/*- * Copyright (c) 2001 Atsushi Onoe * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $Id$ */ #ifndef EXPORT_SYMTAB #define EXPORT_SYMTAB #endif /* * IEEE 802.11 output handling. */ #ifndef AUTOCONF_INCLUDED #include #endif #include #include #include #include #include #include /* XXX for TOS */ #include "if_llc.h" #include "if_ethersubr.h" #include "if_media.h" #include #include #include #ifdef IEEE80211_DEBUG /* * Decide if an outbound management frame should be * printed when debugging is enabled. This filters some * of the less interesting frames that come frequently * (e.g. beacons). */ static __inline int doprint(struct ieee80211vap *vap, int subtype) { if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) return (vap->iv_opmode == IEEE80211_M_IBSS); return 1; } #endif /* * Determine the priority based on VLAN and/or IP TOS. Priority is * written into the skb->priority field. On success, returns 0. Failure * due to bad or mis-matched vlan tag is indicated by non-zero return. */ static int ieee80211_classify(struct ieee80211_node *ni, struct sk_buff *skb) { struct ieee80211vap *vap = ni->ni_vap; struct ether_header *eh = (struct ether_header *)skb->data; int v_wme_ac = 0, d_wme_ac = 0; /* default priority */ skb->priority = WME_AC_BE; if (!(ni->ni_flags & IEEE80211_NODE_QOS)) return 0; /* * If node has a vlan tag then all traffic * to it must have a matching vlan id. */ if (ni->ni_vlan != 0 && vlan_tx_tag_present(skb)) { u_int32_t tag=0; int v_pri; if (vap->iv_vlgrp == NULL) { IEEE80211_NODE_STAT(ni, tx_novlantag); ni->ni_stats.ns_tx_novlantag++; return 1; } if (((tag = vlan_tx_tag_get(skb)) & VLAN_VID_MASK) != (ni->ni_vlan & VLAN_VID_MASK)) { IEEE80211_NODE_STAT(ni, tx_vlanmismatch); ni->ni_stats.ns_tx_vlanmismatch++; return 1; } if (ni->ni_flags & IEEE80211_NODE_QOS) { v_pri = (tag >> VLAN_PRI_SHIFT) & VLAN_PRI_MASK; switch (v_pri) { case 1: case 2: /* Background (BK) */ v_wme_ac = WME_AC_BK; break; case 0: case 3: /* Best Effort (BE) */ v_wme_ac = WME_AC_BE; break; case 4: case 5: /* Video (VI) */ v_wme_ac = WME_AC_VI; break; case 6: case 7: /* Voice (VO) */ v_wme_ac = WME_AC_VO; break; } } } if (eh->ether_type == __constant_htons(ETHERTYPE_IP)) { const struct iphdr *ip = (struct iphdr *) (skb->data + sizeof (struct ether_header)); /* * IP frame, map the TOS field. * * XXX: fill out these mappings??? */ switch (ip->tos) { case 0x08: /* Background */ case 0x20: d_wme_ac = WME_AC_BK; break; case 0x28: /* Video */ case 0xa0: d_wme_ac = WME_AC_VI; break; case 0x30: /* Voice */ case 0xe0: case 0x88: /* XXX UPSD */ case 0xb8: d_wme_ac = WME_AC_VO; break; default: /* All others */ d_wme_ac = WME_AC_BE; break; } } else { d_wme_ac = WME_AC_BE; } skb->priority = d_wme_ac; if (v_wme_ac > d_wme_ac) skb->priority = v_wme_ac; /* Applying ACM policy */ if (vap->iv_opmode == IEEE80211_M_STA) { struct ieee80211com *ic = ni->ni_ic; while (skb->priority != WME_AC_BK && ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[skb->priority].wmep_acm) { switch (skb->priority) { case WME_AC_BE: skb->priority = WME_AC_BK; break; case WME_AC_VI: skb->priority = WME_AC_BE; break; case WME_AC_VO: skb->priority = WME_AC_VI; break; default: skb->priority = WME_AC_BK; break; } } } return 0; } /* * Context: process context (BHs disabled) * It must return either NETDEV_TX_OK or NETDEV_TX_BUSY */ int ieee80211_hardstart(struct sk_buff *skb, struct net_device *dev) { struct ieee80211vap *vap = netdev_priv(dev); struct ieee80211com *ic = vap->iv_ic; struct net_device *parent = ic->ic_dev; struct ieee80211_node *ni = NULL; struct ether_header *eh; /* Reset the SKB of new frames reaching this layer BEFORE * we invoke ieee80211_skb_track. */ memset(SKB_CB(skb), 0, sizeof(struct ieee80211_cb)); /* If an SKB is passed in directly from the kernel, * we take responsibility for the reference. */ ieee80211_skb_track(skb); /* NB: parent must be up and running. */ if ((parent->flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) goto bad; /* No data frames go out unless we're running. */ if (vap->iv_state != IEEE80211_S_RUN) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, "%s: ignore data packet, state %u\n", __func__, vap->iv_state); #if 0 vap->iv_stats.ist_tx_discard++; #endif goto bad; } if (vap->iv_opmode == IEEE80211_M_MONITOR) { ieee80211_monitor_encap(vap, skb); ieee80211_parent_queue_xmit(skb); return NETDEV_TX_OK; } /* If we have detected a radar on the current channel, or another node * told us to stop transmitting, we no longer transmit. Note : we * still allow a monitor interface to transmit */ if (IEEE80211_IS_CHAN_RADAR(ic->ic_curchan) && (ic->ic_flags & IEEE80211_F_DOTH)) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_DOTH, "%s: dropping data since we are under radar\n", __func__); goto bad; } /* Cancel any running BG scan */ ieee80211_cancel_scan(vap); /* Find the node for the destination so we can do * things like power save. */ eh = (struct ether_header *)skb->data; if (vap->iv_opmode == IEEE80211_M_WDS) ni = ieee80211_find_txnode(vap, vap->wds_mac); else ni = ieee80211_find_txnode(vap, eh->ether_dhost); if (ni == NULL) { /* NB: ieee80211_find_txnode does stat+msg */ goto bad; } /* Calculate priority so drivers can find the TX queue. */ if (ieee80211_classify(ni, skb)) { IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni, "%s: discard, classification failure", __func__); goto bad; } SKB_NI(skb) = ieee80211_ref_node(ni); /* Power-save checks. */ if (WME_UAPSD_AC_CAN_TRIGGER(skb->priority, ni)) { /* U-APSD power save queue */ /* XXXAPSD: assuming triggerable means deliverable */ M_FLAG_SET(skb, M_UAPSD); } else if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT)) { /* Station in power save mode; stick the frame * on the STA's power save queue and continue. * We'll get the frame back when the time is right. */ ieee80211_unref_node(&ni); return ieee80211_pwrsave(skb); } dev->trans_start = jiffies; #ifdef ATH_SUPERG_XR /* Broadcast/multicast packets need to be sent on XR vap in addition to * normal vap. */ if (vap->iv_xrvap && (ni == vap->iv_bss) && vap->iv_xrvap->iv_sta_assoc) { struct sk_buff *skb1 = skb_copy(skb, GFP_ATOMIC); if (skb1) { memset(SKB_CB(skb1), 0, sizeof(struct ieee80211_cb)); #ifdef IEEE80211_DEBUG_REFCNT M_FLAG_SET(skb1, M_SKB_TRACKED); #endif /* #ifdef IEEE80211_DEBUG_REFCNT */ SKB_NI(skb1) = ieee80211_find_txnode(vap->iv_xrvap, eh->ether_dhost); /* Ignore this return code. */ ieee80211_parent_queue_xmit(skb1); } } #endif ieee80211_unref_node(&ni); ieee80211_parent_queue_xmit(skb); return NETDEV_TX_OK; bad: if (skb != NULL) ieee80211_dev_kfree_skb(&skb); if (ni != NULL) ieee80211_unref_node(&ni); return NETDEV_TX_OK; } /* * SKB is consumed in all cases. */ void ieee80211_parent_queue_xmit(struct sk_buff *skb) { struct ieee80211vap *vap = netdev_priv(skb->dev); vap->iv_devstats.tx_packets++; vap->iv_devstats.tx_bytes += skb->len; vap->iv_ic->ic_lastdata = jiffies; /* Dispatch the packet to the parent device */ skb->dev = vap->iv_ic->ic_dev; if (dev_queue_xmit(skb) == NET_XMIT_DROP) vap->iv_devstats.tx_dropped++; } /* * Set the direction field and address fields of an outgoing * non-QoS frame. Note this should be called early on in * constructing a frame as it sets i_fc[1]; other bits can * then be or'd in. */ static void ieee80211_send_setup(struct ieee80211vap *vap, struct ieee80211_node *ni, struct ieee80211_frame *wh, int type, const u_int8_t sa[IEEE80211_ADDR_LEN], const u_int8_t da[IEEE80211_ADDR_LEN], const u_int8_t bssid[IEEE80211_ADDR_LEN]) { #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh) wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type; if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) { switch (vap->iv_opmode) { case IEEE80211_M_STA: wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; IEEE80211_ADDR_COPY(wh->i_addr1, bssid); IEEE80211_ADDR_COPY(wh->i_addr2, sa); IEEE80211_ADDR_COPY(wh->i_addr3, da); break; case IEEE80211_M_IBSS: case IEEE80211_M_AHDEMO: wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; IEEE80211_ADDR_COPY(wh->i_addr1, da); IEEE80211_ADDR_COPY(wh->i_addr2, sa); IEEE80211_ADDR_COPY(wh->i_addr3, bssid); break; case IEEE80211_M_HOSTAP: wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; IEEE80211_ADDR_COPY(wh->i_addr1, da); IEEE80211_ADDR_COPY(wh->i_addr2, bssid); IEEE80211_ADDR_COPY(wh->i_addr3, sa); break; case IEEE80211_M_WDS: wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; /* XXX cheat, bssid holds RA */ IEEE80211_ADDR_COPY(wh->i_addr1, bssid); IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); IEEE80211_ADDR_COPY(wh->i_addr3, da); IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); break; case IEEE80211_M_MONITOR: /* NB: to quiet compiler */ break; } } else { wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; IEEE80211_ADDR_COPY(wh->i_addr1, da); IEEE80211_ADDR_COPY(wh->i_addr2, sa); IEEE80211_ADDR_COPY(wh->i_addr3, bssid); } wh->i_dur = 0; /* NB: use non-QoS tid */ *(__le16 *)&wh->i_seq[0] = htole16(ni->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT); ni->ni_txseqs[0]++; #undef WH4 } /* * Send a management frame to the specified node. The node pointer * must have a reference as the pointer will be passed to the driver * and potentially held for a long time. If the frame is successfully * dispatched to the driver, then it is responsible for freeing the * reference (and potentially freeing up any associated storage). */ static void ieee80211_mgmt_output(struct ieee80211_node *ni, struct sk_buff *skb, int type, const u_int8_t da[IEEE80211_ADDR_LEN]) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct ieee80211_frame *wh; KASSERT(ni != NULL, ("null node")); SKB_NI(skb) = ni; wh = (struct ieee80211_frame *) skb_push(skb, sizeof(struct ieee80211_frame)); ieee80211_send_setup(vap, ni, wh, IEEE80211_FC0_TYPE_MGT | type, vap->iv_myaddr, da, vap->iv_bssid); /* XXX power management */ if ((SKB_CB(skb)->flags & M_LINK0) != 0 && ni->ni_challenge != NULL) { SKB_CB(skb)->flags &= ~M_LINK0; IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1, "encrypting frame (%s)", __func__); wh->i_fc[1] |= IEEE80211_FC1_PROT; } if (IEEE80211_VAP_IS_SLEEPING(ni->ni_vap)) wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT; #ifdef IEEE80211_DEBUG /* avoid printing too many frames */ if ((ieee80211_msg_debug(vap) && doprint(vap, type)) || ieee80211_msg_dumppkts(vap)) { printk(KERN_DEBUG "[" MAC_FMT "] send %s on channel %u\n", MAC_ADDR(wh->i_addr1), ieee80211_mgt_subtype_name[ (type & IEEE80211_FC0_SUBTYPE_MASK) >> IEEE80211_FC0_SUBTYPE_SHIFT], ieee80211_chan2ieee(ic, ic->ic_curchan)); } #endif IEEE80211_NODE_STAT(ni, tx_mgmt); (void) ic->ic_mgtstart(ic, skb); } /* Send a null data frame to the specified node. * * NB: the caller provides us with our own node reference this must not be * leaked; this is necessary to deal with a race condition when * probing for inactive stations. */ int ieee80211_send_nulldata(struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct sk_buff *skb; struct ieee80211_frame *wh; u_int8_t *frm; skb = ieee80211_getmgtframe(&frm, 0); if (skb == NULL) { /* XXX debug msg */ vap->iv_stats.is_tx_nobuf++; ieee80211_unref_node(&ni); return -ENOMEM; } wh = (struct ieee80211_frame *) skb_push(skb, sizeof(struct ieee80211_frame)); ieee80211_send_setup(vap, ni, wh, IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NULL, vap->iv_myaddr, ni->ni_macaddr, vap->iv_bssid); /* NB: power management bit is never sent by an AP */ if ((IEEE80211_VAP_IS_SLEEPING(ni->ni_vap)) && vap->iv_opmode != IEEE80211_M_HOSTAP && vap->iv_opmode != IEEE80211_M_WDS) wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT; IEEE80211_NODE_STAT(ni, tx_data); IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, "[" MAC_FMT "] send null data frame on channel %u, pwr mgt %s\n", MAC_ADDR(ni->ni_macaddr), ieee80211_chan2ieee(ic, ic->ic_curchan), wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis"); /* XXX assign some priority; this probably is wrong */ skb->priority = WME_AC_BE; SKB_NI(skb) = PASS_NODE(ni); (void) ic->ic_mgtstart(ic, skb); /* cheat */ return 0; } /* * NB: unlike ieee80211_send_nulldata(), the node refcnt is * bumped within this function. */ int ieee80211_send_qosnulldata(struct ieee80211_node *ni, int ac) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct sk_buff *skb; struct ieee80211_qosframe *qwh; u_int8_t *frm; int tid; skb = ieee80211_getmgtframe(&frm, 2); if (skb == NULL) { /* XXX debug msg */ vap->iv_stats.is_tx_nobuf++; return -ENOMEM; } SKB_NI(skb) = ieee80211_ref_node(ni); skb->priority = ac; qwh = (struct ieee80211_qosframe *)skb_push(skb, sizeof(struct ieee80211_qosframe)); qwh = (struct ieee80211_qosframe *)skb->data; ieee80211_send_setup(vap, ni, (struct ieee80211_frame *)qwh, IEEE80211_FC0_TYPE_DATA, vap->iv_myaddr, /* SA */ ni->ni_macaddr, /* DA */ vap->iv_bssid); qwh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL; if (IEEE80211_VAP_IS_SLEEPING(ni->ni_vap)) qwh->i_fc[1] |= IEEE80211_FC1_PWR_MGT; /* map from access class/queue to 11e header priority value */ tid = WME_AC_TO_TID(ac); qwh->i_qos[0] = tid & IEEE80211_QOS_TID; if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy) qwh->i_qos[0] |= (1 << IEEE80211_QOS_ACKPOLICY_S) & IEEE80211_QOS_ACKPOLICY; qwh->i_qos[1] = 0; IEEE80211_NODE_STAT(ni, tx_data); if (WME_UAPSD_AC_CAN_TRIGGER(skb->priority, ni)) { /* U-APSD power save queue */ /* XXXAPSD: assuming triggerable means deliverable */ M_FLAG_SET(skb, M_UAPSD); } (void) ic->ic_mgtstart(ic, skb); /* cheat */ return 0; } EXPORT_SYMBOL(ieee80211_send_qosnulldata); /* * Ensure there is sufficient headroom and tailroom to * encapsulate the 802.11 data frame. If room isn't * already there, reallocate so there is enough space. * Drivers and cipher modules assume we have done the * necessary work and fail rudely if they don't find * the space they need. */ static struct sk_buff * ieee80211_skbhdr_adjust(struct ieee80211vap *vap, int hdrsize, struct ieee80211_key *key, struct sk_buff *skb, int ismulticast) { /* XXX pre-calculate per node? */ int need_headroom = LLC_SNAPFRAMELEN + hdrsize + IEEE80211_ADDR_LEN; int need_tailroom = 0; #ifdef ATH_SUPERG_FF int isff = ATH_FF_MAGIC_PRESENT(skb); int inter_headroom = sizeof(struct ether_header) + LLC_SNAPFRAMELEN + ATH_FF_MAX_HDR_PAD; struct sk_buff *skb2 = NULL; if (isff) { need_headroom += sizeof(struct athl2p_tunnel_hdr) + ATH_FF_MAX_HDR_PAD + inter_headroom; skb2 = skb->next; } #endif if (key != NULL) { const struct ieee80211_cipher *cip = key->wk_cipher; /* * Adjust for crypto needs. When hardware crypto is * being used we assume the hardware/driver will deal * with any padding (on the fly, without needing to * expand the frame contents). When software crypto * is used we need to ensure room is available at the * front and back and also for any per-MSDU additions. */ /* XXX belongs in crypto code? */ need_headroom += cip->ic_header; /* XXX pre-calculate per key */ if (key->wk_flags & IEEE80211_KEY_SWCRYPT) need_tailroom += cip->ic_trailer; /* ** If tx frag is needed and cipher is TKIP, ** then allocate the additional tailroom for SW MIC computation. */ if (skb->len > vap->iv_fragthreshold && !ismulticast && cip->ic_cipher == IEEE80211_CIPHER_TKIP) need_tailroom += cip->ic_miclen; else if (key->wk_flags & IEEE80211_KEY_SWMIC) need_tailroom += cip->ic_miclen; } if (skb_shared(skb)) { /* Take our own reference to the node in the clone */ ieee80211_ref_node(SKB_NI(skb)); /* Unshare the node, decrementing users in the old skb */ skb = skb_unshare(skb, GFP_ATOMIC); } #ifdef ATH_SUPERG_FF if (isff) { if (skb == NULL) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, "%s: cannot unshare for encapsulation\n", __func__); vap->iv_stats.is_tx_nobuf++; ieee80211_dev_kfree_skb(&skb2); return NULL; } /* first skb header */ if (skb_headroom(skb) < need_headroom) { struct sk_buff *tmp = skb; skb = skb_realloc_headroom(skb, need_headroom); if (skb == NULL) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, "%s: cannot expand storage (head1)\n", __func__); vap->iv_stats.is_tx_nobuf++; ieee80211_dev_kfree_skb(&skb2); return NULL; } else ieee80211_skb_copy_noderef(tmp, skb); ieee80211_dev_kfree_skb(&tmp); /* NB: cb[] area was copied, but not next ptr. must do that * prior to return on success. */ } /* second skb with header and tail adjustments possible */ if (skb_tailroom(skb2) < need_tailroom) { int n = 0; if (inter_headroom > skb_headroom(skb2)) n = inter_headroom - skb_headroom(skb2); if (pskb_expand_head(skb2, n, need_tailroom - skb_tailroom(skb2), GFP_ATOMIC)) { ieee80211_dev_kfree_skb(&skb2); IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, "%s: cannot expand storage (tail2)\n", __func__); vap->iv_stats.is_tx_nobuf++; /* this shouldn't happen, but don't send first ff either */ ieee80211_dev_kfree_skb(&skb); } } else if (skb_headroom(skb2) < inter_headroom) { struct sk_buff *tmp = skb2; skb2 = skb_realloc_headroom(skb2, inter_headroom); if (skb2 == NULL) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, "%s: cannot expand storage (head2)\n", __func__); vap->iv_stats.is_tx_nobuf++; /* this shouldn't happen, but don't send first ff either */ ieee80211_dev_kfree_skb(&skb); skb = NULL; } else ieee80211_skb_copy_noderef(tmp, skb); ieee80211_dev_kfree_skb(&tmp); } if (skb) { skb->next = skb2; } return skb; } #endif /* ATH_SUPERG_FF */ if (skb == NULL) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, "%s: cannot unshare for encapsulation\n", __func__); vap->iv_stats.is_tx_nobuf++; } else if (skb_tailroom(skb) < need_tailroom) { int n = 0; if (need_headroom > skb_headroom(skb)) n = need_headroom - skb_headroom(skb); if (pskb_expand_head(skb, n, need_tailroom - skb_tailroom(skb), GFP_ATOMIC)) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, "%s: cannot expand storage (tail)\n", __func__); vap->iv_stats.is_tx_nobuf++; ieee80211_dev_kfree_skb(&skb); } } else if (skb_headroom(skb) < need_headroom) { struct sk_buff *tmp = skb; skb = skb_realloc_headroom(skb, need_headroom); /* Increment reference count after copy */ if (skb == NULL) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, "%s: cannot expand storage (head)\n", __func__); vap->iv_stats.is_tx_nobuf++; } else ieee80211_skb_copy_noderef(tmp, skb); ieee80211_dev_kfree_skb(&tmp); } return skb; } #define KEY_UNDEFINED(k) ((k).wk_cipher == &ieee80211_cipher_none) /* * Return the transmit key to use in sending a unicast frame. * If a unicast key is set we use that. When no unicast key is set * we fall back to the default transmit key. */ static __inline struct ieee80211_key * ieee80211_crypto_getucastkey(struct ieee80211vap *vap, struct ieee80211_node *ni) { if (KEY_UNDEFINED(ni->ni_ucastkey)) { if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || KEY_UNDEFINED(vap->iv_nw_keys[vap->iv_def_txkey])) return NULL; return &vap->iv_nw_keys[vap->iv_def_txkey]; } else return &ni->ni_ucastkey; } /* * Return the transmit key to use in sending a multicast frame. * Multicast traffic always uses the group key which is installed as * the default tx key. */ static __inline struct ieee80211_key * ieee80211_crypto_getmcastkey(struct ieee80211vap *vap, struct ieee80211_node *ni) { if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || KEY_UNDEFINED(vap->iv_nw_keys[vap->iv_def_txkey])) return NULL; return &vap->iv_nw_keys[vap->iv_def_txkey]; } /* * Encapsulate an outbound data frame. The mbuf chain is updated and * a reference to the destination node is returned. If an error is * encountered NULL is returned and the node reference will also be NULL. * * NB: The caller is responsible for freeing a returned node reference. * The convention is ic_bss is not reference counted; the caller must * maintain that. */ struct sk_buff * ieee80211_encap(struct ieee80211_node *ni, struct sk_buff *skb, int *framecnt) { #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh) struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct ether_header eh; struct ieee80211_frame *wh, *twh; struct ieee80211_key *key; struct llc *llc; int hdrsize, datalen, addqos; int hdrsize_nopad; struct sk_buff *framelist = NULL; struct sk_buff *tskb; int fragcnt = 1; int pdusize = 0; int ismulticast = 0; int use4addr = 0; #ifdef ATH_SUPERG_FF struct sk_buff *skb2 = NULL; struct ether_header eh2; int isff = ATH_FF_MAGIC_PRESENT(skb); if (isff) { #if 0 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPG, "%s: handling fast-frame skb (%p)\n", __func__, skb); #endif skb2 = skb->next; if (skb2 == NULL) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPG, "%s: fast-frame error, only 1 skb\n", __func__); goto bad; } memcpy(&eh2, skb2->data, sizeof(struct ether_header)); skb_pull(skb2, sizeof(struct ether_header)); } #endif memcpy(&eh, skb->data, sizeof(struct ether_header)); skb_pull(skb, sizeof(struct ether_header)); /* * Ensure space for additional headers. First identify * transmit key to use in calculating any buffer adjustments * required. This is also used below to do privacy * encapsulation work. Then calculate the 802.11 header * size and any padding required by the driver. * * Note key may be NULL if we fall back to the default * transmit key and that is not set. In that case the * buffer may not be expanded as needed by the cipher * routines, but they will/should discard it. */ if (vap->iv_flags & IEEE80211_F_PRIVACY) { if (vap->iv_opmode == IEEE80211_M_STA || !IEEE80211_IS_MULTICAST(eh.ether_dhost)) key = ieee80211_crypto_getucastkey(vap, ni); else key = ieee80211_crypto_getmcastkey(vap, ni); if ((key == NULL) && (eh.ether_type != htons(ETHERTYPE_PAE))) { IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, eh.ether_dhost, "no default transmit key (%s) deftxkey %u", __func__, vap->iv_def_txkey); vap->iv_stats.is_tx_nodefkey++; goto bad; } } else key = NULL; addqos = (ni->ni_flags & IEEE80211_NODE_QOS) && (eh.ether_type != htons(ETHERTYPE_PAE)); if (addqos) hdrsize = sizeof(struct ieee80211_qosframe); else hdrsize = sizeof(struct ieee80211_frame); switch (vap->iv_opmode) { case IEEE80211_M_IBSS: case IEEE80211_M_AHDEMO: ismulticast = IEEE80211_IS_MULTICAST(eh.ether_dhost); break; case IEEE80211_M_WDS: use4addr = 1; ismulticast = IEEE80211_IS_MULTICAST(ni->ni_macaddr); break; case IEEE80211_M_HOSTAP: if (!IEEE80211_IS_MULTICAST(eh.ether_dhost) && !IEEE80211_ADDR_EQ(eh.ether_dhost, ni->ni_macaddr)) { use4addr = 1; ismulticast = IEEE80211_IS_MULTICAST(ni->ni_macaddr); } else ismulticast = IEEE80211_IS_MULTICAST(eh.ether_dhost); break; case IEEE80211_M_STA: if ((vap->iv_flags_ext & IEEE80211_FEXT_WDS) && !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) { use4addr = 1; ismulticast = IEEE80211_IS_MULTICAST(ni->ni_macaddr); /* Add a WDS entry to the station VAP */ if (IEEE80211_IS_MULTICAST(eh.ether_dhost)) { struct ieee80211_node_table *nt = &ic->ic_sta; struct ieee80211_node *ni_wds = ieee80211_find_wds_node(nt, eh.ether_shost); if (ni_wds) ieee80211_unref_node(&ni_wds); else ieee80211_add_wds_addr(nt, ni, eh.ether_shost, 0); } } else ismulticast = IEEE80211_IS_MULTICAST(vap->iv_bssid); break; default: break; } if (use4addr) hdrsize += IEEE80211_ADDR_LEN; hdrsize_nopad = hdrsize; if (ic->ic_flags & IEEE80211_F_DATAPAD) hdrsize = roundup(hdrsize, sizeof(u_int32_t)); skb = ieee80211_skbhdr_adjust(vap, hdrsize, key, skb, ismulticast); if (skb == NULL) { /* NB: ieee80211_skbhdr_adjust handles msgs+statistics */ goto bad; } #ifdef ATH_SUPERG_FF if (isff) { struct ether_header *eh_inter; struct athl2p_tunnel_hdr *ffhdr; u_int16_t payload = skb->len + LLC_SNAPFRAMELEN; int padded_len = payload + LLC_SNAPFRAMELEN + sizeof(struct ether_header); /* in case header adjustments altered skb2 */ skb2 = skb->next; if (skb2 == NULL) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPG, "%s: skb (%p) hdr adjust dropped 2nd skb\n", __func__, skb); goto bad; } /* * add first skb tunnel hdrs */ llc = (struct llc *)skb_push(skb, LLC_SNAPFRAMELEN); llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; llc->llc_control = LLC_UI; llc->llc_snap.org_code[0] = 0; llc->llc_snap.org_code[1] = 0; llc->llc_snap.org_code[2] = 0; llc->llc_snap.ether_type = eh.ether_type; eh_inter = (struct ether_header *)skb_push(skb, sizeof(struct ether_header)); memcpy(eh_inter, &eh, sizeof(struct ether_header) - sizeof eh.ether_type); eh_inter->ether_type = htons(payload); /* overall ff encap header */ /* XXX: the offset of 2, below, should be computed. but... it will not * practically ever change. */ ffhdr = (struct athl2p_tunnel_hdr *)skb_push(skb, sizeof(struct athl2p_tunnel_hdr) + 2); memset(ffhdr, 0, sizeof(struct athl2p_tunnel_hdr) + 2); /* * add second skb tunnel hdrs */ payload = skb2->len + LLC_SNAPFRAMELEN; llc = (struct llc *)skb_push(skb2, LLC_SNAPFRAMELEN); if (llc == NULL) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPG, "%s: failed to push llc for 2nd skb (%p)\n", __func__, skb); return NULL; } llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; llc->llc_control = LLC_UI; llc->llc_snap.org_code[0] = 0; llc->llc_snap.org_code[1] = 0; llc->llc_snap.org_code[2] = 0; llc->llc_snap.ether_type = eh2.ether_type; eh_inter = (struct ether_header *)skb_push(skb2, sizeof(struct ether_header)); if (eh_inter == NULL) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPG, "%s: failed to push eth hdr for 2nd skb (%p)\n", __func__, skb); return NULL; } memcpy(eh_inter, &eh2, sizeof(struct ether_header) - sizeof eh2.ether_type); eh_inter->ether_type = htons(payload); /* variable length pad */ skb_push(skb2, roundup(padded_len, 4) - padded_len); } #endif llc = (struct llc *)skb_push(skb, LLC_SNAPFRAMELEN); llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; llc->llc_control = LLC_UI; #ifndef ATH_SUPERG_FF llc->llc_snap.org_code[0] = 0; llc->llc_snap.org_code[1] = 0; llc->llc_snap.org_code[2] = 0; llc->llc_snap.ether_type = eh.ether_type; #else /* ATH_SUPERG_FF */ if (isff) { llc->llc_snap.org_code[0] = ATH_SNAP_ORGCODE_0; llc->llc_snap.org_code[1] = ATH_SNAP_ORGCODE_1; llc->llc_snap.org_code[2] = ATH_SNAP_ORGCODE_2; llc->llc_snap.ether_type = htons(ATH_ETH_TYPE); } else { llc->llc_snap.org_code[0] = 0; llc->llc_snap.org_code[1] = 0; llc->llc_snap.org_code[2] = 0; llc->llc_snap.ether_type = eh.ether_type; } #endif /* ATH_SUPERG_FF */ datalen = skb->len; /* NB: w/o 802.11 header */ wh = (struct ieee80211_frame *)skb_push(skb, hdrsize); wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA; wh->i_dur = 0; if (use4addr) { wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr); IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost); } else { switch (vap->iv_opmode) { case IEEE80211_M_IBSS: case IEEE80211_M_AHDEMO: wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); /* * NB: always use the bssid from iv_bssid as the * neighbor's may be stale after an ibss merge */ IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bssid); break; case IEEE80211_M_STA: wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; IEEE80211_ADDR_COPY(wh->i_addr1, vap->iv_bssid); IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); break; case IEEE80211_M_HOSTAP: wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_bssid); IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost); if (M_PWR_SAV_GET(skb)) { if (IEEE80211_NODE_SAVEQ_QLEN(ni)) { wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; M_PWR_SAV_CLR(skb); } } break; case IEEE80211_M_WDS: wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr); IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost); break; case IEEE80211_M_MONITOR: goto bad; } } if (IEEE80211_VAP_IS_SLEEPING(vap)) wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT; if (addqos) { struct ieee80211_qosframe *qwh = (struct ieee80211_qosframe *)wh; u_int8_t *qos; int tid; qos = &qwh->i_qos[0]; if (use4addr) qos += IEEE80211_ADDR_LEN; /* map from access class/queue to 11e header priority value */ tid = WME_AC_TO_TID(skb->priority); qos[0] = tid & IEEE80211_QOS_TID; if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[skb->priority].wmep_noackPolicy) qos[0] |= (1 << IEEE80211_QOS_ACKPOLICY_S) & IEEE80211_QOS_ACKPOLICY; qos[1] = 0; qwh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS; *(__le16 *)&wh->i_seq[0] = htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT); ni->ni_txseqs[tid]++; } else { *(__le16 *)wh->i_seq = htole16(ni->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT); ni->ni_txseqs[0]++; } /* Is transmit fragmentation needed? */ if (skb->len > vap->iv_fragthreshold && !IEEE80211_IS_MULTICAST(wh->i_addr1)) { int pktlen, skbcnt, tailsize, ciphdrsize; struct ieee80211_cipher *cip; pktlen = skb->len; ciphdrsize = 0; tailsize = IEEE80211_CRC_LEN; if (key != NULL) { cip = (struct ieee80211_cipher *)key->wk_cipher; ciphdrsize = cip->ic_header; tailsize += (cip->ic_trailer + cip->ic_miclen); /* Add the 8 bytes MIC length. */ if (cip->ic_cipher == IEEE80211_CIPHER_TKIP) pktlen += IEEE80211_WEP_MICLEN; } pdusize = vap->iv_fragthreshold - (hdrsize_nopad + ciphdrsize); fragcnt = *framecnt = ((pktlen - hdrsize_nopad) / pdusize) + (((pktlen - hdrsize_nopad) % pdusize == 0) ? 0 : 1); /* * Allocate sk_buff for each subsequent fragment; First fragment * reuses input skb. */ for (skbcnt = 1; skbcnt < fragcnt; skbcnt++) { tskb = ieee80211_dev_alloc_skb(hdrsize + ciphdrsize + pdusize + tailsize); if (tskb == NULL) break; tskb->next = framelist; framelist = tskb; } if (skbcnt != fragcnt) goto bad; } else *framecnt = fragcnt; if (key != NULL) { /* * IEEE 802.1X: send EAPOL frames always in the clear. * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set. */ if (eh.ether_type != __constant_htons(ETHERTYPE_PAE) || ((vap->iv_flags & IEEE80211_F_WPA) && (vap->iv_opmode == IEEE80211_M_STA ? !KEY_UNDEFINED(*key) : !KEY_UNDEFINED(ni->ni_ucastkey)))) { int force_swmic = (fragcnt > 1) ? 1 : 0; wh->i_fc[1] |= IEEE80211_FC1_PROT; if (!ieee80211_crypto_enmic(vap, key, skb, force_swmic)) { IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT, eh.ether_dhost, "%s", "enmic failed, discard frame"); vap->iv_stats.is_crypto_enmicfail++; goto bad; } } } if (fragcnt > 1) { int fragnum, offset, pdulen; void *pdu; fragnum = 0; wh = twh = (struct ieee80211_frame *)skb->data; /* ** Setup WLAN headers as fragment headers */ wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG; *(__le16 *)&wh->i_seq[0] |= htole16((fragnum & IEEE80211_SEQ_FRAG_MASK) << IEEE80211_SEQ_FRAG_SHIFT); fragnum++; offset = hdrsize + pdusize; datalen = (skb->len - hdrsize) - pdusize; IEEE80211_NODE_STAT(ni, tx_data); IEEE80211_NODE_STAT_ADD(ni, tx_bytes, pdusize); for (tskb = framelist; tskb != NULL; tskb = tskb->next) { /* * Copy WLAN header into each frag header skb */ twh = (struct ieee80211_frame *)skb_put(tskb, hdrsize); memcpy((void *)twh, (void *)wh, hdrsize); *(__le16 *)&twh->i_seq[0] |= htole16((fragnum & IEEE80211_SEQ_FRAG_MASK) << IEEE80211_SEQ_FRAG_SHIFT); fragnum++; if (pdusize <= datalen) pdulen = pdusize; else pdulen = datalen; /* * Copy fragment payload from input skb. * Doing copies isn't intuitive from * a performance perspective, however, * for this case, it is believed to be * more efficient than cloning skbs. */ pdu = skb_put(tskb, pdulen); memcpy(pdu, (void *)skb->data + offset, pdulen); offset += pdusize; datalen -= pdusize; IEEE80211_NODE_STAT(ni, tx_data); IEEE80211_NODE_STAT_ADD(ni, tx_bytes, pdulen); } twh->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG; skb_trim(skb, hdrsize + pdusize); skb->next = framelist; } else { IEEE80211_NODE_STAT(ni, tx_data); IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen); #ifdef ATH_SUPERG_FF /* Account for a second skb in the same packet when FF is on */ if (skb->next) { datalen = skb->next->len; IEEE80211_NODE_STAT(ni, tx_data); IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen); } #endif } return skb; bad: if (framelist != NULL) { ieee80211_dev_kfree_skb_list(&framelist); } if (skb != NULL) { ieee80211_dev_kfree_skb_list(&skb); } return NULL; #undef WH4 } EXPORT_SYMBOL(ieee80211_encap); #undef KEY_UNDEFINED /* * Add a supported rates element id to a frame. */ u_int8_t * ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs) { int nrates; *frm++ = IEEE80211_ELEMID_RATES; nrates = rs->rs_nrates; if (nrates > IEEE80211_RATE_SIZE) nrates = IEEE80211_RATE_SIZE; *frm++ = nrates; memcpy(frm, rs->rs_rates, nrates); return frm + nrates; } /* * Add an extended supported rates element id to a frame. */ u_int8_t * ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs) { /* * Add an extended supported rates element if operating in 11g mode. */ if (rs->rs_nrates > IEEE80211_RATE_SIZE) { int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; *frm++ = IEEE80211_ELEMID_XRATES; *frm++ = nrates; memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); frm += nrates; } return frm; } /* * Add an ssid elemet to a frame. */ static u_int8_t * ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len) { *frm++ = IEEE80211_ELEMID_SSID; *frm++ = len; memcpy(frm, ssid, len); return frm + len; } /* * Add an erp element to a frame. */ u_int8_t * ieee80211_add_erp(u_int8_t *frm, struct ieee80211com *ic) { u_int8_t erp; *frm++ = IEEE80211_ELEMID_ERP; *frm++ = 1; erp = 0; if (ic->ic_nonerpsta != 0) erp |= IEEE80211_ERP_NON_ERP_PRESENT; if (ic->ic_flags & IEEE80211_F_USEPROT) erp |= IEEE80211_ERP_USE_PROTECTION; if ((ic->ic_flags & IEEE80211_F_USEBARKER) || (ic->ic_nonerpsta > 0)) erp |= IEEE80211_ERP_LONG_PREAMBLE; *frm++ = erp; return frm; } /* * Add a country information element to a frame. */ u_int8_t * ieee80211_add_country(u_int8_t *frm, struct ieee80211com *ic) { /* add country code */ memcpy(frm, (u_int8_t *)&ic->ic_country_ie, ic->ic_country_ie.country_len + 2); frm += ic->ic_country_ie.country_len + 2; return frm; } /* * Add Power Constraint information element */ u_int8_t * ieee80211_add_pwrcnstr(u_int8_t *frm, struct ieee80211com *ic) { struct ieee80211_ie_pwrcnstr *ie = (struct ieee80211_ie_pwrcnstr *)frm; ie->pc_id = IEEE80211_ELEMID_PWRCNSTR; ie->pc_len = 1; ie->pc_lpc = IEEE80211_PWRCONSTRAINT_VAL(ic); frm += sizeof(*ie); return frm; } /* * Add Power Capability information element */ static u_int8_t * ieee80211_add_pwrcap(u_int8_t *frm, struct ieee80211com *ic) { struct ieee80211_ie_pwrcap *ie = (struct ieee80211_ie_pwrcap *)frm; ie->pc_id = IEEE80211_ELEMID_PWRCAP; ie->pc_len = 2; ie->pc_mintxpow = ic->ic_bsschan->ic_minpower; ie->pc_maxtxpow = ic->ic_bsschan->ic_maxpower; frm += sizeof(*ie); return frm; } /* * Add Supported Channels information element */ static u_int8_t * ieee80211_add_suppchan(u_int8_t *frm, struct ieee80211com *ic) { memcpy(frm, (u_int8_t *)&ic->ic_sc_ie, ic->ic_sc_ie.sc_len + 2); frm += ic->ic_sc_ie.sc_len + 2; return frm; } static u_int8_t * ieee80211_setup_wpa_ie(struct ieee80211vap *vap, u_int8_t *ie) { #define WPA_OUI_BYTES 0x00, 0x50, 0xf2 #define ADDSHORT(frm, v) do { \ frm[0] = (v) & 0xff; \ frm[1] = (v) >> 8; \ frm += 2; \ } while (0) #define ADDSELECTOR(frm, sel) do { \ memcpy(frm, sel, 4); \ frm += 4; \ } while (0) static const u_int8_t oui[4] = { WPA_OUI_BYTES, WPA_OUI_TYPE }; static const u_int8_t cipher_suite[][4] = { { WPA_OUI_BYTES, WPA_CSE_WEP40 }, /* NB: 40-bit */ { WPA_OUI_BYTES, WPA_CSE_TKIP }, { 0x00, 0x00, 0x00, 0x00 }, /* XXX WRAP */ { WPA_OUI_BYTES, WPA_CSE_CCMP }, { 0x00, 0x00, 0x00, 0x00 }, /* XXX CKIP */ { WPA_OUI_BYTES, WPA_CSE_NULL }, }; static const u_int8_t wep104_suite[4] = { WPA_OUI_BYTES, WPA_CSE_WEP104 }; static const u_int8_t key_mgt_unspec[4] = { WPA_OUI_BYTES, WPA_ASE_8021X_UNSPEC }; static const u_int8_t key_mgt_psk[4] = { WPA_OUI_BYTES, WPA_ASE_8021X_PSK }; const struct ieee80211_rsnparms *rsn = &vap->iv_bss->ni_rsn; u_int8_t *frm = ie; u_int8_t *selcnt; *frm++ = IEEE80211_ELEMID_VENDOR; *frm++ = 0; /* length filled in below */ memcpy(frm, oui, sizeof(oui)); /* WPA OUI */ frm += sizeof(oui); ADDSHORT(frm, WPA_VERSION); /* XXX filter out CKIP */ /* multicast cipher */ if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP && rsn->rsn_mcastkeylen >= 13) ADDSELECTOR(frm, wep104_suite); else ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]); /* unicast cipher list */ selcnt = frm; ADDSHORT(frm, 0); /* selector count */ if (rsn->rsn_ucastcipherset & (1 << IEEE80211_CIPHER_AES_CCM)) { selcnt[0]++; ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]); } if (rsn->rsn_ucastcipherset & (1 << IEEE80211_CIPHER_TKIP)) { selcnt[0]++; ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]); } /* authenticator selector list */ selcnt = frm; ADDSHORT(frm, 0); /* selector count */ if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) { selcnt[0]++; ADDSELECTOR(frm, key_mgt_unspec); } if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) { selcnt[0]++; ADDSELECTOR(frm, key_mgt_psk); } /* optional capabilities */ if ((rsn->rsn_caps != 0) && (rsn->rsn_caps != RSN_CAP_PREAUTH)) ADDSHORT(frm, rsn->rsn_caps); /* calculate element length */ ie[1] = frm - ie - 2; KASSERT(ie[1] + 2 <= sizeof(struct ieee80211_ie_wpa), ("WPA IE too big, %u > %u", ie[1] + 2, (int)sizeof(struct ieee80211_ie_wpa))); return frm; #undef ADDSHORT #undef ADDSELECTOR #undef WPA_OUI_BYTES } static u_int8_t * ieee80211_setup_rsn_ie(struct ieee80211vap *vap, u_int8_t *ie) { #define RSN_OUI_BYTES 0x00, 0x0f, 0xac #define ADDSHORT(frm, v) do { \ frm[0] = (v) & 0xff; \ frm[1] = (v) >> 8; \ frm += 2; \ } while (0) #define ADDSELECTOR(frm, sel) do { \ memcpy(frm, sel, 4); \ frm += 4; \ } while (0) static const u_int8_t cipher_suite[][4] = { { RSN_OUI_BYTES, RSN_CSE_WEP40 }, /* NB: 40-bit */ { RSN_OUI_BYTES, RSN_CSE_TKIP }, { RSN_OUI_BYTES, RSN_CSE_WRAP }, { RSN_OUI_BYTES, RSN_CSE_CCMP }, { 0x00, 0x00, 0x00, 0x00 }, /* XXX CKIP */ { RSN_OUI_BYTES, RSN_CSE_NULL }, }; static const u_int8_t wep104_suite[4] = { RSN_OUI_BYTES, RSN_CSE_WEP104 }; static const u_int8_t key_mgt_unspec[4] = { RSN_OUI_BYTES, RSN_ASE_8021X_UNSPEC }; static const u_int8_t key_mgt_psk[4] = { RSN_OUI_BYTES, RSN_ASE_8021X_PSK }; const struct ieee80211_rsnparms *rsn = &vap->iv_bss->ni_rsn; u_int8_t *frm = ie; u_int8_t *selcnt; *frm++ = IEEE80211_ELEMID_RSN; *frm++ = 0; /* length filled in below */ ADDSHORT(frm, RSN_VERSION); /* XXX filter out CKIP */ /* multicast cipher */ if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP && rsn->rsn_mcastkeylen >= 13) ADDSELECTOR(frm, wep104_suite); else ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]); /* unicast cipher list */ selcnt = frm; ADDSHORT(frm, 0); /* selector count */ if (rsn->rsn_ucastcipherset & (1 << IEEE80211_CIPHER_AES_CCM)) { selcnt[0]++; ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]); } if (rsn->rsn_ucastcipherset & (1 << IEEE80211_CIPHER_TKIP)) { selcnt[0]++; ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]); } /* authenticator selector list */ selcnt = frm; ADDSHORT(frm, 0); /* selector count */ if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) { selcnt[0]++; ADDSELECTOR(frm, key_mgt_unspec); } if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) { selcnt[0]++; ADDSELECTOR(frm, key_mgt_psk); } /* capabilities */ ADDSHORT(frm, rsn->rsn_caps); /* XXX PMKID */ /* calculate element length */ ie[1] = frm - ie - 2; KASSERT(ie[1] + 2 <= sizeof(struct ieee80211_ie_wpa), ("RSN IE too big, %u > %u", ie[1] + 2, (int)sizeof(struct ieee80211_ie_wpa))); return frm; #undef ADDSELECTOR #undef ADDSHORT #undef RSN_OUI_BYTES } /* * Add a WPA/RSN element to a frame. */ u_int8_t * ieee80211_add_wpa(u_int8_t *frm, struct ieee80211vap *vap) { KASSERT(vap->iv_flags & IEEE80211_F_WPA, ("no WPA/RSN!")); if (vap->iv_flags & IEEE80211_F_WPA2) frm = ieee80211_setup_rsn_ie(vap, frm); if (vap->iv_flags & IEEE80211_F_WPA1) frm = ieee80211_setup_wpa_ie(vap, frm); return frm; } #define WME_OUI_BYTES 0x00, 0x50, 0xf2 /* * Add a WME Info element to a frame. */ static u_int8_t * ieee80211_add_wme(u_int8_t *frm, struct ieee80211_node *ni) { static const u_int8_t oui[4] = { WME_OUI_BYTES, WME_OUI_TYPE }; struct ieee80211_ie_wme *ie = (struct ieee80211_ie_wme *)frm; struct ieee80211_wme_state *wme = &ni->ni_ic->ic_wme; struct ieee80211vap *vap = ni->ni_vap; *frm++ = IEEE80211_ELEMID_VENDOR; *frm++ = 0; /* length filled in below */ memcpy(frm, oui, sizeof(oui)); /* WME OUI */ frm += sizeof(oui); *frm++ = WME_INFO_OUI_SUBTYPE; /* OUI subtype */ *frm++ = WME_VERSION; /* protocol version */ /* QoS Info field depends on operating mode */ switch (vap->iv_opmode) { case IEEE80211_M_HOSTAP: *frm = wme->wme_bssChanParams.cap_info_count; if (IEEE80211_VAP_UAPSD_ENABLED(vap)) *frm |= WME_CAPINFO_UAPSD_EN; frm++; break; case IEEE80211_M_STA: *frm++ = vap->iv_uapsdinfo; break; default: *frm++ = 0; } ie->wme_len = frm - &ie->wme_oui[0]; return frm; } /* * Add a WME Parameter element to a frame. */ u_int8_t * ieee80211_add_wme_param(u_int8_t *frm, struct ieee80211_wme_state *wme, int uapsd_enable) { #define SM(_v, _f) (((_v) << _f##_S) & _f) #define ADDSHORT(frm, v) do { \ frm[0] = (v) & 0xff; \ frm[1] = (v) >> 8; \ frm += 2; \ } while (0) static const u_int8_t oui[4] = { WME_OUI_BYTES, WME_OUI_TYPE }; struct ieee80211_wme_param *ie = (struct ieee80211_wme_param *)frm; int i; *frm++ = IEEE80211_ELEMID_VENDOR; *frm++ = 0; /* length filled in below */ memcpy(frm, oui, sizeof(oui)); /* WME OUI */ frm += sizeof(oui); *frm++ = WME_PARAM_OUI_SUBTYPE; /* OUI subtype */ *frm++ = WME_VERSION; /* protocol version */ *frm = wme->wme_bssChanParams.cap_info_count; if (uapsd_enable) *frm |= WME_CAPINFO_UAPSD_EN; frm++; *frm++ = 0; /* reserved field */ for (i = 0; i < WME_NUM_AC; i++) { const struct wmeParams *ac = &wme->wme_bssChanParams.cap_wmeParams[i]; *frm++ = SM(i, WME_PARAM_ACI) | SM(ac->wmep_acm, WME_PARAM_ACM) | SM(ac->wmep_aifsn, WME_PARAM_AIFSN); *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX) | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN); ADDSHORT(frm, ac->wmep_txopLimit); } ie->param_len = frm - &ie->param_oui[0]; return frm; #undef ADDSHORT } #undef WME_OUI_BYTES /* * Add an Atheros Advanaced Capability element to a frame */ u_int8_t * ieee80211_add_athAdvCap(u_int8_t *frm, u_int8_t capability, u_int16_t defaultKey) { static const u_int8_t oui[6] = {(ATH_OUI & 0xff), ((ATH_OUI >>8) & 0xff), ((ATH_OUI >> 16) & 0xff), ATH_OUI_TYPE, ATH_OUI_SUBTYPE, ATH_OUI_VERSION}; struct ieee80211_ie_athAdvCap *ie = (struct ieee80211_ie_athAdvCap *)frm; *frm++ = IEEE80211_ELEMID_VENDOR; *frm++ = 0; /* Length filled in below */ memcpy(frm, oui, sizeof(oui)); /* Atheros OUI, type, subtype, and version for adv capabilities */ frm += sizeof(oui); *frm++ = capability; /* Setup default key index in little endian byte order */ *frm++ = (defaultKey & 0xff); *frm++ = ((defaultKey >> 8) & 0xff); ie->athAdvCap_len = frm - &ie->athAdvCap_oui[0]; return frm; } /* * Add XR IE element to a frame */ #ifdef ATH_SUPERG_XR u_int8_t * ieee80211_add_xr_param(u_int8_t *frm, struct ieee80211vap *vap) { static const u_int8_t oui[6] = {(ATH_OUI & 0xff), ((ATH_OUI >>8) & 0xff), ((ATH_OUI >> 16) & 0xff), ATH_OUI_TYPE_XR, ATH_OUI_SUBTYPE_XR, ATH_OUI_VER_XR}; struct ieee80211_xr_param *ie = (struct ieee80211_xr_param *)frm; *frm++ = IEEE80211_ELEMID_VENDOR; *frm++ = 0; /* Length filled in below */ memcpy(frm, oui, sizeof(oui)); /* Atheros OUI, type, subtype, and version for adv capabilities */ frm += sizeof(oui); *frm++ = 0; /* XR info */ /* copy the BSSIDs */ if (vap->iv_flags & IEEE80211_F_XR) { IEEE80211_ADDR_COPY(frm, vap->iv_xrvap->iv_bssid); /* Base BSSID */ frm += IEEE80211_ADDR_LEN; IEEE80211_ADDR_COPY(frm, vap->iv_bssid); /* XR BSSID */ frm += IEEE80211_ADDR_LEN; *(__le16 *)frm = htole16(vap->iv_bss->ni_intval); /* XR beacon interval */ frm += 2; *frm++ = vap->iv_xrvap->iv_ath_cap; /* Base mode capability */ *frm++ = vap->iv_ath_cap; /* XR mode capability */ } else { IEEE80211_ADDR_COPY(frm, vap->iv_bssid); frm += IEEE80211_ADDR_LEN; IEEE80211_ADDR_COPY(frm, vap->iv_xrvap->iv_bssid); frm += IEEE80211_ADDR_LEN; *(__le16 *)frm = htole16(vap->iv_bss->ni_intval); frm += 2; *frm++ = vap->iv_ath_cap; *frm++ = vap->iv_xrvap->iv_ath_cap; } ie->param_len = frm - &ie->param_oui[0]; return frm; } #endif /* * Send a probe request frame with the specified ssid * and any optional information element data. */ int ieee80211_send_probereq(struct ieee80211_node *ni, const u_int8_t sa[IEEE80211_ADDR_LEN], const u_int8_t da[IEEE80211_ADDR_LEN], const u_int8_t bssid[IEEE80211_ADDR_LEN], const u_int8_t *ssid, size_t ssidlen, const void *optie, size_t optielen) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; enum ieee80211_phymode mode; struct ieee80211_frame *wh; struct sk_buff *skb; u_int8_t *frm; /* * prreq frame format * [tlv] ssid * [tlv] supported rates * [tlv] extended supported rates * [tlv] user-specified IEs */ skb = ieee80211_getmgtframe(&frm, 2 + IEEE80211_NWID_LEN + 2 + IEEE80211_RATE_SIZE + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) + (optie != NULL ? optielen : 0) + vap->app_ie[IEEE80211_APPIE_FRAME_PROBE_REQ].length); if (skb == NULL) { vap->iv_stats.is_tx_nobuf++; return -ENOMEM; } frm = ieee80211_add_ssid(frm, ssid, ssidlen); mode = ieee80211_chan2mode(ic->ic_curchan); frm = ieee80211_add_rates(frm, &ic->ic_sup_rates[mode]); frm = ieee80211_add_xrates(frm, &ic->ic_sup_rates[mode]); if (optie != NULL) { memcpy(frm, optie, optielen); frm += optielen; } if (vap->app_ie[IEEE80211_APPIE_FRAME_PROBE_REQ].ie) { memcpy(frm, vap->app_ie[IEEE80211_APPIE_FRAME_PROBE_REQ].ie, vap->app_ie[IEEE80211_APPIE_FRAME_PROBE_REQ].length); frm += vap->app_ie[IEEE80211_APPIE_FRAME_PROBE_REQ].length; } skb_trim(skb, frm - skb->data); SKB_NI(skb) = ieee80211_ref_node(ni); wh = (struct ieee80211_frame *) skb_push(skb, sizeof(struct ieee80211_frame)); ieee80211_send_setup(vap, ni, wh, IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ, sa, da, bssid); /* XXX power management? */ IEEE80211_NODE_STAT(ni, tx_probereq); IEEE80211_NODE_STAT(ni, tx_mgmt); IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, "[" MAC_FMT "] send probe req on channel %u\n", MAC_ADDR(wh->i_addr1), ieee80211_chan2ieee(ic, ic->ic_curchan)); (void)ic->ic_mgtstart(ic, skb); return 0; } /* Start a new Channel Switch process. It will first check if there is already * one Channel Switch process running and if so, will determine which one will * run. This function must be the only function setting IEEE80211_F_CHANSWITCH * in ic_flags. * * is_beacon_frame : true if the csa_count comes from a beacon frame we just * received. */ void ieee80211_start_new_csa(struct ieee80211vap *vap, u_int8_t csa_mode, struct ieee80211_channel *csa_chan, u_int8_t csa_count, int is_beacon_frame) { struct ieee80211com *ic = vap->iv_ic; u_int32_t now_tu, nexttbtt, expires_tu; unsigned long now, expires; /* 802.11h 7.3.2.20 : A value of 1 indicates that the switch will * occur immediately before the next TBTT. A value of 0 indicates that * the switch will occur at any time after the frame containing the * element is transmitted. */ now_tu = IEEE80211_TSF_TO_TU(vap->iv_get_tsf(vap)); now = jiffies; if (csa_count == 0) { expires_tu = now_tu; expires = now; IEEE80211_DPRINTF(vap, IEEE80211_MSG_DOTH, "%s: now:%d count:%d => expires:%d\n", __func__, now, csa_count, expires); } else { /* csa_count includes the current frame if it is a beacon * frame. */ if (is_beacon_frame) csa_count --; /* Compute the closest nexttbtt, next time a beacon for this * VAP will be sent. */ nexttbtt = vap->iv_get_nexttbtt(vap); /* Compute ic_csa_expires_tu = nexttbtt + csa_count * * ni_intval. */ expires_tu = nexttbtt + csa_count * vap->iv_bss->ni_intval; IEEE80211_DPRINTF(vap, IEEE80211_MSG_DOTH, "%s: now_tu:%ld nexttbtt_tu:%ld " "=> expires_tu:%ld\n", __func__, now_tu, nexttbtt, expires_tu); /* Convert to jiffies, including a margin. */ expires = now + IEEE80211_TU_TO_JIFFIES(expires_tu - now_tu - 10) - 1; IEEE80211_DPRINTF(vap, IEEE80211_MSG_DOTH, "%s: now:%d count:%d => expires:%d\n", __func__, now, csa_count, expires); } /* If we have a CS in progress, we ignore this new CSA IE if the * channel switch time is later than the current one. */ if ((ic->ic_flags & IEEE80211_F_CHANSWITCH) && (expires_tu > ic->ic_csa_expires_tu)) { /* We do not ignore csa_mode if it says we must stop sending * right now. */ if (ic->ic_csa_mode == IEEE80211_CSA_CAN_STOP_TX && csa_mode == IEEE80211_CSA_MUST_STOP_TX) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_DOTH, "%s: Updating CSA mode\n", __func__); ic->ic_csa_mode = csa_mode; } IEEE80211_DPRINTF(vap, IEEE80211_MSG_DOTH, "%s: Ignored CSA IE since a sooner " "channel switch is scheduled\n", __func__); return; } ic->ic_csa_mode = csa_mode; ic->ic_csa_chan = csa_chan; ic->ic_csa_expires_tu = expires_tu; mod_timer(&ic->ic_csa_timer, expires); ic->ic_flags |= IEEE80211_F_CHANSWITCH; } /* Send a broadcast CSA frame, announcing the new channel. References are from * IEEE 802.11h-2003. CSA frame format is an "Action" frame (Type: 00, Subtype: * 1101, see 7.1.3.1.2) * * [1] Category : 0, Spectrum Management, 7.3.1.11 * [1] Action : 4, Channel Switch Announcement, 7.4.1 and 7.4.1.5 * [1] Element ID : 37, Channel Switch Announcement, 7.3.2 * [1] Length : 3, 7.3.2.20 * [1] Channel Switch Mode : 1, stop transmission immediately * [1] New Channel Number * [1] Channel Switch Count in TBTT : 0, immediate channel switch * * csa_mode : IEEE80211_CSA_MANDATORY / IEEE80211_CSA_ADVISORY * csa_chan : new IEEE channel number * csa_tbtt : TBTT until Channel Switch happens */ void ieee80211_send_csa_frame(struct ieee80211vap *vap, u_int8_t csa_mode, u_int8_t csa_chan, u_int8_t csa_count) { struct ieee80211_node *ni = vap->iv_bss; struct ieee80211com *ic = ni->ni_ic; struct sk_buff *skb; const int frm_len = 7; u_int8_t *frm; IEEE80211_DPRINTF(vap, IEEE80211_MSG_DOTH, "%s: Sending action frame with CSA IE: %u/%u/%u\n", __func__, csa_mode, csa_chan, csa_count); skb = ieee80211_getmgtframe(&frm, frm_len); if (skb == NULL) { IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni, "%s: cannot get buf; size %u", __func__, frm_len); vap->iv_stats.is_tx_nobuf++; return ; } *frm++ = IEEE80211_ACTION_SPECTRUM_MANAGEMENT; /* Category */ *frm++ = IEEE80211_ACTION_S_CHANSWITCHANN; /* Spectrum Management */ *frm++ = IEEE80211_ELEMID_CHANSWITCHANN; *frm++ = 3; *frm++ = csa_mode; *frm++ = csa_chan; *frm++ = csa_count; ieee80211_mgmt_output(ieee80211_ref_node(ni), skb, IEEE80211_FC0_SUBTYPE_ACTION, ic->ic_dev->broadcast); } /* * Send a management frame. The node is for the destination (or ic_bss * when in station mode). Nodes other than ic_bss have their reference * count bumped to reflect our use for an indeterminate time. */ int ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg) { #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct sk_buff *skb; u_int8_t *frm; int frm_len; u_int16_t capinfo; ieee80211_keyix_t def_keyindex; int has_challenge, is_shared_key, ret, timer, status; KASSERT(ni != NULL, ("null node")); timer = 0; switch (type) { case IEEE80211_FC0_SUBTYPE_PROBE_RESP: /* * probe response frame format * [8] time stamp * [2] beacon interval * [2] capability information * [tlv] ssid * [tlv] supported rates * [7] FH/DS parameter set * [tlv] IBSS parameter set * [tlv] country code * [3] power constraint * [3] extended rate phy (ERP) * [tlv] extended supported rates * [tlv] WME parameters * [tlv] WPA/RSN parameters * [tlv] Atheros Advanced Capabilities * [tlv] AtherosXR parameters */ frm_len = 8 + sizeof(u_int16_t) + sizeof(u_int16_t) + 2 + IEEE80211_NWID_LEN + 2 + IEEE80211_RATE_SIZE + 7 /* max(7,3) */ /* XXX allocate max size */ + 2 + ic->ic_country_ie.country_len + 3 + 3 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) + sizeof(struct ieee80211_wme_param) /* XXX !WPA1+WPA2 fits w/o a cluster */ + (vap->iv_flags & IEEE80211_F_WPA ? 2 * sizeof(struct ieee80211_ie_wpa) : 0) + sizeof(struct ieee80211_ie_athAdvCap) + vap->app_ie[IEEE80211_APPIE_FRAME_PROBE_RESP].length; #ifdef ATH_SUPERG_XR if (vap->iv_ath_cap & IEEE80211_ATHC_XR) frm_len += sizeof(struct ieee80211_xr_param); #endif skb = ieee80211_getmgtframe(&frm, frm_len); if (skb == NULL) senderr(ENOMEM, is_tx_nobuf); /* timestamp should be filled later */ memset(frm, 0, 8); frm += 8; /* beacon interval */ *(__le16 *)frm = htole16(vap->iv_bss->ni_intval); frm += 2; /* cap. info */ if (vap->iv_opmode == IEEE80211_M_IBSS) capinfo = IEEE80211_CAPINFO_IBSS; else capinfo = IEEE80211_CAPINFO_ESS; if (vap->iv_flags & IEEE80211_F_PRIVACY) capinfo |= IEEE80211_CAPINFO_PRIVACY; if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; if (ic->ic_flags & IEEE80211_F_SHSLOT) capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; *(__le16 *)frm = htole16(capinfo); frm += 2; /* ssid */ frm = ieee80211_add_ssid(frm, vap->iv_bss->ni_essid, vap->iv_bss->ni_esslen); /* supported rates */ frm = ieee80211_add_rates(frm, &ni->ni_rates); /* XXX: FH/DS parameter set, correct ? */ if (ic->ic_phytype == IEEE80211_T_FH) { *frm++ = IEEE80211_ELEMID_FHPARMS; *frm++ = 5; *frm++ = ni->ni_fhdwell & 0x00ff; *frm++ = (ni->ni_fhdwell >> 8) & 0x00ff; *frm++ = IEEE80211_FH_CHANSET( ieee80211_chan2ieee(ic, ic->ic_curchan)); *frm++ = IEEE80211_FH_CHANPAT( ieee80211_chan2ieee(ic, ic->ic_curchan)); *frm++ = ni->ni_fhindex; } else { *frm++ = IEEE80211_ELEMID_DSPARMS; *frm++ = 1; *frm++ = ieee80211_chan2ieee(ic, ic->ic_curchan); } if (vap->iv_opmode == IEEE80211_M_IBSS) { *frm++ = IEEE80211_ELEMID_IBSSPARMS; *frm++ = 2; *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ } /* country code */ if ((ic->ic_flags & IEEE80211_F_DOTH) || (ic->ic_flags_ext & IEEE80211_FEXT_COUNTRYIE)) frm = ieee80211_add_country(frm, ic); /* power constraint */ if (ic->ic_flags & IEEE80211_F_DOTH) frm = ieee80211_add_pwrcnstr(frm, ic); /* ERP */ if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) frm = ieee80211_add_erp(frm, ic); /* Ext. Supp. Rates */ frm = ieee80211_add_xrates(frm, &ni->ni_rates); /* WME */ if (vap->iv_flags & IEEE80211_F_WME) frm = ieee80211_add_wme_param(frm, &ic->ic_wme, IEEE80211_VAP_UAPSD_ENABLED(vap)); /* WPA */ if (vap->iv_flags & IEEE80211_F_WPA) frm = ieee80211_add_wpa(frm, vap); /* AthAdvCaps */ if (vap->iv_bss && vap->iv_bss->ni_ath_flags) frm = ieee80211_add_athAdvCap(frm, vap->iv_bss->ni_ath_flags, vap->iv_bss->ni_ath_defkeyindex); #ifdef ATH_SUPERG_XR /* XR params */ if (vap->iv_xrvap && vap->iv_ath_cap & IEEE80211_ATHC_XR) frm = ieee80211_add_xr_param(frm, vap); #endif if (vap->app_ie[IEEE80211_APPIE_FRAME_PROBE_RESP].ie) { memcpy(frm, vap->app_ie[IEEE80211_APPIE_FRAME_PROBE_RESP].ie, vap->app_ie[IEEE80211_APPIE_FRAME_PROBE_RESP].length); frm += vap->app_ie[IEEE80211_APPIE_FRAME_PROBE_RESP].length; } skb_trim(skb, frm - skb->data); break; case IEEE80211_FC0_SUBTYPE_AUTH: status = arg >> 16; arg &= 0xffff; has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE || arg == IEEE80211_AUTH_SHARED_RESPONSE) && ni->ni_challenge != NULL); /* * Deduce whether we're doing open authentication or * shared key authentication. We do the latter if * we're in the middle of a shared key authentication * handshake or if we're initiating an authentication * request and configured to use shared key. */ is_shared_key = has_challenge || arg >= IEEE80211_AUTH_SHARED_RESPONSE || (arg == IEEE80211_AUTH_SHARED_REQUEST && vap->iv_bss->ni_authmode == IEEE80211_AUTH_SHARED); skb = ieee80211_getmgtframe(&frm, 3 * sizeof(u_int16_t) + (has_challenge && status == IEEE80211_STATUS_SUCCESS ? sizeof(u_int16_t)+IEEE80211_CHALLENGE_LEN : 0)); if (skb == NULL) senderr(ENOMEM, is_tx_nobuf); ((__le16 *)frm)[0] = (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED) : htole16(IEEE80211_AUTH_ALG_OPEN); ((__le16 *)frm)[1] = htole16(arg); /* sequence number */ ((__le16 *)frm)[2] = htole16(status); /* status */ if (has_challenge && status == IEEE80211_STATUS_SUCCESS) { ((__le16 *)frm)[3] = htole16((IEEE80211_CHALLENGE_LEN << 8) | IEEE80211_ELEMID_CHALLENGE); memcpy(&((__le16 *)frm)[4], ni->ni_challenge, IEEE80211_CHALLENGE_LEN); if (arg == IEEE80211_AUTH_SHARED_RESPONSE) { IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, "request encrypt frame (%s)", __func__); SKB_CB(skb)->flags |= M_LINK0; /* WEP-encrypt, please */ } } /* XXX not right for shared key */ if (status == IEEE80211_STATUS_SUCCESS) IEEE80211_NODE_STAT(ni, tx_auth); else IEEE80211_NODE_STAT(ni, tx_auth_fail); if (vap->iv_opmode == IEEE80211_M_STA) timer = IEEE80211_TRANS_WAIT; break; case IEEE80211_FC0_SUBTYPE_DEAUTH: IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, "send station deauthenticate (reason %d)", arg); skb = ieee80211_getmgtframe(&frm, sizeof(u_int16_t)); if (skb == NULL) senderr(ENOMEM, is_tx_nobuf); *(__le16 *)frm = htole16(arg); /* reason */ IEEE80211_NODE_STAT(ni, tx_deauth); IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg); ieee80211_node_unauthorize(ni); /* port closed */ break; case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: case IEEE80211_FC0_SUBTYPE_REASSOC_REQ: /* * asreq frame format * [2] capability information * [2] listen interval * [6*] current AP address (reassoc only) * [tlv] ssid * [tlv] supported rates * [4] power capability (802.11h) * [tlv] supported channels element (802.11h) * [tlv] extended supported rates * [tlv] WME [if enabled and AP capable] * [tlv] Atheros advanced capabilities * [tlv] user-specified IEs */ skb = ieee80211_getmgtframe(&frm, sizeof(u_int16_t) + sizeof(u_int16_t) + IEEE80211_ADDR_LEN + 2 + IEEE80211_NWID_LEN + 2 + IEEE80211_RATE_SIZE + 4 + (2 + ic->ic_sc_ie.sc_len) + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) + sizeof(struct ieee80211_ie_wme) + sizeof(struct ieee80211_ie_athAdvCap) + (vap->iv_opt_ie != NULL ? vap->iv_opt_ie_len : 0) + vap->app_ie[IEEE80211_APPIE_FRAME_ASSOC_REQ].length); if (skb == NULL) senderr(ENOMEM, is_tx_nobuf); capinfo = 0; if (vap->iv_opmode == IEEE80211_M_IBSS) capinfo |= IEEE80211_CAPINFO_IBSS; else /* IEEE80211_M_STA */ capinfo |= IEEE80211_CAPINFO_ESS; if (vap->iv_flags & IEEE80211_F_PRIVACY) capinfo |= IEEE80211_CAPINFO_PRIVACY; /* * NB: Some 11a APs reject the request when * short premable is set. */ /* Capability information */ if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; if ((ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME) && (ic->ic_caps & IEEE80211_C_SHSLOT)) capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; *(__le16 *)frm = htole16(capinfo); frm += 2; /* listen interval */ *(__le16 *)frm = htole16(ic->ic_lintval); frm += 2; /* Current AP address */ if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) { IEEE80211_ADDR_COPY(frm, vap->iv_bssid); frm += IEEE80211_ADDR_LEN; } /* ssid */ frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen); /* supported rates */ frm = ieee80211_add_rates(frm, &ni->ni_rates); /* power capability/supported channels */ if (ic->ic_flags & IEEE80211_F_DOTH) { frm = ieee80211_add_pwrcap(frm, ic); frm = ieee80211_add_suppchan(frm, ic); } /* ext. supp. rates */ frm = ieee80211_add_xrates(frm, &ni->ni_rates); /* wme */ if ((vap->iv_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL) frm = ieee80211_add_wme(frm, ni); /* ath adv. cap */ if (ni->ni_ath_flags & vap->iv_ath_cap) { IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni, "Adding ath adv cap ie: ni_ath_flags = %02x, " "iv_ath_cap = %02x", ni->ni_ath_flags, vap->iv_ath_cap); /* Setup default key index for static wep case */ def_keyindex = IEEE80211_INVAL_DEFKEY; if (((vap->iv_flags & IEEE80211_F_WPA) == 0) && (ni->ni_authmode != IEEE80211_AUTH_8021X) && (vap->iv_def_txkey != IEEE80211_KEYIX_NONE)) def_keyindex = vap->iv_def_txkey; frm = ieee80211_add_athAdvCap(frm, ni->ni_ath_flags & vap->iv_ath_cap, def_keyindex); } /* User-spec */ if (vap->iv_opt_ie != NULL) { memcpy(frm, vap->iv_opt_ie, vap->iv_opt_ie_len); frm += vap->iv_opt_ie_len; } if (vap->app_ie[IEEE80211_APPIE_FRAME_ASSOC_REQ].ie) { memcpy(frm, vap->app_ie[IEEE80211_APPIE_FRAME_ASSOC_REQ].ie, vap->app_ie[IEEE80211_APPIE_FRAME_ASSOC_REQ].length); frm += vap->app_ie[IEEE80211_APPIE_FRAME_ASSOC_REQ].length; } skb_trim(skb, frm - skb->data); timer = IEEE80211_TRANS_WAIT; break; case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: case IEEE80211_FC0_SUBTYPE_REASSOC_RESP: /* * asreq frame format * [2] capability information * [2] status * [2] association ID * [tlv] supported rates * [tlv] extended supported rates * [tlv] WME (if enabled and STA enabled) * [tlv] Atheros Advanced Capabilities */ skb = ieee80211_getmgtframe(&frm, 3 * sizeof(u_int16_t) + 2 + IEEE80211_RATE_SIZE + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) + sizeof(struct ieee80211_wme_param) + (vap->iv_ath_cap ? sizeof(struct ieee80211_ie_athAdvCap):0) + vap->app_ie[IEEE80211_APPIE_FRAME_ASSOC_RESP].length); if (skb == NULL) senderr(ENOMEM, is_tx_nobuf); /* Capability Information */ capinfo = IEEE80211_CAPINFO_ESS; if (vap->iv_flags & IEEE80211_F_PRIVACY) capinfo |= IEEE80211_CAPINFO_PRIVACY; if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; if (ic->ic_flags & IEEE80211_F_SHSLOT) capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; *(__le16 *)frm = htole16(capinfo); frm += 2; /* status */ *(__le16 *)frm = htole16(arg); frm += 2; /* Assoc ID */ if (arg == IEEE80211_STATUS_SUCCESS) { *(__le16 *)frm = htole16(ni->ni_associd); IEEE80211_NODE_STAT(ni, tx_assoc); } else IEEE80211_NODE_STAT(ni, tx_assoc_fail); frm += 2; /* supported rates */ frm = ieee80211_add_rates(frm, &ni->ni_rates); /* ext. suppo. rates */ frm = ieee80211_add_xrates(frm, &ni->ni_rates); /* wme */ if ((vap->iv_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL) frm = ieee80211_add_wme_param(frm, &ic->ic_wme, IEEE80211_VAP_UAPSD_ENABLED(vap)); /* athAdvCap */ if (vap->iv_ath_cap) frm = ieee80211_add_athAdvCap(frm, vap->iv_ath_cap & ni->ni_ath_flags, ni->ni_ath_defkeyindex); if (vap->app_ie[IEEE80211_APPIE_FRAME_ASSOC_RESP].ie) { memcpy(frm, vap->app_ie[IEEE80211_APPIE_FRAME_ASSOC_RESP].ie, vap->app_ie[IEEE80211_APPIE_FRAME_ASSOC_RESP].length); frm += vap->app_ie[IEEE80211_APPIE_FRAME_ASSOC_RESP].length; } skb_trim(skb, frm - skb->data); break; case IEEE80211_FC0_SUBTYPE_DISASSOC: IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni, "send station disassociate (reason %d)", arg); skb = ieee80211_getmgtframe(&frm, sizeof(u_int16_t)); if (skb == NULL) senderr(ENOMEM, is_tx_nobuf); *(__le16 *)frm = htole16(arg); /* reason */ IEEE80211_NODE_STAT(ni, tx_disassoc); IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg); break; default: IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni, "invalid mgmt frame type %u", type); senderr(EINVAL, is_tx_unknownmgt); /* NOTREACHED */ } ieee80211_mgmt_output(ieee80211_ref_node(ni), skb, type, ni->ni_macaddr); if (timer) mod_timer(&vap->iv_mgtsend, jiffies + timer * HZ); return 0; bad: return ret; #undef senderr } /* * Send PS-POLL from to bss. Should only be called when as STA. */ void ieee80211_send_pspoll(struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct sk_buff *skb; struct ieee80211_ctlframe_addr2 *wh; skb = ieee80211_dev_alloc_skb(sizeof(struct ieee80211_ctlframe_addr2)); if (skb == NULL) return; SKB_NI(skb) = ieee80211_ref_node(ni); skb->priority = WME_AC_VO; wh = (struct ieee80211_ctlframe_addr2 *)skb_put(skb, sizeof(struct ieee80211_ctlframe_addr2)); wh->i_aidordur = htole16(0xc000 | IEEE80211_NODE_AID(ni)); IEEE80211_ADDR_COPY(wh->i_addr1, vap->iv_bssid); IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); wh->i_fc[0] = 0; wh->i_fc[1] = 0; wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL; if (IEEE80211_VAP_IS_SLEEPING(ni->ni_vap)) wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT; (void) ic->ic_mgtstart(ic, skb); /* cheat */ } #ifdef ATH_SUPERG_XR /* * constructs and returns a contention free frames. * currently used for Group poll in XR mode. */ struct sk_buff * ieee80211_getcfframe(struct ieee80211vap *vap, int type) { u_int8_t *frm; struct sk_buff *skb; struct ieee80211_frame *wh; struct ieee80211com *ic = vap->iv_ic; skb = ieee80211_getmgtframe(&frm, 0); if (skb == NULL) return NULL; wh = (struct ieee80211_frame *) skb_push(skb, sizeof(struct ieee80211_frame)); if (type == IEEE80211_FC0_SUBTYPE_CFPOLL) { wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA | type; wh->i_dur = htole16(0x8000); } else if (type == IEEE80211_FC0_SUBTYPE_CF_END) { wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL | type; wh->i_dur = 0; } IEEE80211_ADDR_COPY(wh->i_addr1, ic->ic_dev->broadcast); IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bssid); return skb; } EXPORT_SYMBOL(ieee80211_getcfframe); #endif