mirror of
https://github.com/lua/lua
synced 2024-11-24 13:49:39 +03:00
c403e456b6
New instruction format 'ivABC' (a variant of iABC where parameter vC has 10 bits) allows constructors of up to 1024 elements to be coded without EXTRAARG.
1911 lines
58 KiB
C
1911 lines
58 KiB
C
/*
|
|
** $Id: lvm.c $
|
|
** Lua virtual machine
|
|
** See Copyright Notice in lua.h
|
|
*/
|
|
|
|
#define lvm_c
|
|
#define LUA_CORE
|
|
|
|
#include "lprefix.h"
|
|
|
|
#include <float.h>
|
|
#include <limits.h>
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "lua.h"
|
|
|
|
#include "lapi.h"
|
|
#include "ldebug.h"
|
|
#include "ldo.h"
|
|
#include "lfunc.h"
|
|
#include "lgc.h"
|
|
#include "lobject.h"
|
|
#include "lopcodes.h"
|
|
#include "lstate.h"
|
|
#include "lstring.h"
|
|
#include "ltable.h"
|
|
#include "ltm.h"
|
|
#include "lvm.h"
|
|
|
|
|
|
/*
|
|
** By default, use jump tables in the main interpreter loop on gcc
|
|
** and compatible compilers.
|
|
*/
|
|
#if !defined(LUA_USE_JUMPTABLE)
|
|
#if defined(__GNUC__)
|
|
#define LUA_USE_JUMPTABLE 1
|
|
#else
|
|
#define LUA_USE_JUMPTABLE 0
|
|
#endif
|
|
#endif
|
|
|
|
|
|
|
|
/* limit for table tag-method chains (to avoid infinite loops) */
|
|
#define MAXTAGLOOP 2000
|
|
|
|
|
|
/*
|
|
** 'l_intfitsf' checks whether a given integer is in the range that
|
|
** can be converted to a float without rounding. Used in comparisons.
|
|
*/
|
|
|
|
/* number of bits in the mantissa of a float */
|
|
#define NBM (l_floatatt(MANT_DIG))
|
|
|
|
/*
|
|
** Check whether some integers may not fit in a float, testing whether
|
|
** (maxinteger >> NBM) > 0. (That implies (1 << NBM) <= maxinteger.)
|
|
** (The shifts are done in parts, to avoid shifting by more than the size
|
|
** of an integer. In a worst case, NBM == 113 for long double and
|
|
** sizeof(long) == 32.)
|
|
*/
|
|
#if ((((LUA_MAXINTEGER >> (NBM / 4)) >> (NBM / 4)) >> (NBM / 4)) \
|
|
>> (NBM - (3 * (NBM / 4)))) > 0
|
|
|
|
/* limit for integers that fit in a float */
|
|
#define MAXINTFITSF ((lua_Unsigned)1 << NBM)
|
|
|
|
/* check whether 'i' is in the interval [-MAXINTFITSF, MAXINTFITSF] */
|
|
#define l_intfitsf(i) ((MAXINTFITSF + l_castS2U(i)) <= (2 * MAXINTFITSF))
|
|
|
|
#else /* all integers fit in a float precisely */
|
|
|
|
#define l_intfitsf(i) 1
|
|
|
|
#endif
|
|
|
|
|
|
/*
|
|
** Try to convert a value from string to a number value.
|
|
** If the value is not a string or is a string not representing
|
|
** a valid numeral (or if coercions from strings to numbers
|
|
** are disabled via macro 'cvt2num'), do not modify 'result'
|
|
** and return 0.
|
|
*/
|
|
static int l_strton (const TValue *obj, TValue *result) {
|
|
lua_assert(obj != result);
|
|
if (!cvt2num(obj)) /* is object not a string? */
|
|
return 0;
|
|
else {
|
|
TString *st = tsvalue(obj);
|
|
size_t stlen;
|
|
const char *s = getlstr(st, stlen);
|
|
return (luaO_str2num(s, result) == stlen + 1);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** Try to convert a value to a float. The float case is already handled
|
|
** by the macro 'tonumber'.
|
|
*/
|
|
int luaV_tonumber_ (const TValue *obj, lua_Number *n) {
|
|
TValue v;
|
|
if (ttisinteger(obj)) {
|
|
*n = cast_num(ivalue(obj));
|
|
return 1;
|
|
}
|
|
else if (l_strton(obj, &v)) { /* string coercible to number? */
|
|
*n = nvalue(&v); /* convert result of 'luaO_str2num' to a float */
|
|
return 1;
|
|
}
|
|
else
|
|
return 0; /* conversion failed */
|
|
}
|
|
|
|
|
|
/*
|
|
** try to convert a float to an integer, rounding according to 'mode'.
|
|
*/
|
|
int luaV_flttointeger (lua_Number n, lua_Integer *p, F2Imod mode) {
|
|
lua_Number f = l_floor(n);
|
|
if (n != f) { /* not an integral value? */
|
|
if (mode == F2Ieq) return 0; /* fails if mode demands integral value */
|
|
else if (mode == F2Iceil) /* needs ceil? */
|
|
f += 1; /* convert floor to ceil (remember: n != f) */
|
|
}
|
|
return lua_numbertointeger(f, p);
|
|
}
|
|
|
|
|
|
/*
|
|
** try to convert a value to an integer, rounding according to 'mode',
|
|
** without string coercion.
|
|
** ("Fast track" handled by macro 'tointegerns'.)
|
|
*/
|
|
int luaV_tointegerns (const TValue *obj, lua_Integer *p, F2Imod mode) {
|
|
if (ttisfloat(obj))
|
|
return luaV_flttointeger(fltvalue(obj), p, mode);
|
|
else if (ttisinteger(obj)) {
|
|
*p = ivalue(obj);
|
|
return 1;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
** try to convert a value to an integer.
|
|
*/
|
|
int luaV_tointeger (const TValue *obj, lua_Integer *p, F2Imod mode) {
|
|
TValue v;
|
|
if (l_strton(obj, &v)) /* does 'obj' point to a numerical string? */
|
|
obj = &v; /* change it to point to its corresponding number */
|
|
return luaV_tointegerns(obj, p, mode);
|
|
}
|
|
|
|
|
|
/*
|
|
** Try to convert a 'for' limit to an integer, preserving the semantics
|
|
** of the loop. Return true if the loop must not run; otherwise, '*p'
|
|
** gets the integer limit.
|
|
** (The following explanation assumes a positive step; it is valid for
|
|
** negative steps mutatis mutandis.)
|
|
** If the limit is an integer or can be converted to an integer,
|
|
** rounding down, that is the limit.
|
|
** Otherwise, check whether the limit can be converted to a float. If
|
|
** the float is too large, clip it to LUA_MAXINTEGER. If the float
|
|
** is too negative, the loop should not run, because any initial
|
|
** integer value is greater than such limit; so, the function returns
|
|
** true to signal that. (For this latter case, no integer limit would be
|
|
** correct; even a limit of LUA_MININTEGER would run the loop once for
|
|
** an initial value equal to LUA_MININTEGER.)
|
|
*/
|
|
static int forlimit (lua_State *L, lua_Integer init, const TValue *lim,
|
|
lua_Integer *p, lua_Integer step) {
|
|
if (!luaV_tointeger(lim, p, (step < 0 ? F2Iceil : F2Ifloor))) {
|
|
/* not coercible to in integer */
|
|
lua_Number flim; /* try to convert to float */
|
|
if (!tonumber(lim, &flim)) /* cannot convert to float? */
|
|
luaG_forerror(L, lim, "limit");
|
|
/* else 'flim' is a float out of integer bounds */
|
|
if (luai_numlt(0, flim)) { /* if it is positive, it is too large */
|
|
if (step < 0) return 1; /* initial value must be less than it */
|
|
*p = LUA_MAXINTEGER; /* truncate */
|
|
}
|
|
else { /* it is less than min integer */
|
|
if (step > 0) return 1; /* initial value must be greater than it */
|
|
*p = LUA_MININTEGER; /* truncate */
|
|
}
|
|
}
|
|
return (step > 0 ? init > *p : init < *p); /* not to run? */
|
|
}
|
|
|
|
|
|
/*
|
|
** Prepare a numerical for loop (opcode OP_FORPREP).
|
|
** Before execution, stack is as follows:
|
|
** ra : initial value
|
|
** ra + 1 : limit
|
|
** ra + 2 : step
|
|
** Return true to skip the loop. Otherwise,
|
|
** after preparation, stack will be as follows:
|
|
** ra : loop counter (integer loops) or limit (float loops)
|
|
** ra + 1 : step
|
|
** ra + 2 : control variable
|
|
*/
|
|
static int forprep (lua_State *L, StkId ra) {
|
|
TValue *pinit = s2v(ra);
|
|
TValue *plimit = s2v(ra + 1);
|
|
TValue *pstep = s2v(ra + 2);
|
|
if (ttisinteger(pinit) && ttisinteger(pstep)) { /* integer loop? */
|
|
lua_Integer init = ivalue(pinit);
|
|
lua_Integer step = ivalue(pstep);
|
|
lua_Integer limit;
|
|
if (step == 0)
|
|
luaG_runerror(L, "'for' step is zero");
|
|
if (forlimit(L, init, plimit, &limit, step))
|
|
return 1; /* skip the loop */
|
|
else { /* prepare loop counter */
|
|
lua_Unsigned count;
|
|
if (step > 0) { /* ascending loop? */
|
|
count = l_castS2U(limit) - l_castS2U(init);
|
|
if (step != 1) /* avoid division in the too common case */
|
|
count /= l_castS2U(step);
|
|
}
|
|
else { /* step < 0; descending loop */
|
|
count = l_castS2U(init) - l_castS2U(limit);
|
|
/* 'step+1' avoids negating 'mininteger' */
|
|
count /= l_castS2U(-(step + 1)) + 1u;
|
|
}
|
|
/* use 'chgivalue' for places that for sure had integers */
|
|
chgivalue(s2v(ra), l_castU2S(count)); /* change init to count */
|
|
setivalue(s2v(ra + 1), step); /* change limit to step */
|
|
chgivalue(s2v(ra + 2), init); /* change step to init */
|
|
}
|
|
}
|
|
else { /* try making all values floats */
|
|
lua_Number init; lua_Number limit; lua_Number step;
|
|
if (l_unlikely(!tonumber(plimit, &limit)))
|
|
luaG_forerror(L, plimit, "limit");
|
|
if (l_unlikely(!tonumber(pstep, &step)))
|
|
luaG_forerror(L, pstep, "step");
|
|
if (l_unlikely(!tonumber(pinit, &init)))
|
|
luaG_forerror(L, pinit, "initial value");
|
|
if (step == 0)
|
|
luaG_runerror(L, "'for' step is zero");
|
|
if (luai_numlt(0, step) ? luai_numlt(limit, init)
|
|
: luai_numlt(init, limit))
|
|
return 1; /* skip the loop */
|
|
else {
|
|
/* make sure all values are floats */
|
|
setfltvalue(s2v(ra), limit);
|
|
setfltvalue(s2v(ra + 1), step);
|
|
setfltvalue(s2v(ra + 2), init); /* control variable */
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
** Execute a step of a float numerical for loop, returning
|
|
** true iff the loop must continue. (The integer case is
|
|
** written online with opcode OP_FORLOOP, for performance.)
|
|
*/
|
|
static int floatforloop (StkId ra) {
|
|
lua_Number step = fltvalue(s2v(ra + 1));
|
|
lua_Number limit = fltvalue(s2v(ra));
|
|
lua_Number idx = fltvalue(s2v(ra + 2)); /* control variable */
|
|
idx = luai_numadd(L, idx, step); /* increment index */
|
|
if (luai_numlt(0, step) ? luai_numle(idx, limit)
|
|
: luai_numle(limit, idx)) {
|
|
chgfltvalue(s2v(ra + 2), idx); /* update control variable */
|
|
return 1; /* jump back */
|
|
}
|
|
else
|
|
return 0; /* finish the loop */
|
|
}
|
|
|
|
|
|
/*
|
|
** Finish the table access 'val = t[key]' and return the tag of the result.
|
|
*/
|
|
int luaV_finishget (lua_State *L, const TValue *t, TValue *key, StkId val,
|
|
int tag) {
|
|
int loop; /* counter to avoid infinite loops */
|
|
const TValue *tm; /* metamethod */
|
|
for (loop = 0; loop < MAXTAGLOOP; loop++) {
|
|
if (tag == LUA_VNOTABLE) { /* 't' is not a table? */
|
|
lua_assert(!ttistable(t));
|
|
tm = luaT_gettmbyobj(L, t, TM_INDEX);
|
|
if (l_unlikely(notm(tm)))
|
|
luaG_typeerror(L, t, "index"); /* no metamethod */
|
|
/* else will try the metamethod */
|
|
}
|
|
else { /* 't' is a table */
|
|
tm = fasttm(L, hvalue(t)->metatable, TM_INDEX); /* table's metamethod */
|
|
if (tm == NULL) { /* no metamethod? */
|
|
setnilvalue(s2v(val)); /* result is nil */
|
|
return LUA_VNIL;
|
|
}
|
|
/* else will try the metamethod */
|
|
}
|
|
if (ttisfunction(tm)) { /* is metamethod a function? */
|
|
tag = luaT_callTMres(L, tm, t, key, val); /* call it */
|
|
return tag; /* return tag of the result */
|
|
}
|
|
t = tm; /* else try to access 'tm[key]' */
|
|
luaV_fastget(t, key, s2v(val), luaH_get, tag);
|
|
if (!tagisempty(tag))
|
|
return tag; /* done */
|
|
/* else repeat (tail call 'luaV_finishget') */
|
|
}
|
|
luaG_runerror(L, "'__index' chain too long; possible loop");
|
|
return 0; /* to avoid warnings */
|
|
}
|
|
|
|
|
|
/*
|
|
** Finish a table assignment 't[key] = val'.
|
|
*/
|
|
void luaV_finishset (lua_State *L, const TValue *t, TValue *key,
|
|
TValue *val, int hres) {
|
|
int loop; /* counter to avoid infinite loops */
|
|
for (loop = 0; loop < MAXTAGLOOP; loop++) {
|
|
const TValue *tm; /* '__newindex' metamethod */
|
|
if (hres != HNOTATABLE) { /* is 't' a table? */
|
|
Table *h = hvalue(t); /* save 't' table */
|
|
tm = fasttm(L, h->metatable, TM_NEWINDEX); /* get metamethod */
|
|
if (tm == NULL) { /* no metamethod? */
|
|
luaH_finishset(L, h, key, val, hres); /* set new value */
|
|
invalidateTMcache(h);
|
|
luaC_barrierback(L, obj2gco(h), val);
|
|
return;
|
|
}
|
|
/* else will try the metamethod */
|
|
}
|
|
else { /* not a table; check metamethod */
|
|
tm = luaT_gettmbyobj(L, t, TM_NEWINDEX);
|
|
if (l_unlikely(notm(tm)))
|
|
luaG_typeerror(L, t, "index");
|
|
}
|
|
/* try the metamethod */
|
|
if (ttisfunction(tm)) {
|
|
luaT_callTM(L, tm, t, key, val);
|
|
return;
|
|
}
|
|
t = tm; /* else repeat assignment over 'tm' */
|
|
luaV_fastset(t, key, val, hres, luaH_pset);
|
|
if (hres == HOK)
|
|
return; /* done */
|
|
/* else 'return luaV_finishset(L, t, key, val, slot)' (loop) */
|
|
}
|
|
luaG_runerror(L, "'__newindex' chain too long; possible loop");
|
|
}
|
|
|
|
|
|
/*
|
|
** Compare two strings 'ts1' x 'ts2', returning an integer less-equal-
|
|
** -greater than zero if 'ts1' is less-equal-greater than 'ts2'.
|
|
** The code is a little tricky because it allows '\0' in the strings
|
|
** and it uses 'strcoll' (to respect locales) for each segment
|
|
** of the strings. Note that segments can compare equal but still
|
|
** have different lengths.
|
|
*/
|
|
static int l_strcmp (const TString *ts1, const TString *ts2) {
|
|
size_t rl1; /* real length */
|
|
const char *s1 = getlstr(ts1, rl1);
|
|
size_t rl2;
|
|
const char *s2 = getlstr(ts2, rl2);
|
|
for (;;) { /* for each segment */
|
|
int temp = strcoll(s1, s2);
|
|
if (temp != 0) /* not equal? */
|
|
return temp; /* done */
|
|
else { /* strings are equal up to a '\0' */
|
|
size_t zl1 = strlen(s1); /* index of first '\0' in 's1' */
|
|
size_t zl2 = strlen(s2); /* index of first '\0' in 's2' */
|
|
if (zl2 == rl2) /* 's2' is finished? */
|
|
return (zl1 == rl1) ? 0 : 1; /* check 's1' */
|
|
else if (zl1 == rl1) /* 's1' is finished? */
|
|
return -1; /* 's1' is less than 's2' ('s2' is not finished) */
|
|
/* both strings longer than 'zl'; go on comparing after the '\0' */
|
|
zl1++; zl2++;
|
|
s1 += zl1; rl1 -= zl1; s2 += zl2; rl2 -= zl2;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** Check whether integer 'i' is less than float 'f'. If 'i' has an
|
|
** exact representation as a float ('l_intfitsf'), compare numbers as
|
|
** floats. Otherwise, use the equivalence 'i < f <=> i < ceil(f)'.
|
|
** If 'ceil(f)' is out of integer range, either 'f' is greater than
|
|
** all integers or less than all integers.
|
|
** (The test with 'l_intfitsf' is only for performance; the else
|
|
** case is correct for all values, but it is slow due to the conversion
|
|
** from float to int.)
|
|
** When 'f' is NaN, comparisons must result in false.
|
|
*/
|
|
l_sinline int LTintfloat (lua_Integer i, lua_Number f) {
|
|
if (l_intfitsf(i))
|
|
return luai_numlt(cast_num(i), f); /* compare them as floats */
|
|
else { /* i < f <=> i < ceil(f) */
|
|
lua_Integer fi;
|
|
if (luaV_flttointeger(f, &fi, F2Iceil)) /* fi = ceil(f) */
|
|
return i < fi; /* compare them as integers */
|
|
else /* 'f' is either greater or less than all integers */
|
|
return f > 0; /* greater? */
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** Check whether integer 'i' is less than or equal to float 'f'.
|
|
** See comments on previous function.
|
|
*/
|
|
l_sinline int LEintfloat (lua_Integer i, lua_Number f) {
|
|
if (l_intfitsf(i))
|
|
return luai_numle(cast_num(i), f); /* compare them as floats */
|
|
else { /* i <= f <=> i <= floor(f) */
|
|
lua_Integer fi;
|
|
if (luaV_flttointeger(f, &fi, F2Ifloor)) /* fi = floor(f) */
|
|
return i <= fi; /* compare them as integers */
|
|
else /* 'f' is either greater or less than all integers */
|
|
return f > 0; /* greater? */
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** Check whether float 'f' is less than integer 'i'.
|
|
** See comments on previous function.
|
|
*/
|
|
l_sinline int LTfloatint (lua_Number f, lua_Integer i) {
|
|
if (l_intfitsf(i))
|
|
return luai_numlt(f, cast_num(i)); /* compare them as floats */
|
|
else { /* f < i <=> floor(f) < i */
|
|
lua_Integer fi;
|
|
if (luaV_flttointeger(f, &fi, F2Ifloor)) /* fi = floor(f) */
|
|
return fi < i; /* compare them as integers */
|
|
else /* 'f' is either greater or less than all integers */
|
|
return f < 0; /* less? */
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** Check whether float 'f' is less than or equal to integer 'i'.
|
|
** See comments on previous function.
|
|
*/
|
|
l_sinline int LEfloatint (lua_Number f, lua_Integer i) {
|
|
if (l_intfitsf(i))
|
|
return luai_numle(f, cast_num(i)); /* compare them as floats */
|
|
else { /* f <= i <=> ceil(f) <= i */
|
|
lua_Integer fi;
|
|
if (luaV_flttointeger(f, &fi, F2Iceil)) /* fi = ceil(f) */
|
|
return fi <= i; /* compare them as integers */
|
|
else /* 'f' is either greater or less than all integers */
|
|
return f < 0; /* less? */
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** Return 'l < r', for numbers.
|
|
*/
|
|
l_sinline int LTnum (const TValue *l, const TValue *r) {
|
|
lua_assert(ttisnumber(l) && ttisnumber(r));
|
|
if (ttisinteger(l)) {
|
|
lua_Integer li = ivalue(l);
|
|
if (ttisinteger(r))
|
|
return li < ivalue(r); /* both are integers */
|
|
else /* 'l' is int and 'r' is float */
|
|
return LTintfloat(li, fltvalue(r)); /* l < r ? */
|
|
}
|
|
else {
|
|
lua_Number lf = fltvalue(l); /* 'l' must be float */
|
|
if (ttisfloat(r))
|
|
return luai_numlt(lf, fltvalue(r)); /* both are float */
|
|
else /* 'l' is float and 'r' is int */
|
|
return LTfloatint(lf, ivalue(r));
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** Return 'l <= r', for numbers.
|
|
*/
|
|
l_sinline int LEnum (const TValue *l, const TValue *r) {
|
|
lua_assert(ttisnumber(l) && ttisnumber(r));
|
|
if (ttisinteger(l)) {
|
|
lua_Integer li = ivalue(l);
|
|
if (ttisinteger(r))
|
|
return li <= ivalue(r); /* both are integers */
|
|
else /* 'l' is int and 'r' is float */
|
|
return LEintfloat(li, fltvalue(r)); /* l <= r ? */
|
|
}
|
|
else {
|
|
lua_Number lf = fltvalue(l); /* 'l' must be float */
|
|
if (ttisfloat(r))
|
|
return luai_numle(lf, fltvalue(r)); /* both are float */
|
|
else /* 'l' is float and 'r' is int */
|
|
return LEfloatint(lf, ivalue(r));
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** return 'l < r' for non-numbers.
|
|
*/
|
|
static int lessthanothers (lua_State *L, const TValue *l, const TValue *r) {
|
|
lua_assert(!ttisnumber(l) || !ttisnumber(r));
|
|
if (ttisstring(l) && ttisstring(r)) /* both are strings? */
|
|
return l_strcmp(tsvalue(l), tsvalue(r)) < 0;
|
|
else
|
|
return luaT_callorderTM(L, l, r, TM_LT);
|
|
}
|
|
|
|
|
|
/*
|
|
** Main operation less than; return 'l < r'.
|
|
*/
|
|
int luaV_lessthan (lua_State *L, const TValue *l, const TValue *r) {
|
|
if (ttisnumber(l) && ttisnumber(r)) /* both operands are numbers? */
|
|
return LTnum(l, r);
|
|
else return lessthanothers(L, l, r);
|
|
}
|
|
|
|
|
|
/*
|
|
** return 'l <= r' for non-numbers.
|
|
*/
|
|
static int lessequalothers (lua_State *L, const TValue *l, const TValue *r) {
|
|
lua_assert(!ttisnumber(l) || !ttisnumber(r));
|
|
if (ttisstring(l) && ttisstring(r)) /* both are strings? */
|
|
return l_strcmp(tsvalue(l), tsvalue(r)) <= 0;
|
|
else
|
|
return luaT_callorderTM(L, l, r, TM_LE);
|
|
}
|
|
|
|
|
|
/*
|
|
** Main operation less than or equal to; return 'l <= r'.
|
|
*/
|
|
int luaV_lessequal (lua_State *L, const TValue *l, const TValue *r) {
|
|
if (ttisnumber(l) && ttisnumber(r)) /* both operands are numbers? */
|
|
return LEnum(l, r);
|
|
else return lessequalothers(L, l, r);
|
|
}
|
|
|
|
|
|
/*
|
|
** Main operation for equality of Lua values; return 't1 == t2'.
|
|
** L == NULL means raw equality (no metamethods)
|
|
*/
|
|
int luaV_equalobj (lua_State *L, const TValue *t1, const TValue *t2) {
|
|
const TValue *tm;
|
|
if (ttypetag(t1) != ttypetag(t2)) { /* not the same variant? */
|
|
if (ttype(t1) != ttype(t2) || ttype(t1) != LUA_TNUMBER)
|
|
return 0; /* only numbers can be equal with different variants */
|
|
else { /* two numbers with different variants */
|
|
/* One of them is an integer. If the other does not have an
|
|
integer value, they cannot be equal; otherwise, compare their
|
|
integer values. */
|
|
lua_Integer i1, i2;
|
|
return (luaV_tointegerns(t1, &i1, F2Ieq) &&
|
|
luaV_tointegerns(t2, &i2, F2Ieq) &&
|
|
i1 == i2);
|
|
}
|
|
}
|
|
/* values have same type and same variant */
|
|
switch (ttypetag(t1)) {
|
|
case LUA_VNIL: case LUA_VFALSE: case LUA_VTRUE: return 1;
|
|
case LUA_VNUMINT: return (ivalue(t1) == ivalue(t2));
|
|
case LUA_VNUMFLT: return luai_numeq(fltvalue(t1), fltvalue(t2));
|
|
case LUA_VLIGHTUSERDATA: return pvalue(t1) == pvalue(t2);
|
|
case LUA_VLCF: return fvalue(t1) == fvalue(t2);
|
|
case LUA_VSHRSTR: return eqshrstr(tsvalue(t1), tsvalue(t2));
|
|
case LUA_VLNGSTR: return luaS_eqlngstr(tsvalue(t1), tsvalue(t2));
|
|
case LUA_VUSERDATA: {
|
|
if (uvalue(t1) == uvalue(t2)) return 1;
|
|
else if (L == NULL) return 0;
|
|
tm = fasttm(L, uvalue(t1)->metatable, TM_EQ);
|
|
if (tm == NULL)
|
|
tm = fasttm(L, uvalue(t2)->metatable, TM_EQ);
|
|
break; /* will try TM */
|
|
}
|
|
case LUA_VTABLE: {
|
|
if (hvalue(t1) == hvalue(t2)) return 1;
|
|
else if (L == NULL) return 0;
|
|
tm = fasttm(L, hvalue(t1)->metatable, TM_EQ);
|
|
if (tm == NULL)
|
|
tm = fasttm(L, hvalue(t2)->metatable, TM_EQ);
|
|
break; /* will try TM */
|
|
}
|
|
default:
|
|
return gcvalue(t1) == gcvalue(t2);
|
|
}
|
|
if (tm == NULL) /* no TM? */
|
|
return 0; /* objects are different */
|
|
else {
|
|
int tag = luaT_callTMres(L, tm, t1, t2, L->top.p); /* call TM */
|
|
return !tagisfalse(tag);
|
|
}
|
|
}
|
|
|
|
|
|
/* macro used by 'luaV_concat' to ensure that element at 'o' is a string */
|
|
#define tostring(L,o) \
|
|
(ttisstring(o) || (cvt2str(o) && (luaO_tostring(L, o), 1)))
|
|
|
|
#define isemptystr(o) (ttisshrstring(o) && tsvalue(o)->shrlen == 0)
|
|
|
|
/* copy strings in stack from top - n up to top - 1 to buffer */
|
|
static void copy2buff (StkId top, int n, char *buff) {
|
|
size_t tl = 0; /* size already copied */
|
|
do {
|
|
TString *st = tsvalue(s2v(top - n));
|
|
size_t l; /* length of string being copied */
|
|
const char *s = getlstr(st, l);
|
|
memcpy(buff + tl, s, l * sizeof(char));
|
|
tl += l;
|
|
} while (--n > 0);
|
|
}
|
|
|
|
|
|
/*
|
|
** Main operation for concatenation: concat 'total' values in the stack,
|
|
** from 'L->top.p - total' up to 'L->top.p - 1'.
|
|
*/
|
|
void luaV_concat (lua_State *L, int total) {
|
|
if (total == 1)
|
|
return; /* "all" values already concatenated */
|
|
do {
|
|
StkId top = L->top.p;
|
|
int n = 2; /* number of elements handled in this pass (at least 2) */
|
|
if (!(ttisstring(s2v(top - 2)) || cvt2str(s2v(top - 2))) ||
|
|
!tostring(L, s2v(top - 1)))
|
|
luaT_tryconcatTM(L); /* may invalidate 'top' */
|
|
else if (isemptystr(s2v(top - 1))) /* second operand is empty? */
|
|
cast_void(tostring(L, s2v(top - 2))); /* result is first operand */
|
|
else if (isemptystr(s2v(top - 2))) { /* first operand is empty string? */
|
|
setobjs2s(L, top - 2, top - 1); /* result is second op. */
|
|
}
|
|
else {
|
|
/* at least two non-empty string values; get as many as possible */
|
|
size_t tl = tsslen(tsvalue(s2v(top - 1)));
|
|
TString *ts;
|
|
/* collect total length and number of strings */
|
|
for (n = 1; n < total && tostring(L, s2v(top - n - 1)); n++) {
|
|
size_t l = tsslen(tsvalue(s2v(top - n - 1)));
|
|
if (l_unlikely(l >= MAX_SIZE - sizeof(TString) - tl)) {
|
|
L->top.p = top - total; /* pop strings to avoid wasting stack */
|
|
luaG_runerror(L, "string length overflow");
|
|
}
|
|
tl += l;
|
|
}
|
|
if (tl <= LUAI_MAXSHORTLEN) { /* is result a short string? */
|
|
char buff[LUAI_MAXSHORTLEN];
|
|
copy2buff(top, n, buff); /* copy strings to buffer */
|
|
ts = luaS_newlstr(L, buff, tl);
|
|
}
|
|
else { /* long string; copy strings directly to final result */
|
|
ts = luaS_createlngstrobj(L, tl);
|
|
copy2buff(top, n, getlngstr(ts));
|
|
}
|
|
setsvalue2s(L, top - n, ts); /* create result */
|
|
}
|
|
total -= n - 1; /* got 'n' strings to create one new */
|
|
L->top.p -= n - 1; /* popped 'n' strings and pushed one */
|
|
} while (total > 1); /* repeat until only 1 result left */
|
|
}
|
|
|
|
|
|
/*
|
|
** Main operation 'ra = #rb'.
|
|
*/
|
|
void luaV_objlen (lua_State *L, StkId ra, const TValue *rb) {
|
|
const TValue *tm;
|
|
switch (ttypetag(rb)) {
|
|
case LUA_VTABLE: {
|
|
Table *h = hvalue(rb);
|
|
tm = fasttm(L, h->metatable, TM_LEN);
|
|
if (tm) break; /* metamethod? break switch to call it */
|
|
setivalue(s2v(ra), luaH_getn(h)); /* else primitive len */
|
|
return;
|
|
}
|
|
case LUA_VSHRSTR: {
|
|
setivalue(s2v(ra), tsvalue(rb)->shrlen);
|
|
return;
|
|
}
|
|
case LUA_VLNGSTR: {
|
|
setivalue(s2v(ra), tsvalue(rb)->u.lnglen);
|
|
return;
|
|
}
|
|
default: { /* try metamethod */
|
|
tm = luaT_gettmbyobj(L, rb, TM_LEN);
|
|
if (l_unlikely(notm(tm))) /* no metamethod? */
|
|
luaG_typeerror(L, rb, "get length of");
|
|
break;
|
|
}
|
|
}
|
|
luaT_callTMres(L, tm, rb, rb, ra);
|
|
}
|
|
|
|
|
|
/*
|
|
** Integer division; return 'm // n', that is, floor(m/n).
|
|
** C division truncates its result (rounds towards zero).
|
|
** 'floor(q) == trunc(q)' when 'q >= 0' or when 'q' is integer,
|
|
** otherwise 'floor(q) == trunc(q) - 1'.
|
|
*/
|
|
lua_Integer luaV_idiv (lua_State *L, lua_Integer m, lua_Integer n) {
|
|
if (l_unlikely(l_castS2U(n) + 1u <= 1u)) { /* special cases: -1 or 0 */
|
|
if (n == 0)
|
|
luaG_runerror(L, "attempt to divide by zero");
|
|
return intop(-, 0, m); /* n==-1; avoid overflow with 0x80000...//-1 */
|
|
}
|
|
else {
|
|
lua_Integer q = m / n; /* perform C division */
|
|
if ((m ^ n) < 0 && m % n != 0) /* 'm/n' would be negative non-integer? */
|
|
q -= 1; /* correct result for different rounding */
|
|
return q;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** Integer modulus; return 'm % n'. (Assume that C '%' with
|
|
** negative operands follows C99 behavior. See previous comment
|
|
** about luaV_idiv.)
|
|
*/
|
|
lua_Integer luaV_mod (lua_State *L, lua_Integer m, lua_Integer n) {
|
|
if (l_unlikely(l_castS2U(n) + 1u <= 1u)) { /* special cases: -1 or 0 */
|
|
if (n == 0)
|
|
luaG_runerror(L, "attempt to perform 'n%%0'");
|
|
return 0; /* m % -1 == 0; avoid overflow with 0x80000...%-1 */
|
|
}
|
|
else {
|
|
lua_Integer r = m % n;
|
|
if (r != 0 && (r ^ n) < 0) /* 'm/n' would be non-integer negative? */
|
|
r += n; /* correct result for different rounding */
|
|
return r;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** Float modulus
|
|
*/
|
|
lua_Number luaV_modf (lua_State *L, lua_Number m, lua_Number n) {
|
|
lua_Number r;
|
|
luai_nummod(L, m, n, r);
|
|
return r;
|
|
}
|
|
|
|
|
|
/* number of bits in an integer */
|
|
#define NBITS cast_int(sizeof(lua_Integer) * CHAR_BIT)
|
|
|
|
|
|
/*
|
|
** Shift left operation. (Shift right just negates 'y'.)
|
|
*/
|
|
lua_Integer luaV_shiftl (lua_Integer x, lua_Integer y) {
|
|
if (y < 0) { /* shift right? */
|
|
if (y <= -NBITS) return 0;
|
|
else return intop(>>, x, -y);
|
|
}
|
|
else { /* shift left */
|
|
if (y >= NBITS) return 0;
|
|
else return intop(<<, x, y);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** create a new Lua closure, push it in the stack, and initialize
|
|
** its upvalues.
|
|
*/
|
|
static void pushclosure (lua_State *L, Proto *p, UpVal **encup, StkId base,
|
|
StkId ra) {
|
|
int nup = p->sizeupvalues;
|
|
Upvaldesc *uv = p->upvalues;
|
|
int i;
|
|
LClosure *ncl = luaF_newLclosure(L, nup);
|
|
ncl->p = p;
|
|
setclLvalue2s(L, ra, ncl); /* anchor new closure in stack */
|
|
for (i = 0; i < nup; i++) { /* fill in its upvalues */
|
|
if (uv[i].instack) /* upvalue refers to local variable? */
|
|
ncl->upvals[i] = luaF_findupval(L, base + uv[i].idx);
|
|
else /* get upvalue from enclosing function */
|
|
ncl->upvals[i] = encup[uv[i].idx];
|
|
luaC_objbarrier(L, ncl, ncl->upvals[i]);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** finish execution of an opcode interrupted by a yield
|
|
*/
|
|
void luaV_finishOp (lua_State *L) {
|
|
CallInfo *ci = L->ci;
|
|
StkId base = ci->func.p + 1;
|
|
Instruction inst = *(ci->u.l.savedpc - 1); /* interrupted instruction */
|
|
OpCode op = GET_OPCODE(inst);
|
|
switch (op) { /* finish its execution */
|
|
case OP_MMBIN: case OP_MMBINI: case OP_MMBINK: {
|
|
setobjs2s(L, base + GETARG_A(*(ci->u.l.savedpc - 2)), --L->top.p);
|
|
break;
|
|
}
|
|
case OP_UNM: case OP_BNOT: case OP_LEN:
|
|
case OP_GETTABUP: case OP_GETTABLE: case OP_GETI:
|
|
case OP_GETFIELD: case OP_SELF: {
|
|
setobjs2s(L, base + GETARG_A(inst), --L->top.p);
|
|
break;
|
|
}
|
|
case OP_LT: case OP_LE:
|
|
case OP_LTI: case OP_LEI:
|
|
case OP_GTI: case OP_GEI:
|
|
case OP_EQ: { /* note that 'OP_EQI'/'OP_EQK' cannot yield */
|
|
int res = !l_isfalse(s2v(L->top.p - 1));
|
|
L->top.p--;
|
|
#if defined(LUA_COMPAT_LT_LE)
|
|
if (ci->callstatus & CIST_LEQ) { /* "<=" using "<" instead? */
|
|
ci->callstatus ^= CIST_LEQ; /* clear mark */
|
|
res = !res; /* negate result */
|
|
}
|
|
#endif
|
|
lua_assert(GET_OPCODE(*ci->u.l.savedpc) == OP_JMP);
|
|
if (res != GETARG_k(inst)) /* condition failed? */
|
|
ci->u.l.savedpc++; /* skip jump instruction */
|
|
break;
|
|
}
|
|
case OP_CONCAT: {
|
|
StkId top = L->top.p - 1; /* top when 'luaT_tryconcatTM' was called */
|
|
int a = GETARG_A(inst); /* first element to concatenate */
|
|
int total = cast_int(top - 1 - (base + a)); /* yet to concatenate */
|
|
setobjs2s(L, top - 2, top); /* put TM result in proper position */
|
|
L->top.p = top - 1; /* top is one after last element (at top-2) */
|
|
luaV_concat(L, total); /* concat them (may yield again) */
|
|
break;
|
|
}
|
|
case OP_CLOSE: { /* yielded closing variables */
|
|
ci->u.l.savedpc--; /* repeat instruction to close other vars. */
|
|
break;
|
|
}
|
|
case OP_RETURN: { /* yielded closing variables */
|
|
StkId ra = base + GETARG_A(inst);
|
|
/* adjust top to signal correct number of returns, in case the
|
|
return is "up to top" ('isIT') */
|
|
L->top.p = ra + ci->u2.nres;
|
|
/* repeat instruction to close other vars. and complete the return */
|
|
ci->u.l.savedpc--;
|
|
break;
|
|
}
|
|
default: {
|
|
/* only these other opcodes can yield */
|
|
lua_assert(op == OP_TFORCALL || op == OP_CALL ||
|
|
op == OP_TAILCALL || op == OP_SETTABUP || op == OP_SETTABLE ||
|
|
op == OP_SETI || op == OP_SETFIELD);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
** {==================================================================
|
|
** Macros for arithmetic/bitwise/comparison opcodes in 'luaV_execute'
|
|
** ===================================================================
|
|
*/
|
|
|
|
#define l_addi(L,a,b) intop(+, a, b)
|
|
#define l_subi(L,a,b) intop(-, a, b)
|
|
#define l_muli(L,a,b) intop(*, a, b)
|
|
#define l_band(a,b) intop(&, a, b)
|
|
#define l_bor(a,b) intop(|, a, b)
|
|
#define l_bxor(a,b) intop(^, a, b)
|
|
|
|
#define l_lti(a,b) (a < b)
|
|
#define l_lei(a,b) (a <= b)
|
|
#define l_gti(a,b) (a > b)
|
|
#define l_gei(a,b) (a >= b)
|
|
|
|
|
|
/*
|
|
** Arithmetic operations with immediate operands. 'iop' is the integer
|
|
** operation, 'fop' is the float operation.
|
|
*/
|
|
#define op_arithI(L,iop,fop) { \
|
|
StkId ra = RA(i); \
|
|
TValue *v1 = vRB(i); \
|
|
int imm = GETARG_sC(i); \
|
|
if (ttisinteger(v1)) { \
|
|
lua_Integer iv1 = ivalue(v1); \
|
|
pc++; setivalue(s2v(ra), iop(L, iv1, imm)); \
|
|
} \
|
|
else if (ttisfloat(v1)) { \
|
|
lua_Number nb = fltvalue(v1); \
|
|
lua_Number fimm = cast_num(imm); \
|
|
pc++; setfltvalue(s2v(ra), fop(L, nb, fimm)); \
|
|
}}
|
|
|
|
|
|
/*
|
|
** Auxiliary function for arithmetic operations over floats and others
|
|
** with two operands.
|
|
*/
|
|
#define op_arithf_aux(L,v1,v2,fop) { \
|
|
lua_Number n1; lua_Number n2; \
|
|
if (tonumberns(v1, n1) && tonumberns(v2, n2)) { \
|
|
pc++; setfltvalue(s2v(ra), fop(L, n1, n2)); \
|
|
}}
|
|
|
|
|
|
/*
|
|
** Arithmetic operations over floats and others with register operands.
|
|
*/
|
|
#define op_arithf(L,fop) { \
|
|
StkId ra = RA(i); \
|
|
TValue *v1 = vRB(i); \
|
|
TValue *v2 = vRC(i); \
|
|
op_arithf_aux(L, v1, v2, fop); }
|
|
|
|
|
|
/*
|
|
** Arithmetic operations with K operands for floats.
|
|
*/
|
|
#define op_arithfK(L,fop) { \
|
|
StkId ra = RA(i); \
|
|
TValue *v1 = vRB(i); \
|
|
TValue *v2 = KC(i); lua_assert(ttisnumber(v2)); \
|
|
op_arithf_aux(L, v1, v2, fop); }
|
|
|
|
|
|
/*
|
|
** Arithmetic operations over integers and floats.
|
|
*/
|
|
#define op_arith_aux(L,v1,v2,iop,fop) { \
|
|
StkId ra = RA(i); \
|
|
if (ttisinteger(v1) && ttisinteger(v2)) { \
|
|
lua_Integer i1 = ivalue(v1); lua_Integer i2 = ivalue(v2); \
|
|
pc++; setivalue(s2v(ra), iop(L, i1, i2)); \
|
|
} \
|
|
else op_arithf_aux(L, v1, v2, fop); }
|
|
|
|
|
|
/*
|
|
** Arithmetic operations with register operands.
|
|
*/
|
|
#define op_arith(L,iop,fop) { \
|
|
TValue *v1 = vRB(i); \
|
|
TValue *v2 = vRC(i); \
|
|
op_arith_aux(L, v1, v2, iop, fop); }
|
|
|
|
|
|
/*
|
|
** Arithmetic operations with K operands.
|
|
*/
|
|
#define op_arithK(L,iop,fop) { \
|
|
TValue *v1 = vRB(i); \
|
|
TValue *v2 = KC(i); lua_assert(ttisnumber(v2)); \
|
|
op_arith_aux(L, v1, v2, iop, fop); }
|
|
|
|
|
|
/*
|
|
** Bitwise operations with constant operand.
|
|
*/
|
|
#define op_bitwiseK(L,op) { \
|
|
StkId ra = RA(i); \
|
|
TValue *v1 = vRB(i); \
|
|
TValue *v2 = KC(i); \
|
|
lua_Integer i1; \
|
|
lua_Integer i2 = ivalue(v2); \
|
|
if (tointegerns(v1, &i1)) { \
|
|
pc++; setivalue(s2v(ra), op(i1, i2)); \
|
|
}}
|
|
|
|
|
|
/*
|
|
** Bitwise operations with register operands.
|
|
*/
|
|
#define op_bitwise(L,op) { \
|
|
StkId ra = RA(i); \
|
|
TValue *v1 = vRB(i); \
|
|
TValue *v2 = vRC(i); \
|
|
lua_Integer i1; lua_Integer i2; \
|
|
if (tointegerns(v1, &i1) && tointegerns(v2, &i2)) { \
|
|
pc++; setivalue(s2v(ra), op(i1, i2)); \
|
|
}}
|
|
|
|
|
|
/*
|
|
** Order operations with register operands. 'opn' actually works
|
|
** for all numbers, but the fast track improves performance for
|
|
** integers.
|
|
*/
|
|
#define op_order(L,opi,opn,other) { \
|
|
StkId ra = RA(i); \
|
|
int cond; \
|
|
TValue *rb = vRB(i); \
|
|
if (ttisinteger(s2v(ra)) && ttisinteger(rb)) { \
|
|
lua_Integer ia = ivalue(s2v(ra)); \
|
|
lua_Integer ib = ivalue(rb); \
|
|
cond = opi(ia, ib); \
|
|
} \
|
|
else if (ttisnumber(s2v(ra)) && ttisnumber(rb)) \
|
|
cond = opn(s2v(ra), rb); \
|
|
else \
|
|
Protect(cond = other(L, s2v(ra), rb)); \
|
|
docondjump(); }
|
|
|
|
|
|
/*
|
|
** Order operations with immediate operand. (Immediate operand is
|
|
** always small enough to have an exact representation as a float.)
|
|
*/
|
|
#define op_orderI(L,opi,opf,inv,tm) { \
|
|
StkId ra = RA(i); \
|
|
int cond; \
|
|
int im = GETARG_sB(i); \
|
|
if (ttisinteger(s2v(ra))) \
|
|
cond = opi(ivalue(s2v(ra)), im); \
|
|
else if (ttisfloat(s2v(ra))) { \
|
|
lua_Number fa = fltvalue(s2v(ra)); \
|
|
lua_Number fim = cast_num(im); \
|
|
cond = opf(fa, fim); \
|
|
} \
|
|
else { \
|
|
int isf = GETARG_C(i); \
|
|
Protect(cond = luaT_callorderiTM(L, s2v(ra), im, inv, isf, tm)); \
|
|
} \
|
|
docondjump(); }
|
|
|
|
/* }================================================================== */
|
|
|
|
|
|
/*
|
|
** {==================================================================
|
|
** Function 'luaV_execute': main interpreter loop
|
|
** ===================================================================
|
|
*/
|
|
|
|
/*
|
|
** some macros for common tasks in 'luaV_execute'
|
|
*/
|
|
|
|
|
|
#define RA(i) (base+GETARG_A(i))
|
|
#define RB(i) (base+GETARG_B(i))
|
|
#define vRB(i) s2v(RB(i))
|
|
#define KB(i) (k+GETARG_B(i))
|
|
#define RC(i) (base+GETARG_C(i))
|
|
#define vRC(i) s2v(RC(i))
|
|
#define KC(i) (k+GETARG_C(i))
|
|
#define RKC(i) ((TESTARG_k(i)) ? k + GETARG_C(i) : s2v(base + GETARG_C(i)))
|
|
|
|
|
|
|
|
#define updatetrap(ci) (trap = ci->u.l.trap)
|
|
|
|
#define updatebase(ci) (base = ci->func.p + 1)
|
|
|
|
|
|
#define updatestack(ci) \
|
|
{ if (l_unlikely(trap)) { updatebase(ci); ra = RA(i); } }
|
|
|
|
|
|
/*
|
|
** Execute a jump instruction. The 'updatetrap' allows signals to stop
|
|
** tight loops. (Without it, the local copy of 'trap' could never change.)
|
|
*/
|
|
#define dojump(ci,i,e) { pc += GETARG_sJ(i) + e; updatetrap(ci); }
|
|
|
|
|
|
/* for test instructions, execute the jump instruction that follows it */
|
|
#define donextjump(ci) { Instruction ni = *pc; dojump(ci, ni, 1); }
|
|
|
|
/*
|
|
** do a conditional jump: skip next instruction if 'cond' is not what
|
|
** was expected (parameter 'k'), else do next instruction, which must
|
|
** be a jump.
|
|
*/
|
|
#define docondjump() if (cond != GETARG_k(i)) pc++; else donextjump(ci);
|
|
|
|
|
|
/*
|
|
** Correct global 'pc'.
|
|
*/
|
|
#define savepc(L) (ci->u.l.savedpc = pc)
|
|
|
|
|
|
/*
|
|
** Whenever code can raise errors, the global 'pc' and the global
|
|
** 'top' must be correct to report occasional errors.
|
|
*/
|
|
#define savestate(L,ci) (savepc(L), L->top.p = ci->top.p)
|
|
|
|
|
|
/*
|
|
** Protect code that, in general, can raise errors, reallocate the
|
|
** stack, and change the hooks.
|
|
*/
|
|
#define Protect(exp) (savestate(L,ci), (exp), updatetrap(ci))
|
|
|
|
/* special version that does not change the top */
|
|
#define ProtectNT(exp) (savepc(L), (exp), updatetrap(ci))
|
|
|
|
/*
|
|
** Protect code that can only raise errors. (That is, it cannot change
|
|
** the stack or hooks.)
|
|
*/
|
|
#define halfProtect(exp) (savestate(L,ci), (exp))
|
|
|
|
/*
|
|
** macro executed during Lua functions at points where the
|
|
** function can yield.
|
|
*/
|
|
#if !defined(luai_threadyield)
|
|
#define luai_threadyield(L) {lua_unlock(L); lua_lock(L);}
|
|
#endif
|
|
|
|
/* 'c' is the limit of live values in the stack */
|
|
#define checkGC(L,c) \
|
|
{ luaC_condGC(L, (savepc(L), L->top.p = (c)), \
|
|
updatetrap(ci)); \
|
|
luai_threadyield(L); }
|
|
|
|
|
|
/* fetch an instruction and prepare its execution */
|
|
#define vmfetch() { \
|
|
if (l_unlikely(trap)) { /* stack reallocation or hooks? */ \
|
|
trap = luaG_traceexec(L, pc); /* handle hooks */ \
|
|
updatebase(ci); /* correct stack */ \
|
|
} \
|
|
i = *(pc++); \
|
|
}
|
|
|
|
#define vmdispatch(o) switch(o)
|
|
#define vmcase(l) case l:
|
|
#define vmbreak break
|
|
|
|
|
|
void luaV_execute (lua_State *L, CallInfo *ci) {
|
|
LClosure *cl;
|
|
TValue *k;
|
|
StkId base;
|
|
const Instruction *pc;
|
|
int trap;
|
|
#if LUA_USE_JUMPTABLE
|
|
#include "ljumptab.h"
|
|
#endif
|
|
startfunc:
|
|
trap = L->hookmask;
|
|
returning: /* trap already set */
|
|
cl = ci_func(ci);
|
|
k = cl->p->k;
|
|
pc = ci->u.l.savedpc;
|
|
if (l_unlikely(trap))
|
|
trap = luaG_tracecall(L);
|
|
base = ci->func.p + 1;
|
|
/* main loop of interpreter */
|
|
for (;;) {
|
|
Instruction i; /* instruction being executed */
|
|
vmfetch();
|
|
#if 0
|
|
/* low-level line tracing for debugging Lua */
|
|
printf("line: %d\n", luaG_getfuncline(cl->p, pcRel(pc, cl->p)));
|
|
#endif
|
|
lua_assert(base == ci->func.p + 1);
|
|
lua_assert(base <= L->top.p && L->top.p <= L->stack_last.p);
|
|
/* for tests, invalidate top for instructions not expecting it */
|
|
lua_assert(luaP_isIT(i) || (cast_void(L->top.p = base), 1));
|
|
vmdispatch (GET_OPCODE(i)) {
|
|
vmcase(OP_MOVE) {
|
|
StkId ra = RA(i);
|
|
setobjs2s(L, ra, RB(i));
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_LOADI) {
|
|
StkId ra = RA(i);
|
|
lua_Integer b = GETARG_sBx(i);
|
|
setivalue(s2v(ra), b);
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_LOADF) {
|
|
StkId ra = RA(i);
|
|
int b = GETARG_sBx(i);
|
|
setfltvalue(s2v(ra), cast_num(b));
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_LOADK) {
|
|
StkId ra = RA(i);
|
|
TValue *rb = k + GETARG_Bx(i);
|
|
setobj2s(L, ra, rb);
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_LOADKX) {
|
|
StkId ra = RA(i);
|
|
TValue *rb;
|
|
rb = k + GETARG_Ax(*pc); pc++;
|
|
setobj2s(L, ra, rb);
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_LOADFALSE) {
|
|
StkId ra = RA(i);
|
|
setbfvalue(s2v(ra));
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_LFALSESKIP) {
|
|
StkId ra = RA(i);
|
|
setbfvalue(s2v(ra));
|
|
pc++; /* skip next instruction */
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_LOADTRUE) {
|
|
StkId ra = RA(i);
|
|
setbtvalue(s2v(ra));
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_LOADNIL) {
|
|
StkId ra = RA(i);
|
|
int b = GETARG_B(i);
|
|
do {
|
|
setnilvalue(s2v(ra++));
|
|
} while (b--);
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_GETUPVAL) {
|
|
StkId ra = RA(i);
|
|
int b = GETARG_B(i);
|
|
setobj2s(L, ra, cl->upvals[b]->v.p);
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_SETUPVAL) {
|
|
StkId ra = RA(i);
|
|
UpVal *uv = cl->upvals[GETARG_B(i)];
|
|
setobj(L, uv->v.p, s2v(ra));
|
|
luaC_barrier(L, uv, s2v(ra));
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_GETTABUP) {
|
|
StkId ra = RA(i);
|
|
TValue *upval = cl->upvals[GETARG_B(i)]->v.p;
|
|
TValue *rc = KC(i);
|
|
TString *key = tsvalue(rc); /* key must be a short string */
|
|
int tag;
|
|
luaV_fastget(upval, key, s2v(ra), luaH_getshortstr, tag);
|
|
if (tagisempty(tag))
|
|
Protect(luaV_finishget(L, upval, rc, ra, tag));
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_GETTABLE) {
|
|
StkId ra = RA(i);
|
|
TValue *rb = vRB(i);
|
|
TValue *rc = vRC(i);
|
|
int tag;
|
|
if (ttisinteger(rc)) { /* fast track for integers? */
|
|
luaV_fastgeti(rb, ivalue(rc), s2v(ra), tag);
|
|
}
|
|
else
|
|
luaV_fastget(rb, rc, s2v(ra), luaH_get, tag);
|
|
if (tagisempty(tag))
|
|
Protect(luaV_finishget(L, rb, rc, ra, tag));
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_GETI) {
|
|
StkId ra = RA(i);
|
|
TValue *rb = vRB(i);
|
|
int c = GETARG_C(i);
|
|
int tag;
|
|
luaV_fastgeti(rb, c, s2v(ra), tag);
|
|
if (tagisempty(tag)) {
|
|
TValue key;
|
|
setivalue(&key, c);
|
|
Protect(luaV_finishget(L, rb, &key, ra, tag));
|
|
}
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_GETFIELD) {
|
|
StkId ra = RA(i);
|
|
TValue *rb = vRB(i);
|
|
TValue *rc = KC(i);
|
|
TString *key = tsvalue(rc); /* key must be a short string */
|
|
int tag;
|
|
luaV_fastget(rb, key, s2v(ra), luaH_getshortstr, tag);
|
|
if (tagisempty(tag))
|
|
Protect(luaV_finishget(L, rb, rc, ra, tag));
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_SETTABUP) {
|
|
int hres;
|
|
TValue *upval = cl->upvals[GETARG_A(i)]->v.p;
|
|
TValue *rb = KB(i);
|
|
TValue *rc = RKC(i);
|
|
TString *key = tsvalue(rb); /* key must be a short string */
|
|
luaV_fastset(upval, key, rc, hres, luaH_psetshortstr);
|
|
if (hres == HOK)
|
|
luaV_finishfastset(L, upval, rc);
|
|
else
|
|
Protect(luaV_finishset(L, upval, rb, rc, hres));
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_SETTABLE) {
|
|
StkId ra = RA(i);
|
|
int hres;
|
|
TValue *rb = vRB(i); /* key (table is in 'ra') */
|
|
TValue *rc = RKC(i); /* value */
|
|
if (ttisinteger(rb)) { /* fast track for integers? */
|
|
luaV_fastseti(s2v(ra), ivalue(rb), rc, hres);
|
|
}
|
|
else {
|
|
luaV_fastset(s2v(ra), rb, rc, hres, luaH_pset);
|
|
}
|
|
if (hres == HOK)
|
|
luaV_finishfastset(L, s2v(ra), rc);
|
|
else
|
|
Protect(luaV_finishset(L, s2v(ra), rb, rc, hres));
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_SETI) {
|
|
StkId ra = RA(i);
|
|
int hres;
|
|
int b = GETARG_B(i);
|
|
TValue *rc = RKC(i);
|
|
luaV_fastseti(s2v(ra), b, rc, hres);
|
|
if (hres == HOK)
|
|
luaV_finishfastset(L, s2v(ra), rc);
|
|
else {
|
|
TValue key;
|
|
setivalue(&key, b);
|
|
Protect(luaV_finishset(L, s2v(ra), &key, rc, hres));
|
|
}
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_SETFIELD) {
|
|
StkId ra = RA(i);
|
|
int hres;
|
|
TValue *rb = KB(i);
|
|
TValue *rc = RKC(i);
|
|
TString *key = tsvalue(rb); /* key must be a short string */
|
|
luaV_fastset(s2v(ra), key, rc, hres, luaH_psetshortstr);
|
|
if (hres == HOK)
|
|
luaV_finishfastset(L, s2v(ra), rc);
|
|
else
|
|
Protect(luaV_finishset(L, s2v(ra), rb, rc, hres));
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_NEWTABLE) {
|
|
StkId ra = RA(i);
|
|
int b = GETARG_vB(i); /* log2(hash size) + 1 */
|
|
int c = GETARG_vC(i); /* array size */
|
|
Table *t;
|
|
if (b > 0)
|
|
b = 1 << (b - 1); /* hash size is 2^(b - 1) */
|
|
if (TESTARG_k(i)) { /* non-zero extra argument? */
|
|
lua_assert(GETARG_Ax(*pc) != 0);
|
|
c += GETARG_Ax(*pc) * (MAXARG_vC + 1); /* add it to array size */
|
|
}
|
|
pc++; /* skip extra argument */
|
|
L->top.p = ra + 1; /* correct top in case of emergency GC */
|
|
t = luaH_new(L); /* memory allocation */
|
|
sethvalue2s(L, ra, t);
|
|
if (b != 0 || c != 0)
|
|
luaH_resize(L, t, c, b); /* idem */
|
|
checkGC(L, ra + 1);
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_SELF) {
|
|
StkId ra = RA(i);
|
|
int tag;
|
|
TValue *rb = vRB(i);
|
|
TValue *rc = RKC(i);
|
|
TString *key = tsvalue(rc); /* key must be a string */
|
|
setobj2s(L, ra + 1, rb);
|
|
luaV_fastget(rb, key, s2v(ra), luaH_getstr, tag);
|
|
if (tagisempty(tag))
|
|
Protect(luaV_finishget(L, rb, rc, ra, tag));
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_ADDI) {
|
|
op_arithI(L, l_addi, luai_numadd);
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_ADDK) {
|
|
op_arithK(L, l_addi, luai_numadd);
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_SUBK) {
|
|
op_arithK(L, l_subi, luai_numsub);
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_MULK) {
|
|
op_arithK(L, l_muli, luai_nummul);
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_MODK) {
|
|
savestate(L, ci); /* in case of division by 0 */
|
|
op_arithK(L, luaV_mod, luaV_modf);
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_POWK) {
|
|
op_arithfK(L, luai_numpow);
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_DIVK) {
|
|
op_arithfK(L, luai_numdiv);
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_IDIVK) {
|
|
savestate(L, ci); /* in case of division by 0 */
|
|
op_arithK(L, luaV_idiv, luai_numidiv);
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_BANDK) {
|
|
op_bitwiseK(L, l_band);
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_BORK) {
|
|
op_bitwiseK(L, l_bor);
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_BXORK) {
|
|
op_bitwiseK(L, l_bxor);
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_SHRI) {
|
|
StkId ra = RA(i);
|
|
TValue *rb = vRB(i);
|
|
int ic = GETARG_sC(i);
|
|
lua_Integer ib;
|
|
if (tointegerns(rb, &ib)) {
|
|
pc++; setivalue(s2v(ra), luaV_shiftl(ib, -ic));
|
|
}
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_SHLI) {
|
|
StkId ra = RA(i);
|
|
TValue *rb = vRB(i);
|
|
int ic = GETARG_sC(i);
|
|
lua_Integer ib;
|
|
if (tointegerns(rb, &ib)) {
|
|
pc++; setivalue(s2v(ra), luaV_shiftl(ic, ib));
|
|
}
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_ADD) {
|
|
op_arith(L, l_addi, luai_numadd);
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_SUB) {
|
|
op_arith(L, l_subi, luai_numsub);
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_MUL) {
|
|
op_arith(L, l_muli, luai_nummul);
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_MOD) {
|
|
savestate(L, ci); /* in case of division by 0 */
|
|
op_arith(L, luaV_mod, luaV_modf);
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_POW) {
|
|
op_arithf(L, luai_numpow);
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_DIV) { /* float division (always with floats) */
|
|
op_arithf(L, luai_numdiv);
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_IDIV) { /* floor division */
|
|
savestate(L, ci); /* in case of division by 0 */
|
|
op_arith(L, luaV_idiv, luai_numidiv);
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_BAND) {
|
|
op_bitwise(L, l_band);
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_BOR) {
|
|
op_bitwise(L, l_bor);
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_BXOR) {
|
|
op_bitwise(L, l_bxor);
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_SHR) {
|
|
op_bitwise(L, luaV_shiftr);
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_SHL) {
|
|
op_bitwise(L, luaV_shiftl);
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_MMBIN) {
|
|
StkId ra = RA(i);
|
|
Instruction pi = *(pc - 2); /* original arith. expression */
|
|
TValue *rb = vRB(i);
|
|
TMS tm = (TMS)GETARG_C(i);
|
|
StkId result = RA(pi);
|
|
lua_assert(OP_ADD <= GET_OPCODE(pi) && GET_OPCODE(pi) <= OP_SHR);
|
|
Protect(luaT_trybinTM(L, s2v(ra), rb, result, tm));
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_MMBINI) {
|
|
StkId ra = RA(i);
|
|
Instruction pi = *(pc - 2); /* original arith. expression */
|
|
int imm = GETARG_sB(i);
|
|
TMS tm = (TMS)GETARG_C(i);
|
|
int flip = GETARG_k(i);
|
|
StkId result = RA(pi);
|
|
Protect(luaT_trybiniTM(L, s2v(ra), imm, flip, result, tm));
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_MMBINK) {
|
|
StkId ra = RA(i);
|
|
Instruction pi = *(pc - 2); /* original arith. expression */
|
|
TValue *imm = KB(i);
|
|
TMS tm = (TMS)GETARG_C(i);
|
|
int flip = GETARG_k(i);
|
|
StkId result = RA(pi);
|
|
Protect(luaT_trybinassocTM(L, s2v(ra), imm, flip, result, tm));
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_UNM) {
|
|
StkId ra = RA(i);
|
|
TValue *rb = vRB(i);
|
|
lua_Number nb;
|
|
if (ttisinteger(rb)) {
|
|
lua_Integer ib = ivalue(rb);
|
|
setivalue(s2v(ra), intop(-, 0, ib));
|
|
}
|
|
else if (tonumberns(rb, nb)) {
|
|
setfltvalue(s2v(ra), luai_numunm(L, nb));
|
|
}
|
|
else
|
|
Protect(luaT_trybinTM(L, rb, rb, ra, TM_UNM));
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_BNOT) {
|
|
StkId ra = RA(i);
|
|
TValue *rb = vRB(i);
|
|
lua_Integer ib;
|
|
if (tointegerns(rb, &ib)) {
|
|
setivalue(s2v(ra), intop(^, ~l_castS2U(0), ib));
|
|
}
|
|
else
|
|
Protect(luaT_trybinTM(L, rb, rb, ra, TM_BNOT));
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_NOT) {
|
|
StkId ra = RA(i);
|
|
TValue *rb = vRB(i);
|
|
if (l_isfalse(rb))
|
|
setbtvalue(s2v(ra));
|
|
else
|
|
setbfvalue(s2v(ra));
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_LEN) {
|
|
StkId ra = RA(i);
|
|
Protect(luaV_objlen(L, ra, vRB(i)));
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_CONCAT) {
|
|
StkId ra = RA(i);
|
|
int n = GETARG_B(i); /* number of elements to concatenate */
|
|
L->top.p = ra + n; /* mark the end of concat operands */
|
|
ProtectNT(luaV_concat(L, n));
|
|
checkGC(L, L->top.p); /* 'luaV_concat' ensures correct top */
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_CLOSE) {
|
|
StkId ra = RA(i);
|
|
Protect(luaF_close(L, ra, LUA_OK, 1));
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_TBC) {
|
|
StkId ra = RA(i);
|
|
/* create new to-be-closed upvalue */
|
|
halfProtect(luaF_newtbcupval(L, ra));
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_JMP) {
|
|
dojump(ci, i, 0);
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_EQ) {
|
|
StkId ra = RA(i);
|
|
int cond;
|
|
TValue *rb = vRB(i);
|
|
Protect(cond = luaV_equalobj(L, s2v(ra), rb));
|
|
docondjump();
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_LT) {
|
|
op_order(L, l_lti, LTnum, lessthanothers);
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_LE) {
|
|
op_order(L, l_lei, LEnum, lessequalothers);
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_EQK) {
|
|
StkId ra = RA(i);
|
|
TValue *rb = KB(i);
|
|
/* basic types do not use '__eq'; we can use raw equality */
|
|
int cond = luaV_rawequalobj(s2v(ra), rb);
|
|
docondjump();
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_EQI) {
|
|
StkId ra = RA(i);
|
|
int cond;
|
|
int im = GETARG_sB(i);
|
|
if (ttisinteger(s2v(ra)))
|
|
cond = (ivalue(s2v(ra)) == im);
|
|
else if (ttisfloat(s2v(ra)))
|
|
cond = luai_numeq(fltvalue(s2v(ra)), cast_num(im));
|
|
else
|
|
cond = 0; /* other types cannot be equal to a number */
|
|
docondjump();
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_LTI) {
|
|
op_orderI(L, l_lti, luai_numlt, 0, TM_LT);
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_LEI) {
|
|
op_orderI(L, l_lei, luai_numle, 0, TM_LE);
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_GTI) {
|
|
op_orderI(L, l_gti, luai_numgt, 1, TM_LT);
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_GEI) {
|
|
op_orderI(L, l_gei, luai_numge, 1, TM_LE);
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_TEST) {
|
|
StkId ra = RA(i);
|
|
int cond = !l_isfalse(s2v(ra));
|
|
docondjump();
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_TESTSET) {
|
|
StkId ra = RA(i);
|
|
TValue *rb = vRB(i);
|
|
if (l_isfalse(rb) == GETARG_k(i))
|
|
pc++;
|
|
else {
|
|
setobj2s(L, ra, rb);
|
|
donextjump(ci);
|
|
}
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_CALL) {
|
|
StkId ra = RA(i);
|
|
CallInfo *newci;
|
|
int b = GETARG_B(i);
|
|
int nresults = GETARG_C(i) - 1;
|
|
if (b != 0) /* fixed number of arguments? */
|
|
L->top.p = ra + b; /* top signals number of arguments */
|
|
/* else previous instruction set top */
|
|
savepc(L); /* in case of errors */
|
|
if ((newci = luaD_precall(L, ra, nresults)) == NULL)
|
|
updatetrap(ci); /* C call; nothing else to be done */
|
|
else { /* Lua call: run function in this same C frame */
|
|
ci = newci;
|
|
goto startfunc;
|
|
}
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_TAILCALL) {
|
|
StkId ra = RA(i);
|
|
int b = GETARG_B(i); /* number of arguments + 1 (function) */
|
|
int n; /* number of results when calling a C function */
|
|
int nparams1 = GETARG_C(i);
|
|
/* delta is virtual 'func' - real 'func' (vararg functions) */
|
|
int delta = (nparams1) ? ci->u.l.nextraargs + nparams1 : 0;
|
|
if (b != 0)
|
|
L->top.p = ra + b;
|
|
else /* previous instruction set top */
|
|
b = cast_int(L->top.p - ra);
|
|
savepc(ci); /* several calls here can raise errors */
|
|
if (TESTARG_k(i)) {
|
|
luaF_closeupval(L, base); /* close upvalues from current call */
|
|
lua_assert(L->tbclist.p < base); /* no pending tbc variables */
|
|
lua_assert(base == ci->func.p + 1);
|
|
}
|
|
if ((n = luaD_pretailcall(L, ci, ra, b, delta)) < 0) /* Lua function? */
|
|
goto startfunc; /* execute the callee */
|
|
else { /* C function? */
|
|
ci->func.p -= delta; /* restore 'func' (if vararg) */
|
|
luaD_poscall(L, ci, n); /* finish caller */
|
|
updatetrap(ci); /* 'luaD_poscall' can change hooks */
|
|
goto ret; /* caller returns after the tail call */
|
|
}
|
|
}
|
|
vmcase(OP_RETURN) {
|
|
StkId ra = RA(i);
|
|
int n = GETARG_B(i) - 1; /* number of results */
|
|
int nparams1 = GETARG_C(i);
|
|
if (n < 0) /* not fixed? */
|
|
n = cast_int(L->top.p - ra); /* get what is available */
|
|
savepc(ci);
|
|
if (TESTARG_k(i)) { /* may there be open upvalues? */
|
|
ci->u2.nres = n; /* save number of returns */
|
|
if (L->top.p < ci->top.p)
|
|
L->top.p = ci->top.p;
|
|
luaF_close(L, base, CLOSEKTOP, 1);
|
|
updatetrap(ci);
|
|
updatestack(ci);
|
|
}
|
|
if (nparams1) /* vararg function? */
|
|
ci->func.p -= ci->u.l.nextraargs + nparams1;
|
|
L->top.p = ra + n; /* set call for 'luaD_poscall' */
|
|
luaD_poscall(L, ci, n);
|
|
updatetrap(ci); /* 'luaD_poscall' can change hooks */
|
|
goto ret;
|
|
}
|
|
vmcase(OP_RETURN0) {
|
|
if (l_unlikely(L->hookmask)) {
|
|
StkId ra = RA(i);
|
|
L->top.p = ra;
|
|
savepc(ci);
|
|
luaD_poscall(L, ci, 0); /* no hurry... */
|
|
trap = 1;
|
|
}
|
|
else { /* do the 'poscall' here */
|
|
int nres;
|
|
L->ci = ci->previous; /* back to caller */
|
|
L->top.p = base - 1;
|
|
for (nres = ci->nresults; l_unlikely(nres > 0); nres--)
|
|
setnilvalue(s2v(L->top.p++)); /* all results are nil */
|
|
}
|
|
goto ret;
|
|
}
|
|
vmcase(OP_RETURN1) {
|
|
if (l_unlikely(L->hookmask)) {
|
|
StkId ra = RA(i);
|
|
L->top.p = ra + 1;
|
|
savepc(ci);
|
|
luaD_poscall(L, ci, 1); /* no hurry... */
|
|
trap = 1;
|
|
}
|
|
else { /* do the 'poscall' here */
|
|
int nres = ci->nresults;
|
|
L->ci = ci->previous; /* back to caller */
|
|
if (nres == 0)
|
|
L->top.p = base - 1; /* asked for no results */
|
|
else {
|
|
StkId ra = RA(i);
|
|
setobjs2s(L, base - 1, ra); /* at least this result */
|
|
L->top.p = base;
|
|
for (; l_unlikely(nres > 1); nres--)
|
|
setnilvalue(s2v(L->top.p++)); /* complete missing results */
|
|
}
|
|
}
|
|
ret: /* return from a Lua function */
|
|
if (ci->callstatus & CIST_FRESH)
|
|
return; /* end this frame */
|
|
else {
|
|
ci = ci->previous;
|
|
goto returning; /* continue running caller in this frame */
|
|
}
|
|
}
|
|
vmcase(OP_FORLOOP) {
|
|
StkId ra = RA(i);
|
|
if (ttisinteger(s2v(ra + 1))) { /* integer loop? */
|
|
lua_Unsigned count = l_castS2U(ivalue(s2v(ra)));
|
|
if (count > 0) { /* still more iterations? */
|
|
lua_Integer step = ivalue(s2v(ra + 1));
|
|
lua_Integer idx = ivalue(s2v(ra + 2)); /* control variable */
|
|
chgivalue(s2v(ra), count - 1); /* update counter */
|
|
idx = intop(+, idx, step); /* add step to index */
|
|
chgivalue(s2v(ra + 2), idx); /* update control variable */
|
|
pc -= GETARG_Bx(i); /* jump back */
|
|
}
|
|
}
|
|
else if (floatforloop(ra)) /* float loop */
|
|
pc -= GETARG_Bx(i); /* jump back */
|
|
updatetrap(ci); /* allows a signal to break the loop */
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_FORPREP) {
|
|
StkId ra = RA(i);
|
|
savestate(L, ci); /* in case of errors */
|
|
if (forprep(L, ra))
|
|
pc += GETARG_Bx(i) + 1; /* skip the loop */
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_TFORPREP) {
|
|
/* before: 'ra' has the iterator function, 'ra + 1' has the state,
|
|
'ra + 2' has the initial value for the control variable, and
|
|
'ra + 3' has the closing variable. This opcode then swaps the
|
|
control and the closing variables and marks the closing variable
|
|
as to-be-closed.
|
|
*/
|
|
StkId ra = RA(i);
|
|
TValue temp; /* to swap control and closing variables */
|
|
setobj(L, &temp, s2v(ra + 3));
|
|
setobjs2s(L, ra + 3, ra + 2);
|
|
setobj2s(L, ra + 2, &temp);
|
|
/* create to-be-closed upvalue (if closing var. is not nil) */
|
|
halfProtect(luaF_newtbcupval(L, ra + 2));
|
|
pc += GETARG_Bx(i); /* go to end of the loop */
|
|
i = *(pc++); /* fetch next instruction */
|
|
lua_assert(GET_OPCODE(i) == OP_TFORCALL && ra == RA(i));
|
|
goto l_tforcall;
|
|
}
|
|
vmcase(OP_TFORCALL) {
|
|
l_tforcall: {
|
|
/* 'ra' has the iterator function, 'ra + 1' has the state,
|
|
'ra + 2' has the closing variable, and 'ra + 3' has the control
|
|
variable. The call will use the stack starting at 'ra + 3',
|
|
so that it preserves the first three values, and the first
|
|
return will be the new value for the control variable.
|
|
*/
|
|
StkId ra = RA(i);
|
|
setobjs2s(L, ra + 5, ra + 3); /* copy the control variable */
|
|
setobjs2s(L, ra + 4, ra + 1); /* copy state */
|
|
setobjs2s(L, ra + 3, ra); /* copy function */
|
|
L->top.p = ra + 3 + 3;
|
|
ProtectNT(luaD_call(L, ra + 3, GETARG_C(i))); /* do the call */
|
|
updatestack(ci); /* stack may have changed */
|
|
i = *(pc++); /* go to next instruction */
|
|
lua_assert(GET_OPCODE(i) == OP_TFORLOOP && ra == RA(i));
|
|
goto l_tforloop;
|
|
}}
|
|
vmcase(OP_TFORLOOP) {
|
|
l_tforloop: {
|
|
StkId ra = RA(i);
|
|
if (!ttisnil(s2v(ra + 3))) /* continue loop? */
|
|
pc -= GETARG_Bx(i); /* jump back */
|
|
vmbreak;
|
|
}}
|
|
vmcase(OP_SETLIST) {
|
|
StkId ra = RA(i);
|
|
int n = GETARG_vB(i);
|
|
unsigned int last = GETARG_vC(i);
|
|
Table *h = hvalue(s2v(ra));
|
|
if (n == 0)
|
|
n = cast_int(L->top.p - ra) - 1; /* get up to the top */
|
|
else
|
|
L->top.p = ci->top.p; /* correct top in case of emergency GC */
|
|
last += n;
|
|
if (TESTARG_k(i)) {
|
|
last += GETARG_Ax(*pc) * (MAXARG_vC + 1);
|
|
pc++;
|
|
}
|
|
/* when 'n' is known, table should have proper size */
|
|
if (last > luaH_realasize(h)) { /* needs more space? */
|
|
/* fixed-size sets should have space preallocated */
|
|
lua_assert(GETARG_vB(i) == 0);
|
|
luaH_resizearray(L, h, last); /* preallocate it at once */
|
|
}
|
|
for (; n > 0; n--) {
|
|
TValue *val = s2v(ra + n);
|
|
obj2arr(h, last - 1, val);
|
|
last--;
|
|
luaC_barrierback(L, obj2gco(h), val);
|
|
}
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_CLOSURE) {
|
|
StkId ra = RA(i);
|
|
Proto *p = cl->p->p[GETARG_Bx(i)];
|
|
halfProtect(pushclosure(L, p, cl->upvals, base, ra));
|
|
checkGC(L, ra + 1);
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_VARARG) {
|
|
StkId ra = RA(i);
|
|
int n = GETARG_C(i) - 1; /* required results */
|
|
Protect(luaT_getvarargs(L, ci, ra, n));
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_VARARGPREP) {
|
|
ProtectNT(luaT_adjustvarargs(L, GETARG_A(i), ci, cl->p));
|
|
if (l_unlikely(trap)) { /* previous "Protect" updated trap */
|
|
luaD_hookcall(L, ci);
|
|
L->oldpc = 1; /* next opcode will be seen as a "new" line */
|
|
}
|
|
updatebase(ci); /* function has new base after adjustment */
|
|
vmbreak;
|
|
}
|
|
vmcase(OP_EXTRAARG) {
|
|
lua_assert(0);
|
|
vmbreak;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* }================================================================== */
|