/ Fast Clock use different modal values */
regWrites = ath_hal_ini_write(ah, &AH9280(ah)->ah_ini_xmodes,
modesIndex, regWrites);
}
#endif
OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_DAG_CTRLCCK=0x%x\n",
__func__, OS_REG_READ(ah,AR_PHY_DAG_CTRLCCK));
HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_ADC_CTL=0x%x\n",
__func__, OS_REG_READ(ah,AR_PHY_ADC_CTL));
/* Set the mute mask to the correct default */
if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_2)
OS_REG_WRITE(ah, AR_SEQ_MASK, 0x0000000F);
if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_3) {
/* Clear reg to alllow RX_CLEAR line debug */
OS_REG_WRITE(ah, AR_PHY_BLUETOOTH, 0);
}
if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_4) {
#ifdef notyet
/* Enable burst prefetch for the data queues */
OS_REG_RMW_FIELD(ah, AR_D_FPCTL, ... );
/* Enable double-buffering */
OS_REG_CLR_BIT(ah, AR_TXCFG, AR_TXCFG_DBL_BUF_DIS);
#endif
}
/* Set ADC/DAC select values */
OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0e);
if (AH5416(ah)->ah_rx_chainmask == 0x5 ||
AH5416(ah)->ah_tx_chainmask == 0x5)
OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN);
/* Setup Chain Masks */
OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, AH5416(ah)->ah_rx_chainmask);
OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, AH5416(ah)->ah_rx_chainmask);
OS_REG_WRITE(ah, AR_SELFGEN_MASK, AH5416(ah)->ah_tx_chainmask);
/* Setup the transmit power values. */
if (!ar5416SetTransmitPower(ah, ichan, rfXpdGain)) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: error init'ing transmit power\n", __func__);
FAIL(HAL_EIO);
}
/* Write the analog registers */
if (!ahp->ah_rfHal->setRfRegs(ah, ichan, freqIndex, rfXpdGain)) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: ar5212SetRfRegs failed\n", __func__);
FAIL(HAL_EIO);
}
/* Write delta slope for OFDM enabled modes (A, G, Turbo) */
if (IS_CHAN_OFDM(chan)|| IS_CHAN_HT(chan))
ar5416SetDeltaSlope(ah, ichan);
#ifdef AH_SUPPORT_AR9280
if (AR_SREV_MERLIN_10_OR_LATER(ah))
ar9280SpurMitigate(ah, ichan);
else
#endif
ar5416SpurMitigate(ah, ichan);
/* Setup board specific options for EEPROM version 3 */
if (!ar5416SetBoardValues(ah, ichan)) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: error setting board options\n", __func__);
FAIL(HAL_EIO);
}
OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
| macStaId1
| AR_STA_ID1_RTS_USE_DEF
| ahp->ah_staId1Defaults
);
ar5212SetOperatingMode(ah, opmode);
/* Set Venice BSSID mask according to current state */
OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask));
OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4));
/* Restore previous led state */
OS_REG_WRITE(ah, AR_MAC_LED, OS_REG_READ(ah, AR_MAC_LED) | saveLedState);
/* Restore soft Led state to GPIO */
OS_REG_WRITE(ah, AR_GPIO_INTR_OUT, softLedCfg);
/* Restore previous antenna */
OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
/* then our BSSID */
OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4));
/* Restore bmiss rssi & count thresholds */
OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
OS_REG_WRITE(ah, AR_ISR, ~0); /* cleared on write */
if (!ar5212SetChannel(ah, ichan))
FAIL(HAL_EIO);
OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
/* Set 1:1 QCU to DCU mapping for all queues */
for (i = 0; i < AR_NUM_DCU; i++)
OS_REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
ahp->ah_intrTxqs = 0;
for (i = 0; i < AH_PRIVATE(ah)->ah_caps.halTotalQueues; i++)
ar5212ResetTxQueue(ah, i);
ar5416InitIMR(ah, opmode);
ar5212SetCoverageClass(ah, AH_PRIVATE(ah)->ah_coverageClass, 1);
ar5416InitQoS(ah);
ar5416InitUserSettings(ah);
/*
* disable seq number generation in hw
*/
OS_REG_WRITE(ah, AR_STA_ID1,
OS_REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
ar5416InitDMA(ah);
/*
* program OBS bus to see MAC interrupts
*/
OS_REG_WRITE(ah, AR_OBS, 8);
#ifdef AR5416_INT_MITIGATION
OS_REG_WRITE(ah, AR_MIRT, 0);
OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
#endif
ar5416InitBB(ah, chan);
/* Setup compression registers */
ar5212SetCompRegs(ah); /* XXX not needed? */
/*
* 5416 baseband will check the per rate power table
* and select the lower of the two
*/
ackTpcPow = 63;
ctsTpcPow = 63;
chirpTpcPow = 63;
powerVal = SM(ackTpcPow, AR_TPC_ACK) |
SM(ctsTpcPow, AR_TPC_CTS) |
SM(chirpTpcPow, AR_TPC_CHIRP);
OS_REG_WRITE(ah, AR_TPC, powerVal);
if (!ar5416InitCal(ah, chan))
FAIL(HAL_ESELFTEST);
AH_PRIVATE(ah)->ah_opmode = opmode; /* record operating mode */
if (bChannelChange) {
if (!(ichan->privFlags & CHANNEL_DFS))
ichan->privFlags &= ~CHANNEL_INTERFERENCE;
chan->channelFlags = ichan->channelFlags;
chan->privFlags = ichan->privFlags;
chan->maxRegTxPower = ichan->maxRegTxPower;
chan->maxTxPower = ichan->maxTxPower;
chan->minTxPower = ichan->minTxPower;
}
HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
OS_MARK(ah, AH_MARK_RESET_DONE, 0);
return AH_TRUE;
bad:
OS_MARK(ah, AH_MARK_RESET_DONE, ecode);
if (status != AH_NULL)
*status = ecode;
return AH_FALSE;
#undef FAIL
#undef N
}
#if 0
/*
* This channel change evaluates whether the selected hardware can
* perform a synthesizer-only channel change (no reset). If the
* TX is not stopped, or the RFBus cannot be granted in the given
* time, the function returns false as a reset is necessary
*/
HAL_BOOL
ar5416ChannelChange(struct ath_hal *ah, HAL_CHANNEL *chan)
{
uint32_t ulCount;
uint32_t data, synthDelay, qnum;
uint16_t rfXpdGain[4];
struct ath_hal_5212 *ahp = AH5212(ah);
HAL_CHANNEL_INTERNAL *ichan;
/*
* Map public channel to private.
*/
ichan = ath_hal_checkchannel(ah, chan);
/* TX must be stopped or RF Bus grant will not work */
for (qnum = 0; qnum < AH_PRIVATE(ah)->ah_caps.halTotalQueues; qnum++) {
if (ar5212NumTxPending(ah, qnum)) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: frames pending on queue %d\n", __func__, qnum);
return AH_FALSE;
}
}
/*
* Kill last Baseband Rx Frame - Request analog bus grant
*/
OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_REQUEST);
if (!ath_hal_wait(ah, AR_PHY_RFBUS_GNT, AR_PHY_RFBUS_GRANT_EN, AR_PHY_RFBUS_GRANT_EN)) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: could not kill baseband rx\n",
__func__);
return AH_FALSE;
}
ar5416Set11nRegs(ah, chan); /* NB: setup 5416-specific regs */
/* Change the synth */
if (!ar5212SetChannel(ah, ichan))
return AH_FALSE;
/* Setup the transmit power values. */
if (!ar5416SetTransmitPower(ah, ichan, rfXpdGain)) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: error init'ing transmit power\n", __func__);
return AH_FALSE;
}
/*
* Wait for the frequency synth to settle (synth goes on
* via PHY_ACTIVE_EN). Read the phy active delay register.
* Value is in 100ns increments.
*/
data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
if (IS_CHAN_CCK(ichan)) {
synthDelay = (4 * data) / 22;
} else {
synthDelay = data / 10;
}
OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
/* Release the RFBus Grant */
OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
/* Write delta slope for OFDM enabled modes (A, G, Turbo) */
if (IS_CHAN_OFDM(ichan)|| IS_CHAN_HT(chan)) {
if (ahp->ah_eeprom.ee_version >= AR_EEPROM_VER5_3 &&
!IS_CHAN_B(chan))
ar5212SetSpurMitigation(ah, ichan);
ar5416SetDeltaSlope(ah, ichan);
}
/* XXX spur mitigation for Melin */
/* Copy over internal channel flags to public hal channel */
if (!(ichan->privFlags & CHANNEL_DFS))
ichan->privFlags &= ~CHANNEL_INTERFERENCE;
chan->channelFlags = ichan->channelFlags;
chan->privFlags = ichan->privFlags;
chan->maxRegTxPower = ichan->maxRegTxPower;
chan->maxTxPower = ichan->maxTxPower;
chan->minTxPower = ichan->minTxPower;
AH_PRIVATE(ah)->ah_curchan->ah_channel_time=0;
AH_PRIVATE(ah)->ah_curchan->ah_tsf_last = ar5212GetTsf64(ah);
ar5212TxEnable(ah,AH_TRUE);
return AH_TRUE;
}
#endif
static void
ar5416InitDMA(struct ath_hal *ah)
{
/*
* set AHB_MODE not to do cacheline prefetches
*/
OS_REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
/*
* let mac dma reads be in 128 byte chunks
*/
OS_REG_WRITE(ah, AR_TXCFG,
(OS_REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK) | AR_TXCFG_DMASZ_128B);
/*
* let mac dma writes be in 128 byte chunks
*/
OS_REG_WRITE(ah, AR_RXCFG,
(OS_REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK) | AR_RXCFG_DMASZ_128B);
/* XXX restore TX trigger level */
/*
* Setup receive FIFO threshold to hold off TX activities
*/
OS_REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
/*
* reduce the number of usable entries in PCU TXBUF to avoid
* wrap around.
*/
OS_REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_PCU_TXBUF_CTRL_USABLE_SIZE);
}
static void
ar5416InitBB(struct ath_hal *ah, HAL_CHANNEL *chan)
{
uint32_t synthDelay;
/*
* Wait for the frequency synth to settle (synth goes on
* via AR_PHY_ACTIVE_EN). Read the phy active delay register.
* Value is in 100ns increments.
*/
synthDelay = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
if (IS_CHAN_CCK(chan)) {
synthDelay = (4 * synthDelay) / 22;
} else {
synthDelay /= 10;
}
/* Turn on PLL on 5416 */
HALDEBUG(ah, HAL_DEBUG_RESET, "%s %s channel\n",
__func__, IS_CHAN_5GHZ(chan) ? "5GHz" : "2GHz");
ar5416InitPLL(ah, chan);
/* Activate the PHY (includes baseband activate and synthesizer on) */
OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
/*
* If the AP starts the calibration before the base band timeout
* completes we could get rx_clear false triggering. Add an
* extra BASE_ACTIVATE_DELAY usecs to ensure this condition
* does not happen.
*/
if (IS_CHAN_HALF_RATE(AH_PRIVATE(ah)->ah_curchan)) {
OS_DELAY((synthDelay << 1) + BASE_ACTIVATE_DELAY);
} else if (IS_CHAN_QUARTER_RATE(AH_PRIVATE(ah)->ah_curchan)) {
OS_DELAY((synthDelay << 2) + BASE_ACTIVATE_DELAY);
} else {
OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
}
}
static void
ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode)
{
struct ath_hal_5212 *ahp = AH5212(ah);
/*
* Setup interrupt handling. Note that ar5212ResetTxQueue
* manipulates the secondary IMR's as queues are enabled
* and disabled. This is done with RMW ops to insure the
* settings we make here are preserved.
*/
ahp->ah_maskReg = AR_IMR_TXERR | AR_IMR_TXURN
| AR_IMR_RXERR | AR_IMR_RXORN
| AR_IMR_BCNMISC;
#ifdef AR5416_INT_MITIGATION
ahp->ah_maskReg |= AR_IMR_TXINTM | AR_IMR_RXINTM
| AR_IMR_TXMINTR | AR_IMR_RXMINTR;
#else
ahp->ah_maskReg |= AR_IMR_TXOK | AR_IMR_RXOK;
#endif
if (opmode == HAL_M_HOSTAP)
ahp->ah_maskReg |= AR_IMR_MIB;
OS_REG_WRITE(ah, AR_IMR, ahp->ah_maskReg);
/* Enable bus errors that are OR'd to set the HIUERR bit */
#if 0
OS_REG_WRITE(ah, AR_IMR_S2,
OS_REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT | AR_IMR_S2_CST);
#endif
}
static void
ar5416InitQoS(struct ath_hal *ah)
{
/* QoS support */
OS_REG_WRITE(ah, AR_QOS_CONTROL, 0x100aa); /* XXX magic */
OS_REG_WRITE(ah, AR_QOS_SELECT, 0x3210); /* XXX magic */
/* Turn on NOACK Support for QoS packets */
OS_REG_WRITE(ah, AR_NOACK,
SM(2, AR_NOACK_2BIT_VALUE) |
SM(5, AR_NOACK_BIT_OFFSET) |
SM(0, AR_NOACK_BYTE_OFFSET));
/*
* initialize TXOP for all TIDs
*/
OS_REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
OS_REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
OS_REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
OS_REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
OS_REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
}
static void
ar5416InitUserSettings(struct ath_hal *ah)
{
struct ath_hal_5212 *ahp = AH5212(ah);
/* Restore user-specified settings */
if (ahp->ah_miscMode != 0)
OS_REG_WRITE(ah, AR_MISC_MODE, ahp->ah_miscMode);
if (ahp->ah_sifstime != (u_int) -1)
ar5212SetSifsTime(ah, ahp->ah_sifstime);
if (ahp->ah_slottime != (u_int) -1)
ar5212SetSlotTime(ah, ahp->ah_slottime);
if (ahp->ah_acktimeout != (u_int) -1)
ar5212SetAckTimeout(ah, ahp->ah_acktimeout);
if (ahp->ah_ctstimeout != (u_int) -1)
ar5212SetCTSTimeout(ah, ahp->ah_ctstimeout);
if (AH_PRIVATE(ah)->ah_diagreg != 0)
OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
#if 0 /* XXX Todo */
if (ahp->ah_globaltxtimeout != (u_int) -1)
ar5416SetGlobalTxTimeout(ah, ahp->ah_globaltxtimeout);
#endif
}
/*
* Places the hardware into reset and then pulls it out of reset
*/
HAL_BOOL
ar5416ChipReset(struct ath_hal *ah, HAL_CHANNEL *chan)
{
uint32_t rfMode = 0;
OS_MARK(ah, AH_MARK_CHIPRESET, chan ? chan->channel : 0);
/*
* Warm reset is optimistic.
*/
if (AR_SREV_MERLIN_20_OR_LATER(ah) &&
ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) {
if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON))
return AH_FALSE;
} else {
if (!ar5416SetResetReg(ah, HAL_RESET_WARM))
return AH_FALSE;
}
/* Bring out of sleep mode (AGAIN) */
if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
return AH_FALSE;
ar5416InitPLL(ah, chan);
/*
* Perform warm reset before the mode/PLL/turbo registers
* are changed in order to deactivate the radio. Mode changes
* with an active radio can result in corrupted shifts to the
* radio device.
*/
if (chan != AH_NULL) {
/* treat channel B as channel G , no B mode suport in owl */
rfMode |= (IS_CHAN_G(chan) || IS_CHAN_B(chan)) ?
AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
if (AR_SREV_MERLIN_20(ah) && IS_5GHZ_FAST_CLOCK_EN(ah, chan)) {
/* phy mode bits for 5GHz channels require Fast Clock */
rfMode |= AR_PHY_MODE_DYNAMIC
| AR_PHY_MODE_DYN_CCK_DISABLE;
} else if (!AR_SREV_MERLIN_10_OR_LATER(ah)) {
rfMode |= (IS_CHAN_5GHZ(chan)) ?
AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
}
OS_REG_WRITE(ah, AR_PHY_MODE, rfMode);
}
return AH_TRUE;
}
/*
* Delta slope coefficient computation.
* Required for OFDM operation.
*/
static void
ar5416GetDeltaSlopeValues(struct ath_hal *ah, uint32_t coef_scaled,
uint32_t *coef_mantissa, uint32_t *coef_exponent)
{
#define COEF_SCALE_S 24
uint32_t coef_exp, coef_man;
/*
* ALGO -> coef_exp = 14-floor(log2(coef));
* floor(log2(x)) is the highest set bit position
*/
for (coef_exp = 31; coef_exp > 0; coef_exp--)
if ((coef_scaled >> coef_exp) & 0x1)
break;
/* A coef_exp of 0 is a legal bit position but an unexpected coef_exp */
HALASSERT(coef_exp);
coef_exp = 14 - (coef_exp - COEF_SCALE_S);
/*
* ALGO -> coef_man = floor(coef* 2^coef_exp+0.5);
* The coefficient is already shifted up for scaling
*/
coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
*coef_exponent = coef_exp - 16;
#undef COEF_SCALE_S
}
void
ar5416SetDeltaSlope(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
{
#define INIT_CLOCKMHZSCALED 0x64000000
uint32_t coef_scaled, ds_coef_exp, ds_coef_man;
uint32_t clockMhzScaled = INIT_CLOCKMHZSCALED;
CHAN_CENTERS centers;
if (IS_CHAN_TURBO(chan))
clockMhzScaled *= 2;
/* half and quarter rate can divide the scaled clock by 2 or 4 respectively */
/* scale for selected channel bandwidth */
if (IS_CHAN_HALF_RATE(chan)) {
clockMhzScaled = clockMhzScaled >> 1;
} else if (IS_CHAN_QUARTER_RATE(chan)) {
clockMhzScaled = clockMhzScaled >> 2;
}
/*
* ALGO -> coef = 1e8/fcarrier*fclock/40;
* scaled coef to provide precision for this floating calculation
*/
ar5416GetChannelCenters(ah, chan, &centers);
coef_scaled = clockMhzScaled / centers.synth_center;
ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp);
OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
/*
* For Short GI,
* scaled coeff is 9/10 that of normal coeff
*/
coef_scaled = (9 * coef_scaled)/10;
ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp);
/* for short gi */
OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI,
AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI,
AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
#undef INIT_CLOCKMHZSCALED
}
/*
* Convert to baseband spur frequency given input channel frequency
* and compute register settings below.
*/
#define SPUR_RSSI_THRESH 40
static void
ar5416SpurMitigate(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
{
static const int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60 };
static const int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60 };
static const int inc[4] = { 0, 100, 0, 0 };
int bb_spur = AR_NO_SPUR;
int bin, cur_bin;
int spur_freq_sd;
int spur_delta_phase;
int denominator;
int upper, lower, cur_vit_mask;
int tmp, new;
int i;
int8_t mask_m[123];
int8_t mask_p[123];
int8_t mask_amt;
int tmp_mask;
int cur_bb_spur;
HAL_BOOL is2GHz = IS_CHAN_2GHZ(chan);
OS_MEMZERO(mask_m, sizeof(mask_m));
OS_MEMZERO(mask_p, sizeof(mask_p));
/*
* Need to verify range +/- 9.5 for static ht20, otherwise spur
* is out-of-band and can be ignored.
*/
for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
cur_bb_spur = ath_hal_getSpurChan(ah, i, is2GHz);
if (AR_NO_SPUR == cur_bb_spur)
break;
cur_bb_spur = cur_bb_spur - (chan->channel * 10);
if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
bb_spur = cur_bb_spur;
break;
}
}
if (AR_NO_SPUR == bb_spur)
return;
bin = bb_spur * 32;
tmp = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4_CHAIN(0));
new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4_CHAIN(0), new);
new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
AR_PHY_SPUR_REG_MASK_RATE_SELECT |
AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
OS_REG_WRITE(ah, AR_PHY_SPUR_REG, new);
/*
* Should offset bb_spur by +/- 10 MHz for dynamic 2040 MHz
* config, no offset for HT20.
* spur_delta_phase = bb_spur/40 * 2**21 for static ht20,
* /80 for dyn2040.
*/
spur_delta_phase = ((bb_spur * 524288) / 100) &
AR_PHY_TIMING11_SPUR_DELTA_PHASE;
/*
* in 11A mode the denominator of spur_freq_sd should be 40 and
* it should be 44 in 11G
*/
denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
OS_REG_WRITE(ah, AR_PHY_TIMING11, new);
/*
* ============================================
* pilot mask 1 [31:0] = +6..-26, no 0 bin
* pilot mask 2 [19:0] = +26..+7
*
* channel mask 1 [31:0] = +6..-26, no 0 bin
* channel mask 2 [19:0] = +26..+7
*/
//cur_bin = -26;
cur_bin = -6000;
upper = bin + 100;
lower = bin - 100;
for (i = 0; i < 4; i++) {
int pilot_mask = 0;
int chan_mask = 0;
int bp = 0;
for (bp = 0; bp < 30; bp++) {
if ((cur_bin > lower) && (cur_bin < upper)) {
pilot_mask = pilot_mask | 0x1 << bp;
chan_mask = chan_mask | 0x1 << bp;
}
cur_bin += 100;
}
cur_bin += inc[i];
OS_REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
OS_REG_WRITE(ah, chan_mask_reg[i], chan_mask);
}
/* =================================================
* viterbi mask 1 based on channel magnitude
* four levels 0-3
* - mask (-27 to 27) (reg 64,0x9900 to 67,0x990c)
* [1 2 2 1] for -9.6 or [1 2 1] for +16
* - enable_mask_ppm, all bins move with freq
*
* - mask_select, 8 bits for rates (reg 67,0x990c)
* - mask_rate_cntl, 8 bits for rates (reg 67,0x990c)
* choose which mask to use mask or mask2
*/
/*
* viterbi mask 2 2nd set for per data rate puncturing
* four levels 0-3
* - mask_select, 8 bits for rates (reg 67)
* - mask (-27 to 27) (reg 98,0x9988 to 101,0x9994)
* [1 2 2 1] for -9.6 or [1 2 1] for +16
*/
cur_vit_mask = 6100;
upper = bin + 120;
lower = bin - 120;
for (i = 0; i < 123; i++) {
if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
if ((abs(cur_vit_mask - bin)) < 75) {
mask_amt = 1;
} else {
mask_amt = 0;
}
if (cur_vit_mask < 0) {
mask_m[abs(cur_vit_mask / 100)] = mask_amt;
} else {
mask_p[cur_vit_mask / 100] = mask_amt;
}
}
cur_vit_mask -= 100;
}
tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
| (mask_m[48] << 26) | (mask_m[49] << 24)
| (mask_m[50] << 22) | (mask_m[51] << 20)
| (mask_m[52] << 18) | (mask_m[53] << 16)
| (mask_m[54] << 14) | (mask_m[55] << 12)
| (mask_m[56] << 10) | (mask_m[57] << 8)
| (mask_m[58] << 6) | (mask_m[59] << 4)
| (mask_m[60] << 2) | (mask_m[61] << 0);
OS_REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
OS_REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
tmp_mask = (mask_m[31] << 28)
| (mask_m[32] << 26) | (mask_m[33] << 24)
| (mask_m[34] << 22) | (mask_m[35] << 20)
| (mask_m[36] << 18) | (mask_m[37] << 16)
| (mask_m[48] << 14) | (mask_m[39] << 12)
| (mask_m[40] << 10) | (mask_m[41] << 8)
| (mask_m[42] << 6) | (mask_m[43] << 4)
| (mask_m[44] << 2) | (mask_m[45] << 0);
OS_REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
OS_REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
| (mask_m[18] << 26) | (mask_m[18] << 24)
| (mask_m[20] << 22) | (mask_m[20] << 20)
| (mask_m[22] << 18) | (mask_m[22] << 16)
| (mask_m[24] << 14) | (mask_m[24] << 12)
| (mask_m[25] << 10) | (mask_m[26] << 8)
| (mask_m[27] << 6) | (mask_m[28] << 4)
| (mask_m[29] << 2) | (mask_m[30] << 0);
OS_REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
OS_REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
tmp_mask = (mask_m[ 0] << 30) | (mask_m[ 1] << 28)
| (mask_m[ 2] << 26) | (mask_m[ 3] << 24)
| (mask_m[ 4] << 22) | (mask_m[ 5] << 20)
| (mask_m[ 6] << 18) | (mask_m[ 7] << 16)
| (mask_m[ 8] << 14) | (mask_m[ 9] << 12)
| (mask_m[10] << 10) | (mask_m[11] << 8)
| (mask_m[12] << 6) | (mask_m[13] << 4)
| (mask_m[14] << 2) | (mask_m[15] << 0);
OS_REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
OS_REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
tmp_mask = (mask_p[15] << 28)
| (mask_p[14] << 26) | (mask_p[13] << 24)
| (mask_p[12] << 22) | (mask_p[11] << 20)
| (mask_p[10] << 18) | (mask_p[ 9] << 16)
| (mask_p[ 8] << 14) | (mask_p[ 7] << 12)
| (mask_p[ 6] << 10) | (mask_p[ 5] << 8)
| (mask_p[ 4] << 6) | (mask_p[ 3] << 4)
| (mask_p[ 2] << 2) | (mask_p[ 1] << 0);
OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
OS_REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
tmp_mask = (mask_p[30] << 28)
| (mask_p[29] << 26) | (mask_p[28] << 24)
| (mask_p[27] << 22) | (mask_p[26] << 20)
| (mask_p[25] << 18) | (mask_p[24] << 16)
| (mask_p[23] << 14) | (mask_p[22] << 12)
| (mask_p[21] << 10) | (mask_p[20] << 8)
| (mask_p[19] << 6) | (mask_p[18] << 4)
| (mask_p[17] << 2) | (mask_p[16] << 0);
OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
OS_REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
tmp_mask = (mask_p[45] << 28)
| (mask_p[44] << 26) | (mask_p[43] << 24)
| (mask_p[42] << 22) | (mask_p[41] << 20)
| (mask_p[40] << 18) | (mask_p[39] << 16)
| (mask_p[38] << 14) | (mask_p[37] << 12)
| (mask_p[36] << 10) | (mask_p[35] << 8)
| (mask_p[34] << 6) | (mask_p[33] << 4)
| (mask_p[32] << 2) | (mask_p[31] << 0);
OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
OS_REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
| (mask_p[59] << 26) | (mask_p[58] << 24)
| (mask_p[57] << 22) | (mask_p[56] << 20)
| (mask_p[55] << 18) | (mask_p[54] << 16)
| (mask_p[53] << 14) | (mask_p[52] << 12)
| (mask_p[51] << 10) | (mask_p[50] << 8)
| (mask_p[49] << 6) | (mask_p[48] << 4)
| (mask_p[47] << 2) | (mask_p[46] << 0);
OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
OS_REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
}
#ifdef AH_SUPPORT_AR9280
#define AR_BASE_FREQ_2GHZ 2300
#define AR_BASE_FREQ_5GHZ 4900
#define AR_SPUR_FEEQ_BOUND_HT40 19
#define AR_SPUR_FEEQ_BOUND_HT20 10
static void
ar9280SpurMitigate(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *ichan)
{
static const int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60 };
static const int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60 };
static int inc[4] = { 0, 100, 0, 0 };
int bb_spur = AR_NO_SPUR;
int freq;
int bin, cur_bin;
int bb_spur_off, spur_subchannel_sd;
int spur_freq_sd;
int spur_delta_phase;
int denominator;
int upper, lower, cur_vit_mask;
int tmp, newVal;
int i;
CHAN_CENTERS centers;
int8_t mask_m[123];
int8_t mask_p[123];
int8_t mask_amt;
int tmp_mask;
int cur_bb_spur;
HAL_BOOL is2GHz = IS_CHAN_2GHZ(ichan);
OS_MEMZERO(&mask_m, sizeof(int8_t) * 123);
OS_MEMZERO(&mask_p, sizeof(int8_t) * 123);
ar5416GetChannelCenters(ah, ichan, &centers);
freq = centers.synth_center;
/*
* Need to verify range +/- 9.38 for static ht20 and +/- 18.75 for ht40,
* otherwise spur is out-of-band and can be ignored.
*/
for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
cur_bb_spur = ath_hal_getSpurChan(ah, i, is2GHz);
/* Get actual spur freq in MHz from EEPROM read value */
if (is2GHz) {
cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
} else {
cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
}
if (AR_NO_SPUR == cur_bb_spur)
break;
cur_bb_spur = cur_bb_spur - freq;
if (IS_CHAN_HT40(ichan)) {
if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
(cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
bb_spur = cur_bb_spur;
break;
}
} else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
(cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
bb_spur = cur_bb_spur;
break;
}
}
if (AR_NO_SPUR == bb_spur) {
#if 1
/*
* MRC CCK can interfere with beacon detection and cause deaf/mute.
* Disable MRC CCK for now.
*/
OS_REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK, AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
#else
/* Enable MRC CCK if no spur is found in this channel. */
OS_REG_SET_BIT(ah, AR_PHY_FORCE_CLKEN_CCK, AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
#endif
return;
} else {
/*
* For Merlin, spur can break CCK MRC algorithm. Disable CCK MRC if spur
* is found in this channel.
*/
OS_REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK, AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
}
bin = bb_spur * 320;
tmp = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4_CHAIN(0));
newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4_CHAIN(0), newVal);
newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
AR_PHY_SPUR_REG_MASK_RATE_SELECT |
AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
OS_REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
/* Pick control or extn channel to cancel the spur */
if (IS_CHAN_HT40(ichan)) {
if (bb_spur < 0) {
spur_subchannel_sd = 1;
bb_spur_off = bb_spur + 10;
} else {
spur_subchannel_sd = 0;
bb_spur_off = bb_spur - 10;
}
} else {
spur_subchannel_sd = 0;
bb_spur_off = bb_spur;
}
/*
* spur_delta_phase = bb_spur/40 * 2**21 for static ht20,
* /80 for dyn2040.
*/
if (IS_CHAN_HT40(ichan))
spur_delta_phase = ((bb_spur * 262144) / 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
else
spur_delta_phase = ((bb_spur * 524288) / 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
/*
* in 11A mode the denominator of spur_freq_sd should be 40 and
* it should be 44 in 11G
*/
denominator = IS_CHAN_2GHZ(ichan) ? 44 : 40;
spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
OS_REG_WRITE(ah, AR_PHY_TIMING11, newVal);
/* Choose to cancel between control and extension channels */
newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
OS_REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
/*
* ============================================
* Set Pilot and Channel Masks
*
* pilot mask 1 [31:0] = +6..-26, no 0 bin
* pilot mask 2 [19:0] = +26..+7
*
* channel mask 1 [31:0] = +6..-26, no 0 bin
* channel mask 2 [19:0] = +26..+7
*/
cur_bin = -6000;
upper = bin + 100;
lower = bin - 100;
for (i = 0; i < 4; i++) {
int pilot_mask = 0;
int chan_mask = 0;
int bp = 0;
for (bp = 0; bp < 30; bp++) {
if ((cur_bin > lower) && (cur_bin < upper)) {
pilot_mask = pilot_mask | 0x1 << bp;
chan_mask = chan_mask | 0x1 << bp;
}
cur_bin += 100;
}
cur_bin += inc[i];
OS_REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
OS_REG_WRITE(ah, chan_mask_reg[i], chan_mask);
}
/* =================================================
* viterbi mask 1 based on channel magnitude
* four levels 0-3
* - mask (-27 to 27) (reg 64,0x9900 to 67,0x990c)
* [1 2 2 1] for -9.6 or [1 2 1] for +16
* - enable_mask_ppm, all bins move with freq
*
* - mask_select, 8 bits for rates (reg 67,0x990c)
* - mask_rate_cntl, 8 bits for rates (reg 67,0x990c)
* choose which mask to use mask or mask2
*/
/*
* viterbi mask 2 2nd set for per data rate puncturing
* four levels 0-3
* - mask_select, 8 bits for rates (reg 67)
* - mask (-27 to 27) (reg 98,0x9988 to 101,0x9994)
* [1 2 2 1] for -9.6 or [1 2 1] for +16
*/
cur_vit_mask = 6100;
upper = bin + 120;
lower = bin - 120;
for (i = 0; i < 123; i++) {
if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
if ((abs(cur_vit_mask - bin)) < 75) {
mask_amt = 1;
} else {
mask_amt = 0;
}
if (cur_vit_mask < 0) {
mask_m[abs(cur_vit_mask / 100)] = mask_amt;
} else {
mask_p[cur_vit_mask / 100] = mask_amt;
}
}
cur_vit_mask -= 100;
}
tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
| (mask_m[48] << 26) | (mask_m[49] << 24)
| (mask_m[50] << 22) | (mask_m[51] << 20)
| (mask_m[52] << 18) | (mask_m[53] << 16)
| (mask_m[54] << 14) | (mask_m[55] << 12)
| (mask_m[56] << 10) | (mask_m[57] << 8)
| (mask_m[58] << 6) | (mask_m[59] << 4)
| (mask_m[60] << 2) | (mask_m[61] << 0);
OS_REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
OS_REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
tmp_mask = (mask_m[31] << 28)
| (mask_m[32] << 26) | (mask_m[33] << 24)
| (mask_m[34] << 22) | (mask_m[35] << 20)
| (mask_m[36] << 18) | (mask_m[37] << 16)
| (mask_m[48] << 14) | (mask_m[39] << 12)
| (mask_m[40] << 10) | (mask_m[41] << 8)
| (mask_m[42] << 6) | (mask_m[43] << 4)
| (mask_m[44] << 2) | (mask_m[45] << 0);
OS_REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
OS_REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
| (mask_m[18] << 26) | (mask_m[18] << 24)
| (mask_m[20] << 22) | (mask_m[20] << 20)
| (mask_m[22] << 18) | (mask_m[22] << 16)
| (mask_m[24] << 14) | (mask_m[24] << 12)
| (mask_m[25] << 10) | (mask_m[26] << 8)
| (mask_m[27] << 6) | (mask_m[28] << 4)
| (mask_m[29] << 2) | (mask_m[30] << 0);
OS_REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
OS_REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
tmp_mask = (mask_m[ 0] << 30) | (mask_m[ 1] << 28)
| (mask_m[ 2] << 26) | (mask_m[ 3] << 24)
| (mask_m[ 4] << 22) | (mask_m[ 5] << 20)
| (mask_m[ 6] << 18) | (mask_m[ 7] << 16)
| (mask_m[ 8] << 14) | (mask_m[ 9] << 12)
| (mask_m[10] << 10) | (mask_m[11] << 8)
| (mask_m[12] << 6) | (mask_m[13] << 4)
| (mask_m[14] << 2) | (mask_m[15] << 0);
OS_REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
OS_REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
tmp_mask = (mask_p[15] << 28)
| (mask_p[14] << 26) | (mask_p[13] << 24)
| (mask_p[12] << 22) | (mask_p[11] << 20)
| (mask_p[10] << 18) | (mask_p[ 9] << 16)
| (mask_p[ 8] << 14) | (mask_p[ 7] << 12)
| (mask_p[ 6] << 10) | (mask_p[ 5] << 8)
| (mask_p[ 4] << 6) | (mask_p[ 3] << 4)
| (mask_p[ 2] << 2) | (mask_p[ 1] << 0);
OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
OS_REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
tmp_mask = (mask_p[30] << 28)
| (mask_p[29] << 26) | (mask_p[28] << 24)
| (mask_p[27] << 22) | (mask_p[26] << 20)
| (mask_p[25] << 18) | (mask_p[24] << 16)
| (mask_p[23] << 14) | (mask_p[22] << 12)
| (mask_p[21] << 10) | (mask_p[20] << 8)
| (mask_p[19] << 6) | (mask_p[18] << 4)
| (mask_p[17] << 2) | (mask_p[16] << 0);
OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
OS_REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
tmp_mask = (mask_p[45] << 28)
| (mask_p[44] << 26) | (mask_p[43] << 24)
| (mask_p[42] << 22) | (mask_p[41] << 20)
| (mask_p[40] << 18) | (mask_p[39] << 16)
| (mask_p[38] << 14) | (mask_p[37] << 12)
| (mask_p[36] << 10) | (mask_p[35] << 8)
| (mask_p[34] << 6) | (mask_p[33] << 4)
| (mask_p[32] << 2) | (mask_p[31] << 0);
OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
OS_REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
| (mask_p[59] << 26) | (mask_p[58] << 24)
| (mask_p[57] << 22) | (mask_p[56] << 20)
| (mask_p[55] << 18) | (mask_p[54] << 16)
| (mask_p[53] << 14) | (mask_p[52] << 12)
| (mask_p[51] << 10) | (mask_p[50] << 8)
| (mask_p[49] << 6) | (mask_p[48] << 4)
| (mask_p[47] << 2) | (mask_p[46] << 0);
OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
OS_REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
}
#endif /* AH_SUPPORT_AR9280 */
/*
* Set a limit on the overall output power. Used for dynamic
* transmit power control and the like.
*
* NB: limit is in units of 0.5 dbM.
*/
HAL_BOOL
ar5416SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
{
uint16_t dummyXpdGains[2];
AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER);
return ar5416SetTransmitPower(ah, AH_PRIVATE(ah)->ah_curchan,
dummyXpdGains);
}
HAL_BOOL
ar5416GetChipPowerLimits(struct ath_hal *ah, HAL_CHANNEL *chans, uint32_t nchans)
{
struct ath_hal_5212 *ahp = AH5212(ah);
int16_t minPower, maxPower;
HAL_CHANNEL *chan;
int i;
/*
* Get Pier table max and min powers.
*/
for (i = 0; i < nchans; i++) {
chan = &chans[i];
if (ahp->ah_rfHal->getChannelMaxMinPower(ah, chan, &maxPower, &minPower)) {
/* NB: rf code returns 1/4 dBm units, convert */
chan->maxTxPower = maxPower / 2;
chan->minTxPower = minPower / 2;
} else {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: no min/max power for %u/0x%x\n",
__func__, chan->channel, chan->channelFlags);
chan->maxTxPower = AR5416_MAX_RATE_POWER;
chan->minTxPower = 0;
}
}
#ifdef AH_DEBUG
for (i=0; i<nchans; i++) {
HALDEBUG(ah, HAL_DEBUG_RESET,
"Chan %d: MaxPow = %d MinPow = %d\n",
chans[i].channel,chans[i].maxTxPower, chans[i].minTxPower);
}
#endif
return AH_TRUE;
}
/* XXX gag, this is sick */
typedef enum Ar5416_Rates {
rate6mb, rate9mb, rate12mb, rate18mb,
rate24mb, rate36mb, rate48mb, rate54mb,
rate1l, rate2l, rate2s, rate5_5l,
rate5_5s, rate11l, rate11s, rateXr,
rateHt20_0, rateHt20_1, rateHt20_2, rateHt20_3,
rateHt20_4, rateHt20_5, rateHt20_6, rateHt20_7,
rateHt40_0, rateHt40_1, rateHt40_2, rateHt40_3,
rateHt40_4, rateHt40_5, rateHt40_6, rateHt40_7,
rateDupCck, rateDupOfdm, rateExtCck, rateExtOfdm,
Ar5416RateSize
} AR5416_RATES;
/**************************************************************
* ar5416SetTransmitPower
*
* Set the transmit power in the baseband for the given
* operating channel and mode.
*/
static HAL_BOOL
ar5416SetTransmitPower(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, uint16_t *rfXpdGain)
{
#define POW_SM(_r, _s) (((_r) & 0x3f) << (_s))
#define N(a) (sizeof (a) / sizeof (a[0]))
MODAL_EEP_HEADER *pModal;
struct ath_hal_5212 *ahp = AH5212(ah);
int16_t ratesArray[Ar5416RateSize];
int16_t txPowerIndexOffset = 0;
uint8_t ht40PowerIncForPdadc = 2;
int i;
uint16_t cfgCtl;
uint16_t powerLimit;
uint16_t twiceAntennaReduction;
uint16_t twiceMaxRegulatoryPower;
int16_t maxPower;
HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
struct ar5416eeprom *pEepData = &ee->ee_base;
HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
/* Setup info for the actual eeprom */
ath_hal_memzero(ratesArray, sizeof(ratesArray));
cfgCtl = ath_hal_getctl(ah, (HAL_CHANNEL *)chan);
powerLimit = chan->maxRegTxPower * 2;
twiceAntennaReduction = chan->antennaMax;
twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
pModal = &pEepData->modalHeader[IS_CHAN_2GHZ(chan)];
HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n",
__func__,chan->channel, cfgCtl );
if (IS_EEP_MINOR_V2(ah)) {
ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
}
if (!ar5416SetPowerPerRateTable(ah, pEepData, chan,
&ratesArray[0],cfgCtl,
twiceAntennaReduction,
twiceMaxRegulatoryPower, powerLimit)) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: unable to set tx power per rate table\n", __func__);
return AH_FALSE;
}
if (!ar5416SetPowerCalTable(ah, pEepData, chan, &txPowerIndexOffset)) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n",
__func__);
return AH_FALSE;
}
maxPower = AH_MAX(ratesArray[rate6mb], ratesArray[rateHt20_0]);
if (IS_CHAN_2GHZ(chan)) {
maxPower = AH_MAX(maxPower, ratesArray[rate1l]);
}
if (IS_CHAN_HT40(chan)) {
maxPower = AH_MAX(maxPower, ratesArray[rateHt40_0]);
}
ahp->ah_tx6PowerInHalfDbm = maxPower;
AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower;
ahp->ah_txPowerIndexOffset = txPowerIndexOffset;
/*
* txPowerIndexOffset is set by the SetPowerTable() call -
* adjust the rate table (0 offset if rates EEPROM not loaded)
*/
for (i = 0; i < N(ratesArray); i++) {
ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
if (ratesArray[i] > AR5416_MAX_RATE_POWER)
ratesArray[i] = AR5416_MAX_RATE_POWER;
}
#ifdef AH_EEPROM_DUMP
ar5416PrintPowerPerRate(ah, ratesArray);
#endif
/* Write the OFDM power per rate set */
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
POW_SM(ratesArray[rate18mb], 24)
| POW_SM(ratesArray[rate12mb], 16)
| POW_SM(ratesArray[rate9mb], 8)
| POW_SM(ratesArray[rate6mb], 0)
);
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
POW_SM(ratesArray[rate54mb], 24)
| POW_SM(ratesArray[rate48mb], 16)
| POW_SM(ratesArray[rate36mb], 8)
| POW_SM(ratesArray[rate24mb], 0)
);
if (IS_CHAN_2GHZ(chan)) {
/* Write the CCK power per rate set */
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
POW_SM(ratesArray[rate2s], 24)
| POW_SM(ratesArray[rate2l], 16)
| POW_SM(ratesArray[rateXr], 8) /* XR target power */
| POW_SM(ratesArray[rate1l], 0)
);
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
POW_SM(ratesArray[rate11s], 24)
| POW_SM(ratesArray[rate11l], 16)
| POW_SM(ratesArray[rate5_5s], 8)
| POW_SM(ratesArray[rate5_5l], 0)
);
HALDEBUG(ah, HAL_DEBUG_RESET,
"%s AR_PHY_POWER_TX_RATE3=0x%x AR_PHY_POWER_TX_RATE4=0x%x\n",
__func__, OS_REG_READ(ah,AR_PHY_POWER_TX_RATE3),
OS_REG_READ(ah,AR_PHY_POWER_TX_RATE4));
}
/* Write the HT20 power per rate set */
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
POW_SM(ratesArray[rateHt20_3], 24)
| POW_SM(ratesArray[rateHt20_2], 16)
| POW_SM(ratesArray[rateHt20_1], 8)
| POW_SM(ratesArray[rateHt20_0], 0)
);
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
POW_SM(ratesArray[rateHt20_7], 24)
| POW_SM(ratesArray[rateHt20_6], 16)
| POW_SM(ratesArray[rateHt20_5], 8)
| POW_SM(ratesArray[rateHt20_4], 0)
);
if (IS_CHAN_HT40(chan)) {
/* Write the HT40 power per rate set */
/* Correct PAR difference between HT40 and HT20/LEGACY */
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
POW_SM(ratesArray[rateHt40_3] + ht40PowerIncForPdadc, 24)
| POW_SM(ratesArray[rateHt40_2] + ht40PowerIncForPdadc, 16)
| POW_SM(ratesArray[rateHt40_1] + ht40PowerIncForPdadc, 8)
| POW_SM(ratesArray[rateHt40_0] + ht40PowerIncForPdadc, 0)
);
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
POW_SM(ratesArray[rateHt40_7] + ht40PowerIncForPdadc, 24)
| POW_SM(ratesArray[rateHt40_6] + ht40PowerIncForPdadc, 16)
| POW_SM(ratesArray[rateHt40_5] + ht40PowerIncForPdadc, 8)
| POW_SM(ratesArray[rateHt40_4] + ht40PowerIncForPdadc, 0)
);
/* Write the Dup/Ext 40 power per rate set */
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
POW_SM(ratesArray[rateExtOfdm], 24)
| POW_SM(ratesArray[rateExtCck], 16)
| POW_SM(ratesArray[rateDupOfdm], 8)
| POW_SM(ratesArray[rateDupCck], 0)
);
}
/* Write the Power subtraction for dynamic chain changing, for per-packet powertx */
OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
POW_SM(pModal->pwrDecreaseFor3Chain, 6)
| POW_SM(pModal->pwrDecreaseFor2Chain, 0)
);
return AH_TRUE;
#undef POW_SM
#undef N
}
/*
* Exported call to check for a recent gain reading and return
* the current state of the thermal calibration gain engine.
*/
HAL_RFGAIN
ar5416GetRfgain(struct ath_hal *ah)
{
return HAL_RFGAIN_INACTIVE;
}
/*
* Places all of hardware into reset
*/
HAL_BOOL
ar5416Disable(struct ath_hal *ah)
{
if (!ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
return AH_FALSE;
return ar5416SetResetReg(ah, HAL_RESET_COLD);
}
/*
* Places the PHY and Radio chips into reset. A full reset
* must be called to leave this state. The PCI/MAC/PCU are
* not placed into reset as we must receive interrupt to
* re-enable the hardware.
*/
HAL_BOOL
ar5416PhyDisable(struct ath_hal *ah)
{
return ar5416SetResetReg(ah, HAL_RESET_WARM);
}
/*
* Write the given reset bit mask into the reset register
*/
HAL_BOOL
ar5416SetResetReg(struct ath_hal *ah, uint32_t type)
{
/*
* Set force wake
*/
OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
switch (type) {
case HAL_RESET_POWER_ON:
return ar5416SetResetPowerOn(ah);
break;
case HAL_RESET_WARM:
case HAL_RESET_COLD:
return ar5416SetReset(ah, type);
break;
default:
return AH_FALSE;
}
}
static HAL_BOOL
ar5416SetResetPowerOn(struct ath_hal *ah)
{
/* Power On Reset (Hard Reset) */
/*
* Set force wake
*
* If the MAC was running, previously calling
* reset will wake up the MAC but it may go back to sleep
* before we can start polling.
* Set force wake stops that
* This must be called before initiating a hard reset.
*/
OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
/*
* RTC reset and clear
*/
OS_REG_WRITE(ah, AR_RTC_RESET, 0);
OS_DELAY(20);
OS_REG_WRITE(ah, AR_RTC_RESET, 1);
/*
* Poll till RTC is ON
*/
if (!ath_hal_wait(ah, AR_RTC_STATUS, AR_RTC_PM_STATUS_M, AR_RTC_STATUS_ON)) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC not waking up\n", __func__);
return AH_FALSE;
}
return ar5416SetReset(ah, HAL_RESET_COLD);
}
static HAL_BOOL
ar5416SetReset(struct ath_hal *ah, int type)
{
uint32_t tmpReg, mask;
/*
* Force wake
*/
OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
/*
* Reset AHB
*/
tmpReg = OS_REG_READ(ah, AR_INTR_SYNC_CAUSE);
if (tmpReg & (AR_INTR_SYNC_LOCAL_TIMEOUT|AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
OS_REG_WRITE(ah, AR_RC, AR_RC_AHB|AR_RC_HOSTIF);
} else {
OS_REG_WRITE(ah, AR_RC, AR_RC_AHB);
}
/*
* Set Mac(BB,Phy) Warm Reset
*/
switch (type) {
case HAL_RESET_WARM:
OS_REG_WRITE(ah, AR_RTC_RC, AR_RTC_RC_MAC_WARM);
break;
case HAL_RESET_COLD:
OS_REG_WRITE(ah, AR_RTC_RC, AR_RTC_RC_MAC_WARM|AR_RTC_RC_MAC_COLD);
break;
default:
HALASSERT(0);
break;
}
/*
* Clear resets and force wakeup
*/
OS_REG_WRITE(ah, AR_RTC_RC, 0);
if (!ath_hal_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0)) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC stuck in MAC reset\n", __func__);
return AH_FALSE;
}
/* Clear AHB reset */
OS_REG_WRITE(ah, AR_RC, 0);
if (type == HAL_RESET_COLD) {
if (isBigEndian()) {
/*
* Set CFG, little-endian for register
* and descriptor accesses.
*/
mask = INIT_CONFIG_STATUS | AR_CFG_SWRD | AR_CFG_SWRG;
#ifndef AH_NEED_DESC_SWAP
mask |= AR_CFG_SWTD;
#endif
HALDEBUG(ah, HAL_DEBUG_RESET,
"%s Applying descriptor swap\n", __func__);
OS_REG_WRITE(ah, AR_CFG, LE_READ_4(&mask));
} else
OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
}
ar5416InitPLL(ah, AH_NULL);
return AH_TRUE;
}
#ifndef IS_5GHZ_FAST_CLOCK_EN
#define IS_5GHZ_FAST_CLOCK_EN(ah, chan) AH_FALSE
#endif
static void
ar5416InitPLL(struct ath_hal *ah, HAL_CHANNEL *chan)
{
uint32_t pll;
if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
pll = SM(0x5, AR_RTC_SOWL_PLL_REFDIV);
if (chan != AH_NULL && IS_CHAN_HALF_RATE(chan)) {
pll |= SM(0x1, AR_RTC_SOWL_PLL_CLKSEL);
} else if (chan && IS_CHAN_QUARTER_RATE(chan)) {
pll |= SM(0x2, AR_RTC_SOWL_PLL_CLKSEL);
}
if (chan != AH_NULL && IS_CHAN_5GHZ(chan)) {
pll |= SM(0x28, AR_RTC_SOWL_PLL_DIV);
/*
* PLL WAR for Merlin 2.0/2.1
* When doing fast clock, set PLL to 0x142c
* Else, set PLL to 0x2850 to prevent reset-to-reset variation
*/
if (AR_SREV_MERLIN_20(ah)) {
if (IS_5GHZ_FAST_CLOCK_EN(ah, chan)) {
pll = 0x142c;
} else {
pll = 0x2850;
}
}
} else {
pll |= SM(0x2c, AR_RTC_SOWL_PLL_DIV);
}
} else if (AR_SREV_SOWL_10_OR_LATER(ah)) {
pll = SM(0x5, AR_RTC_SOWL_PLL_REFDIV);
if (chan != AH_NULL && IS_CHAN_HALF_RATE(chan)) {
pll |= SM(0x1, AR_RTC_SOWL_PLL_CLKSEL);
} else if (chan && IS_CHAN_QUARTER_RATE(chan)) {
pll |= SM(0x2, AR_RTC_SOWL_PLL_CLKSEL);
}
if (chan != AH_NULL && IS_CHAN_5GHZ(chan)) {
pll |= SM(0x50, AR_RTC_SOWL_PLL_DIV);
} else {
pll |= SM(0x58, AR_RTC_SOWL_PLL_DIV);
}
} else {
pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
if (chan != AH_NULL && IS_CHAN_HALF_RATE(chan)) {
pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
} else if (chan != AH_NULL && IS_CHAN_QUARTER_RATE(chan)) {
pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
}
if (chan != AH_NULL && IS_CHAN_5GHZ(chan)) {
pll |= SM(0xa, AR_RTC_PLL_DIV);
} else {
pll |= SM(0xb, AR_RTC_PLL_DIV);
}
}
OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
/* TODO:
* For multi-band owl, switch between bands by reiniting the PLL.
*/
OS_DELAY(RTC_PLL_SETTLE_DELAY);
OS_REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_SLEEP_DERIVED_CLK);
}
/*
* Read EEPROM header info and program the device for correct operation
* given the channel value.
*/
static HAL_BOOL
ar5416SetBoardValues(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
{
const HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
const struct ar5416eeprom *eep = &ee->ee_base;
const MODAL_EEP_HEADER *pModal;
int i, regChainOffset;
uint8_t txRxAttenLocal; /* workaround for eeprom versions <= 14.2 */
HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44; /* workaround for eeprom versions <= 14.2 */
OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
for (i = 0; i < AR5416_MAX_CHAINS; i++) {
if (AR_SREV_MERLIN(ah)) {
if (i >= 2) break;
}
if (AR_SREV_OWL_20_OR_LATER(ah) &&
(AH5416(ah)->ah_rx_chainmask == 0x5 ||
AH5416(ah)->ah_tx_chainmask == 0x5) && i != 0) {
/* Regs are swapped from chain 2 to 1 for 5416 2_0 with
* only chains 0 and 2 populated
*/
regChainOffset = (i == 1) ? 0x2000 : 0x1000;
} else {
regChainOffset = i * 0x1000;
}
OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset, pModal->antCtrlChain[i]);
OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4 + regChainOffset,
(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4 + regChainOffset) &
~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
SM(pModal->iqCalICh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
SM(pModal->iqCalQCh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
/*
* Large signal upgrade.
* XXX update
*/
if ((i == 0) || AR_SREV_OWL_20_OR_LATER(ah)) {
OS_REG_WRITE(ah, AR_PHY_RXGAIN + regChainOffset,
(OS_REG_READ(ah, AR_PHY_RXGAIN + regChainOffset) & ~AR_PHY_RXGAIN_TXRX_ATTEN) |
SM(IS_EEP_MINOR_V3(ah) ? pModal->txRxAttenCh[i] : txRxAttenLocal,
AR_PHY_RXGAIN_TXRX_ATTEN));
OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
(OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) & ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
SM(pModal->rxTxMarginCh[i], AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
}
}
OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_PGA, pModal->pgaDesiredSize);
OS_REG_WRITE(ah, AR_PHY_RF_CTL4,
SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
| SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
| SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
| SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
pModal->thresh62);
OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
pModal->thresh62);
} else {
OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
pModal->thresh62);
OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA_THRESH62,
pModal->thresh62);
}
/* Minor Version Specific application */
if (IS_EEP_MINOR_V2(ah)) {
OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_DATA_START, pModal->txFrameToDataStart);
OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_PA_ON, pModal->txFrameToPaOn);
}
if (IS_EEP_MINOR_V3(ah)) {
if (IS_CHAN_HT40(chan)) {
/* Overwrite switch settling with HT40 value */
OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
}
if ((AR_SREV_OWL_20_OR_LATER(ah)) &&
( AH5416(ah)->ah_rx_chainmask == 0x5 || AH5416(ah)->ah_tx_chainmask == 0x5)){
/* Reg Offsets are swapped for logical mapping */
OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x1000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x1000) & ~AR_PHY_GAIN_2GHZ_BSW_MARGIN) |
SM(pModal->bswMargin[2], AR_PHY_GAIN_2GHZ_BSW_MARGIN));
OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x1000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x1000) & ~AR_PHY_GAIN_2GHZ_BSW_ATTEN) |
SM(pModal->bswAtten[2], AR_PHY_GAIN_2GHZ_BSW_ATTEN));
OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x2000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x2000) & ~AR_PHY_GAIN_2GHZ_BSW_MARGIN) |
SM(pModal->bswMargin[1], AR_PHY_GAIN_2GHZ_BSW_MARGIN));
OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x2000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x2000) & ~AR_PHY_GAIN_2GHZ_BSW_ATTEN) |
SM(pModal->bswAtten[1], AR_PHY_GAIN_2GHZ_BSW_ATTEN));
} else {
OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x1000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x1000) & ~AR_PHY_GAIN_2GHZ_BSW_MARGIN) |
SM(pModal->bswMargin[1], AR_PHY_GAIN_2GHZ_BSW_MARGIN));
OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x1000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x1000) & ~AR_PHY_GAIN_2GHZ_BSW_ATTEN) |
SM(pModal->bswAtten[1], AR_PHY_GAIN_2GHZ_BSW_ATTEN));
OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x2000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x2000) & ~AR_PHY_GAIN_2GHZ_BSW_MARGIN) |
SM(pModal->bswMargin[2],AR_PHY_GAIN_2GHZ_BSW_MARGIN));
OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x2000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x2000) & ~AR_PHY_GAIN_2GHZ_BSW_ATTEN) |
SM(pModal->bswAtten[2], AR_PHY_GAIN_2GHZ_BSW_ATTEN));
}
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, AR_PHY_GAIN_2GHZ_BSW_MARGIN, pModal->bswMargin[0]);
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, AR_PHY_GAIN_2GHZ_BSW_ATTEN, pModal->bswAtten[0]);
}
return AH_TRUE;
}
/*
* Helper functions common for AP/CB/XB
*/
/*
* ar5416SetPowerPerRateTable
*
* Sets the transmit power in the baseband for the given
* operating channel and mode.
*/
static HAL_BOOL
ar5416SetPowerPerRateTable(struct ath_hal *ah, struct ar5416eeprom *pEepData,
HAL_CHANNEL_INTERNAL *chan,
int16_t *ratesArray, uint16_t cfgCtl,
uint16_t AntennaReduction,
uint16_t twiceMaxRegulatoryPower,
uint16_t powerLimit)
{
#define N(a) (sizeof(a)/sizeof(a[0]))
/* Local defines to distinguish between extension and control CTL's */
#define EXT_ADDITIVE (0x8000)
#define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
#define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
#define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
int i;
int16_t twiceLargestAntenna;
CAL_CTL_DATA *rep;
CAL_TARGET_POWER_LEG targetPowerOfdm, targetPowerCck = {0, {0, 0, 0, 0}};
CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}}, targetPowerCckExt = {0, {0, 0, 0, 0}};
CAL_TARGET_POWER_HT targetPowerHt20, targetPowerHt40 = {0, {0, 0, 0, 0}};
int16_t scaledPower, minCtlPower;
#define SUB_NUM_CTL_MODES_AT_5G_40 2 /* excluding HT40, EXT-OFDM */
#define SUB_NUM_CTL_MODES_AT_2G_40 3 /* excluding HT40, EXT-OFDM, EXT-CCK */
static const uint16_t ctlModesFor11a[] = {
CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
};
static const uint16_t ctlModesFor11g[] = {
CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
};
const uint16_t *pCtlMode;
uint16_t numCtlModes, ctlMode, freq;
CHAN_CENTERS centers;
ar5416GetChannelCenters(ah, chan, &centers);
/* Compute TxPower reduction due to Antenna Gain */
twiceLargestAntenna = AH_MAX(AH_MAX(pEepData->modalHeader[IS_CHAN_2GHZ(chan)].antennaGainCh[0],
pEepData->modalHeader[IS_CHAN_2GHZ(chan)].antennaGainCh[1]),
pEepData->modalHeader[IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
#if 0
/* Turn it back on if we need to calculate per chain antenna gain reduction */
/* Use only if the expected gain > 6dbi */
/* Chain 0 is always used */
twiceLargestAntenna = pEepData->modalHeader[IS_CHAN_2GHZ(chan)].antennaGainCh[0];
/* Look at antenna gains of Chains 1 and 2 if the TX mask is set */
if (ahp->ah_tx_chainmask & 0x2)
twiceLargestAntenna = AH_MAX(twiceLargestAntenna,
pEepData->modalHeader[IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
if (ahp->ah_tx_chainmask & 0x4)
twiceLargestAntenna = AH_MAX(twiceLargestAntenna,
pEepData->modalHeader[IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
#endif
twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0);
/* XXX setup for 5212 use (really used?) */
ath_hal_eepromSet(ah,
IS_CHAN_2GHZ(chan) ? AR_EEP_ANTGAINMAX_2 : AR_EEP_ANTGAINMAX_5,
twiceLargestAntenna);
/*
* scaledPower is the minimum of the user input power level and
* the regulatory allowed power level
*/
scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna);
/* Reduce scaled Power by number of chains active to get to per chain tx power level */
/* TODO: better value than these? */
switch (owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask)) {
case 1:
break;
case 2:
scaledPower -= pEepData->modalHeader[IS_CHAN_2GHZ(chan)].pwrDecreaseFor2Chain;
break;
case 3:
scaledPower -= pEepData->modalHeader[IS_CHAN_2GHZ(chan)].pwrDecreaseFor3Chain;
break;
default:
return AH_FALSE; /* Unsupported number of chains */
}
scaledPower = AH_MAX(0, scaledPower);
/* Get target powers from EEPROM - our baseline for TX Power */
if (IS_CHAN_2GHZ(chan)) {
/* Setup for CTL modes */
numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */
pCtlMode = ctlModesFor11g;
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck,
AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE);
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G,
AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT20,
AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
if (IS_CHAN_HT40(chan)) {
numCtlModes = N(ctlModesFor11g); /* All 2G CTL's */
ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT40,
AR5416_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
/* Get target powers for extension channels */
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck,
AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE);
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G,
AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
}
} else {
/* Setup for CTL modes */
numCtlModes = N(ctlModesFor11a) - SUB_NUM_CTL_MODES_AT_5G_40; /* CTL_11A, CTL_5GHT20 */
pCtlMode = ctlModesFor11a;
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower5G,
AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower5GHT20,
AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
if (IS_CHAN_HT40(chan)) {
numCtlModes = N(ctlModesFor11a); /* All 5G CTL's */
ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower5GHT40,
AR5416_NUM_5G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower5G,
AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
}
}
/*
* For MIMO, need to apply regulatory caps individually across dynamically
* running modes: CCK, OFDM, HT20, HT40
*
* The outer loop walks through each possible applicable runtime mode.
* The inner loop walks through each ctlIndex entry in EEPROM.
* The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
*
*/
for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
(pCtlMode[ctlMode] == CTL_2GHT40);
if (isHt40CtlMode) {
freq = centers.ctl_center;
} else if (pCtlMode[ctlMode] & EXT_ADDITIVE) {
freq = centers.ext_center;
} else {
freq = centers.ctl_center;
}
/* walk through each CTL index stored in EEPROM */
for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
uint16_t twiceMinEdgePower;
/* compare test group from regulatory channel list with test mode from pCtlMode list */
if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) ||
(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) ==
((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
rep = &(pEepData->ctlData[i]);
twiceMinEdgePower = ar5416GetMaxEdgePower(freq,
rep->ctlEdges[owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1],
IS_CHAN_2GHZ(chan));
if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
/* Find the minimum of all CTL edge powers that apply to this channel */
twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
} else {
/* specific */
twiceMaxEdgePower = twiceMinEdgePower;
break;
}
}
}
minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower);
/* Apply ctl mode to correct target power set */
switch(pCtlMode[ctlMode]) {
case CTL_11B:
for (i = 0; i < N(targetPowerCck.tPow2x); i++) {
targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower);
}
break;
case CTL_11A:
case CTL_11G:
for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) {
targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower);
}
break;
case CTL_5GHT20:
case CTL_2GHT20:
for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower);
}
break;
case CTL_11B_EXT:
targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower);
break;
case CTL_11A_EXT:
case CTL_11G_EXT:
targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower);
break;
case CTL_5GHT40:
case CTL_2GHT40:
for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower);
}
break;
default:
return AH_FALSE;
break;
}
} /* end ctl mode checking */
/* Set rates Array from collected data */
ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] = ratesArray[rate18mb] = ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0];
ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
}
if (IS_CHAN_2GHZ(chan)) {
ratesArray[rate1l] = targetPowerCck.tPow2x[0];
ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
}
if (IS_CHAN_HT40(chan)) {
for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i];
}
ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
if (IS_CHAN_2GHZ(chan)) {
ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
}
}
return AH_TRUE;
#undef EXT_ADDITIVE
#undef CTL_11A_EXT
#undef CTL_11G_EXT
#undef CTL_11B_EXT
#undef SUB_NUM_CTL_MODES_AT_5G_40
#undef SUB_NUM_CTL_MODES_AT_2G_40
#undef N
}
/**************************************************************************
* fbin2freq
*
* Get channel value from binary representation held in eeprom
* RETURNS: the frequency in MHz
*/
static uint16_t
fbin2freq(uint8_t fbin, HAL_BOOL is2GHz)
{
/*
* Reserved value 0xFF provides an empty definition both as
* an fbin and as a frequency - do not convert
*/
if (fbin == AR5416_BCHAN_UNUSED) {
return fbin;
}
return (uint16_t)((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
}
/*
* ar5416GetMaxEdgePower
*
* Find the maximum conformance test limit for the given channel and CTL info
*/
static uint16_t
ar5416GetMaxEdgePower(uint16_t freq, CAL_CTL_EDGES *pRdEdgesPower, HAL_BOOL is2GHz)
{
uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
int i;
/* Get the edge power */
for (i = 0; (i < AR5416_NUM_BAND_EDGES) && (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED) ; i++) {
/*
* If there's an exact channel match or an inband flag set
* on the lower channel use the given rdEdgePower
*/
if (freq == fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
twiceMaxEdgePower = MS(pRdEdgesPower[i].tPowerFlag, CAL_CTL_EDGES_POWER);
break;
} else if ((i > 0) && (freq < fbin2freq(pRdEdgesPower[i].bChannel, is2GHz))) {
if (fbin2freq(pRdEdgesPower[i - 1].bChannel, is2GHz) < freq && (pRdEdgesPower[i - 1].tPowerFlag & CAL_CTL_EDGES_FLAG) != 0) {
twiceMaxEdgePower = MS(pRdEdgesPower[i - 1].tPowerFlag, CAL_CTL_EDGES_POWER);
}
/* Leave loop - no more affecting edges possible in this monotonic increasing list */
break;
}
}
HALASSERT(twiceMaxEdgePower > 0);
return twiceMaxEdgePower;
}
/**************************************************************
* ar5416GetTargetPowers
*
* Return the rates of target power for the given target power table
* channel, and number of channels
*/
static void
ar5416GetTargetPowers(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan,
CAL_TARGET_POWER_HT *powInfo, uint16_t numChannels,
CAL_TARGET_POWER_HT *pNewPower, uint16_t numRates,
HAL_BOOL isHt40Target)
{
uint16_t clo, chi;
int i;
int matchIndex = -1, lowIndex = -1;
uint16_t freq;
CHAN_CENTERS centers;
ar5416GetChannelCenters(ah, chan, &centers);
freq = isHt40Target ? centers.synth_center : centers.ctl_center;
/* Copy the target powers into the temp channel list */
if (freq <= fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
matchIndex = 0;
} else {
for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
if (freq == fbin2freq(powInfo[i].bChannel, IS_CHAN_2GHZ(chan))) {
matchIndex = i;
break;
} else if ((freq < fbin2freq(powInfo[i].bChannel, IS_CHAN_2GHZ(chan))) &&
(freq > fbin2freq(powInfo[i - 1].bChannel, IS_CHAN_2GHZ(chan))))
{
lowIndex = i - 1;
break;
}
}
if ((matchIndex == -1) && (lowIndex == -1)) {
HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IS_CHAN_2GHZ(chan)));
matchIndex = i - 1;
}
}
if (matchIndex != -1) {
OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower));
} else {
HALASSERT(lowIndex != -1);
/*
* Get the lower and upper channels, target powers,
* and interpolate between them.
*/
clo = fbin2freq(powInfo[lowIndex].bChannel, IS_CHAN_2GHZ(chan));
chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IS_CHAN_2GHZ(chan));
for (i = 0; i < numRates; i++) {
pNewPower->tPow2x[i] = (uint8_t)interpolate(freq, clo, chi,
powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]);
}
}
}
/**************************************************************
* ar5416GetTargetPowersLeg
*
* Return the four rates of target power for the given target power table
* channel, and number of channels
*/
static void
ar5416GetTargetPowersLeg(struct ath_hal *ah,
HAL_CHANNEL_INTERNAL *chan,
CAL_TARGET_POWER_LEG *powInfo, uint16_t numChannels,
CAL_TARGET_POWER_LEG *pNewPower, uint16_t numRates,
HAL_BOOL isExtTarget)
{
uint16_t clo, chi;
int i;
int matchIndex = -1, lowIndex = -1;
uint16_t freq;
CHAN_CENTERS centers;
ar5416GetChannelCenters(ah, chan, &centers);
freq = (isExtTarget) ? centers.ext_center :centers.ctl_center;
/* Copy the target powers into the temp channel list */
if (freq <= fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
matchIndex = 0;
} else {
for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
if (freq == fbin2freq(powInfo[i].bChannel, IS_CHAN_2GHZ(chan))) {
matchIndex = i;
break;
} else if ((freq < fbin2freq(powInfo[i].bChannel, IS_CHAN_2GHZ(chan))) &&
(freq > fbin2freq(powInfo[i - 1].bChannel, IS_CHAN_2GHZ(chan))))
{
lowIndex = i - 1;
break;
}
}
if ((matchIndex == -1) && (lowIndex == -1)) {
HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IS_CHAN_2GHZ(chan)));
matchIndex = i - 1;
}
}
if (matchIndex != -1) {
OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower));
} else {
HALASSERT(lowIndex != -1);
/*
* Get the lower and upper channels, target powers,
* and interpolate between them.
*/
clo = fbin2freq(powInfo[lowIndex].bChannel, IS_CHAN_2GHZ(chan));
chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IS_CHAN_2GHZ(chan));
for (i = 0; i < numRates; i++) {
pNewPower->tPow2x[i] = (uint8_t)interpolate(freq, clo, chi,
powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]);
}
}
}
/**************************************************************
* ar5416SetPowerCalTable
*
* Pull the PDADC piers from cal data and interpolate them across the given
* points as well as from the nearest pier(s) to get a power detector
* linear voltage to power level table.
*/
static HAL_BOOL
ar5416SetPowerCalTable(struct ath_hal *ah, struct ar5416eeprom *pEepData, HAL_CHANNEL_INTERNAL *chan, int16_t *pTxPowerIndexOffset)
{
CAL_DATA_PER_FREQ *pRawDataset;
uint8_t *pCalBChans = AH_NULL;
uint16_t pdGainOverlap_t2;
static uint8_t pdadcValues[AR5416_NUM_PDADC_VALUES];
uint16_t gainBoundaries[AR5416_PD_GAINS_IN_MASK];
uint16_t numPiers, i, j;
int16_t tMinCalPower;
uint16_t numXpdGain, xpdMask;
uint16_t xpdGainValues[AR5416_NUM_PD_GAINS];
uint32_t reg32, regOffset, regChainOffset;
ath_hal_memzero(xpdGainValues, sizeof(xpdGainValues));
xpdMask = pEepData->modalHeader[IS_CHAN_2GHZ(chan)].xpdGain;
if (IS_EEP_MINOR_V2(ah)) {
pdGainOverlap_t2 = pEepData->modalHeader[IS_CHAN_2GHZ(chan)].pdGainOverlap;
} else {
pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
}
if (IS_CHAN_2GHZ(chan)) {
pCalBChans = pEepData->calFreqPier2G;
numPiers = AR5416_NUM_2G_CAL_PIERS;
} else {
pCalBChans = pEepData->calFreqPier5G;
numPiers = AR5416_NUM_5G_CAL_PIERS;
}
numXpdGain = 0;
/* Calculate the value of xpdgains from the xpdGain Mask */
for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
if (numXpdGain >= AR5416_NUM_PD_GAINS) {
HALASSERT(0);
break;
}
xpdGainValues[numXpdGain] = (uint16_t)(AR5416_PD_GAINS_IN_MASK - i);
numXpdGain++;
}
}
/* Write the detector gain biases and their number */
OS_REG_WRITE(ah, AR_PHY_TPCRG1, (OS_REG_READ(ah, AR_PHY_TPCRG1) &
~(AR_PHY_TPCRG1_NUM_PD_GAIN | AR_PHY_TPCRG1_PD_GAIN_1 | AR_PHY_TPCRG1_PD_GAIN_2 | AR_PHY_TPCRG1_PD_GAIN_3)) |
SM(numXpdGain - 1, AR_PHY_TPCRG1_NUM_PD_GAIN) | SM(xpdGainValues[0], AR_PHY_TPCRG1_PD_GAIN_1 ) |
SM(xpdGainValues[1], AR_PHY_TPCRG1_PD_GAIN_2) | SM(xpdGainValues[2], AR_PHY_TPCRG1_PD_GAIN_3));
for (i = 0; i < AR5416_MAX_CHAINS; i++) {
if (AR_SREV_OWL_20_OR_LATER(ah) &&
( AH5416(ah)->ah_rx_chainmask == 0x5 || AH5416(ah)->ah_tx_chainmask == 0x5) && (i != 0)) {
/* Regs are swapped from chain 2 to 1 for 5416 2_0 with
* only chains 0 and 2 populated
*/
regChainOffset = (i == 1) ? 0x2000 : 0x1000;
} else {
regChainOffset = i * 0x1000;
}
if (pEepData->baseEepHeader.txMask & (1 << i)) {
if (IS_CHAN_2GHZ(chan)) {
pRawDataset = pEepData->calPierData2G[i];
} else {
pRawDataset = pEepData->calPierData5G[i];
}
ar5416GetGainBoundariesAndPdadcs(ah, chan, pRawDataset,
pCalBChans, numPiers,
pdGainOverlap_t2,
&tMinCalPower, gainBoundaries,
pdadcValues, numXpdGain);
if ((i == 0) || AR_SREV_OWL_20_OR_LATER(ah)) {
/*
* Note the pdadc table may not start at 0 dBm power, could be
* negative or greater than 0. Need to offset the power
* values by the amount of minPower for griffin
*/
OS_REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
}
/* Write the power values into the baseband power table */
regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
for (j = 0; j < 32; j++) {
reg32 = ((pdadcValues[4*j + 0] & 0xFF) << 0) |
((pdadcValues[4*j + 1] & 0xFF) << 8) |
((pdadcValues[4*j + 2] & 0xFF) << 16) |
((pdadcValues[4*j + 3] & 0xFF) << 24) ;
OS_REG_WRITE(ah, regOffset, reg32);
#ifdef PDADC_DUMP
ath_hal_printf(ah, "PDADC: Chain %d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d |\n",
i,
4*j, pdadcValues[4*j],
4*j+1, pdadcValues[4*j + 1],
4*j+2, pdadcValues[4*j + 2],
4*j+3, pdadcValues[4*j + 3]);
#endif
regOffset += 4;
}
}
}
*pTxPowerIndexOffset = 0;
return AH_TRUE;
}
/**************************************************************
* ar5416GetGainBoundariesAndPdadcs
*
* Uses the data points read from EEPROM to reconstruct the pdadc power table
* Called by ar5416SetPowerCalTable only.
*/
static void
ar5416GetGainBoundariesAndPdadcs(struct ath_hal *ah,
HAL_CHANNEL_INTERNAL *chan, CAL_DATA_PER_FREQ *pRawDataSet,
uint8_t * bChans, uint16_t availPiers,
uint16_t tPdGainOverlap, int16_t *pMinCalPower, uint16_t * pPdGainBoundaries,
uint8_t * pPDADCValues, uint16_t numXpdGains)
{
int i, j, k;
int16_t ss; /* potentially -ve index for taking care of pdGainOverlap */
uint16_t idxL, idxR, numPiers; /* Pier indexes */
/* filled out Vpd table for all pdGains (chanL) */
static uint8_t vpdTableL[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
/* filled out Vpd table for all pdGains (chanR) */
static uint8_t vpdTableR[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
/* filled out Vpd table for all pdGains (interpolated) */
static uint8_t vpdTableI[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
uint8_t *pVpdL, *pVpdR, *pPwrL, *pPwrR;
uint8_t minPwrT4[AR5416_NUM_PD_GAINS];
uint8_t maxPwrT4[AR5416_NUM_PD_GAINS];
int16_t vpdStep;
int16_t tmpVal;
uint16_t sizeCurrVpdTable, maxIndex, tgtIndex;
HAL_BOOL match;
int16_t minDelta = 0;
CHAN_CENTERS centers;
if (numXpdGains > 0) {
HALASSERT(0);
return;
}
ar5416GetChannelCenters(ah, chan, &centers);
/* Trim numPiers for the number of populated channel Piers */
for (numPiers = 0; numPiers < availPiers; numPiers++) {
if (bChans[numPiers] == AR5416_BCHAN_UNUSED) {
break;
}
}
/* Find pier indexes around the current channel */
match = getLowerUpperIndex((uint8_t)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
bChans, numPiers, &idxL, &idxR);
if (match) {
/* Directly fill both vpd tables from the matching index */
for (i = 0; i < numXpdGains; i++) {
minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
ar5416FillVpdTable(minPwrT4[i], maxPwrT4[i], pRawDataSet[idxL].pwrPdg[i],
pRawDataSet[idxL].vpdPdg[i], AR5416_PD_GAIN_ICEPTS, vpdTableI[i]);
}
} else {
for (i = 0; i < numXpdGains; i++) {
pVpdL = pRawDataSet[idxL].vpdPdg[i];
pPwrL = pRawDataSet[idxL].pwrPdg[i];
pVpdR = pRawDataSet[idxR].vpdPdg[i];
pPwrR = pRawDataSet[idxR].pwrPdg[i];
/* Start Vpd interpolation from the max of the minimum powers */
minPwrT4[i] = AH_MAX(pPwrL[0], pPwrR[0]);
/* End Vpd interpolation from the min of the max powers */
maxPwrT4[i] = AH_MIN(pPwrL[AR5416_PD_GAIN_ICEPTS - 1], pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
HALASSERT(maxPwrT4[i] > minPwrT4[i]);
/* Fill pier Vpds */
ar5416FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrL, pVpdL, AR5416_PD_GAIN_ICEPTS, vpdTableL[i]);
ar5416FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrR, pVpdR, AR5416_PD_GAIN_ICEPTS, vpdTableR[i]);
/* Interpolate the final vpd */
for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
vpdTableI[i][j] = (uint8_t)(interpolate((uint16_t)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
bChans[idxL], bChans[idxR], vpdTableL[i][j], vpdTableR[i][j]));
}
}
}
*pMinCalPower = (int16_t)(minPwrT4[0] / 2);
k = 0; /* index for the final table */
for (i = 0; i < numXpdGains; i++) {
if (i == (numXpdGains - 1)) {
pPdGainBoundaries[i] = (uint16_t)(maxPwrT4[i] / 2);
} else {
pPdGainBoundaries[i] = (uint16_t)((maxPwrT4[i] + minPwrT4[i+1]) / 4);
}
pPdGainBoundaries[i] = (uint16_t)AH_MIN(AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
/* NB: only applies to owl 1.0 */
if ((i == 0) && !AR_SREV_OWL_20_OR_LATER(ah) ) {
/*
* fix the gain delta, but get a delta that can be applied to min to
* keep the upper power values accurate, don't think max needs to
* be adjusted because should not be at that area of the table?
*/
minDelta = pPdGainBoundaries[0] - 23;
pPdGainBoundaries[0] = 23;
}
else {
minDelta = 0;
}
/* Find starting index for this pdGain */
if (i == 0) {
ss = 0; /* for the first pdGain, start from index 0 */
} else {
/* need overlap entries extrapolated below. */
ss = (int16_t)((pPdGainBoundaries[i-1] - (minPwrT4[i] / 2)) - tPdGainOverlap + 1 + minDelta);
}
vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
/*
*-ve ss indicates need to extrapolate data below for this pdGain
*/
while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
pPDADCValues[k++] = (uint8_t)((tmpVal < 0) ? 0 : tmpVal);
ss++;
}
sizeCurrVpdTable = (uint8_t)((maxPwrT4[i] - minPwrT4[i]) / 2 +1);
tgtIndex = (uint8_t)(pPdGainBoundaries[i] + tPdGainOverlap - (minPwrT4[i] / 2));
maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
pPDADCValues[k++] = vpdTableI[i][ss++];
}
vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] - vpdTableI[i][sizeCurrVpdTable - 2]);
vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
/*
* for last gain, pdGainBoundary == Pmax_t2, so will
* have to extrapolate
*/
if (tgtIndex > maxIndex) { /* need to extrapolate above */
while ((ss <= tgtIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
(ss - maxIndex +1) * vpdStep));
pPDADCValues[k++] = (uint8_t)((tmpVal > 255) ? 255 : tmpVal);
ss++;
}
} /* extrapolated above */
} /* for all pdGainUsed */
/* Fill out pdGainBoundaries - only up to 2 allowed here, but hardware allows up to 4 */
while (i < AR5416_PD_GAINS_IN_MASK) {
pPdGainBoundaries[i] = pPdGainBoundaries[i-1];
i++;
}
while (k < AR5416_NUM_PDADC_VALUES) {
pPDADCValues[k] = pPDADCValues[k-1];
k++;
}
return;
}
/**************************************************************
* getLowerUppderIndex
*
* Return indices surrounding the value in sorted integer lists.
* Requirement: the input list must be monotonically increasing
* and populated up to the list size
* Returns: match is set if an index in the array matches exactly
* or a the target is before or after the range of the array.
*/
HAL_BOOL
getLowerUpperIndex(uint8_t target, uint8_t *pList, uint16_t listSize,
uint16_t *indexL, uint16_t *indexR)
{
uint16_t i;
/*
* Check first and last elements for beyond ordered array cases.
*/
if (target <= pList[0]) {
*indexL = *indexR = 0;
return AH_TRUE;
}
if (target >= pList[listSize-1]) {
*indexL = *indexR = (uint16_t)(listSize - 1);
return AH_TRUE;
}
/* look for value being near or between 2 values in list */
for (i = 0; i < listSize - 1; i++) {
/*
* If value is close to the current value of the list
* then target is not between values, it is one of the values
*/
if (pList[i] == target) {
*indexL = *indexR = i;
return AH_TRUE;
}
/*
* Look for value being between current value and next value
* if so return these 2 values
*/
if (target < pList[i + 1]) {
*indexL = i;
*indexR = (uint16_t)(i + 1);
return AH_FALSE;
}
}
HALASSERT(0);
*indexL = *indexR = 0;
return AH_FALSE;
}
/**************************************************************
* ar5416FillVpdTable
*
* Fill the Vpdlist for indices Pmax-Pmin
* Note: pwrMin, pwrMax and Vpdlist are all in dBm * 4
*/
static HAL_BOOL
ar5416FillVpdTable(uint8_t pwrMin, uint8_t pwrMax, uint8_t *pPwrList,
uint8_t *pVpdList, uint16_t numIntercepts, uint8_t *pRetVpdList)
{
uint16_t i, k;
uint8_t currPwr = pwrMin;
uint16_t idxL, idxR;
HALASSERT(pwrMax > pwrMin);
for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
getLowerUpperIndex(currPwr, pPwrList, numIntercepts,
&(idxL), &(idxR));
if (idxR < 1)
idxR = 1; /* extrapolate below */
if (idxL == numIntercepts - 1)
idxL = (uint16_t)(numIntercepts - 2); /* extrapolate above */
if (pPwrList[idxL] == pPwrList[idxR])
k = pVpdList[idxL];
else
k = (uint16_t)( ((currPwr - pPwrList[idxL]) * pVpdList[idxR] + (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
(pPwrList[idxR] - pPwrList[idxL]) );
HALASSERT(k < 256);
pRetVpdList[i] = (uint8_t)k;
currPwr += 2; /* half dB steps */
}
return AH_TRUE;
}
/**************************************************************************
* interpolate
*
* Returns signed interpolated or the scaled up interpolated value
*/
static int16_t
interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
int16_t targetLeft, int16_t targetRight)
{
int16_t rv;
if (srcRight == srcLeft) {
rv = targetLeft;
} else {
rv = (int16_t)( ((target - srcLeft) * targetRight +
(srcRight - target) * targetLeft) / (srcRight - srcLeft) );
}
return rv;
}
static void
ar5416Set11nRegs(struct ath_hal *ah, HAL_CHANNEL *chan)
{
uint32_t phymode;
HAL_HT_MACMODE macmode; /* MAC - 20/40 mode */
if (!IS_CHAN_HT(chan))
return;
/* Enable 11n HT, 20 MHz */
phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
| AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH;
/* Configure baseband for dynamic 20/40 operation */
if (IS_CHAN_HT40(chan)) {
phymode |= AR_PHY_FC_DYN2040_EN | AR_PHY_FC_SHORT_GI_40;
/* Configure control (primary) channel at +-10MHz */
if ((chan->channelFlags & CHANNEL_HT40PLUS))
phymode |= AR_PHY_FC_DYN2040_PRI_CH;
#if 0
/* Configure 20/25 spacing */
if (ht->ht_extprotspacing == HAL_HT_EXTPROTSPACING_25)
phymode |= AR_PHY_FC_DYN2040_EXT_CH;
#endif
macmode = HAL_HT_MACMODE_2040;
} else
macmode = HAL_HT_MACMODE_20;
OS_REG_WRITE(ah, AR_PHY_TURBO, phymode);
/* Configure MAC for 20/40 operation */
ar5416Set11nMac2040(ah, macmode);
/* global transmit timeout (25 TUs default)*/
/* XXX - put this elsewhere??? */
OS_REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S) ;
/* carrier sense timeout */
OS_REG_SET_BIT(ah, AR_GTTM, AR_GTTM_CST_USEC);
OS_REG_WRITE(ah, AR_CST, 1 << AR_CST_TIMEOUT_LIMIT_S);
}
void
ar5416GetChannelCenters(struct ath_hal *ah,
HAL_CHANNEL_INTERNAL *chan, CHAN_CENTERS *centers)
{
centers->ctl_center = chan->channel;
centers->synth_center = chan->channel;
/*
* In 20/40 phy mode, the center frequency is
* "between" the control and extension channels.
*/
if (chan->channelFlags & CHANNEL_HT40PLUS) {
centers->synth_center += HT40_CHANNEL_CENTER_SHIFT;
centers->ext_center =
centers->synth_center + HT40_CHANNEL_CENTER_SHIFT;
} else if (chan->channelFlags & CHANNEL_HT40MINUS) {
centers->synth_center -= HT40_CHANNEL_CENTER_SHIFT;
centers->ext_center =
centers->synth_center - HT40_CHANNEL_CENTER_SHIFT;
} else {
centers->ext_center = chan->channel;
}
}